creating deformations on a sphere surface (using python?) - python

Hi :)
i have the following python code that generates points lying on a sphere's surface
from math import sin, cos, pi
toRad = pi / 180
ox = 10
oy = -10
oz = 50
radius = 10.0
radBump = 3.0
angleMin = 0
angleMax = 360
angleOffset = angleMin * toRad
angleRange = (angleMax - angleMin) * toRad
steps = 48
angleStep = angleRange / steps
latMin = 0
latMax = 180
latOffset = latMin * toRad
if (latOffset < 0):
latOffset = 0;
latRange = (latMax - latMin) * toRad
if (latRange > pi):
latRange = pi - latOffset;
latSteps = 48
latAngleStep = latRange / latSteps
for lat in range(0, latSteps):
ang = lat * latAngleStep + latOffset
z = cos(ang) * radius + oz
radMod = sin(ang) * radius
for a in range(0, steps):
x = sin(a * angleStep + angleOffset) * radMod + ox
y = cos(a * angleStep + angleOffset) * radMod + oy
print "%f %f %f"%(x,y,z)
after that i plot the points with gnuplot using splot 'datafile'
can you give any hints on how to create deformations on that sphere?
like "mountains" or "spikes" on it?
(something like the openbsd logo ;) : https://https.openbsd.org/images/tshirt-23.gif )
i know it is a trivial question :( but thanks for your time :)
DsP

The approach that springs to my mind, especially with the way you compute a set of points that are not explicitly connected, is to find where the point goes on the sphere's surface, then move it by a distance and direction determined by a set of control points. The control points could have smaller effects the further away they are. For example:
# we have already computed a points position on the sphere, and
# called it x,y,z
for p in controlPoints:
dx = p.x - x
dy = p.y - y
dz = p.z - z
xDisplace += 1/(dx*dx)
yDisplace += 1/(dy*dy)
zDisplace += 1/(dz*dz) # using distance^2 displacement
x += xDisplace
y += yDisplace
z += zDisplace
By changing the control points you can alter the sphere's shape
By changing the movement function, you can alter the way the points shape the sphere
You could get really tricky and have different functions for different points:
# we have already computed a points position on the sphere, and
# called it x,y,z
for p in controlPoints:
xDisplace += p.displacementFunction(x)
yDisplace += p.displacementFunction(y)
zDisplace += p.displacementFunction(z)
x += xDisplace
y += yDisplace
z += zDisplace
If you do not want all control points affecting every point in the sphere, just build that into the displacement function.

How's this?
from math import sin, cos, pi, radians, ceil
import itertools
try:
rng = xrange # Python 2.x
except NameError:
rng = range # Python 3.x
# for the following calculations,
# - all angles are in radians (unless otherwise specified)
# - latitude is in [-pi/2..pi/2]
# - longitude is in [-pi..pi)
MIN_LAT = -pi/2 # South Pole
MAX_LAT = pi/2 # North Pole
MIN_LON = -pi # Far West
MAX_LON = pi # Far East
def floatRange(start, end=None, step=1.0):
"Floating-point range generator"
start += 0.0 # cast to float
if end is None:
end = start
start = 0.0
steps = int(ceil((end-start)/step))
return (start + k*step for k in rng(0, steps+1))
def patch2d(xmin, xmax, ymin, ymax, step=1.0):
"2d rectangular grid generator"
if xmin>xmax:
xmin,xmax = xmax,xmin
xrange = floatRange(xmin, xmax, step)
if ymin>ymax:
ymin,ymax = ymax,ymin
yrange = floatRange(ymin, ymax, step)
return itertools.product(xrange, yrange)
def patch2d_to_3d(xyIter, zFn):
"Convert 2d field to 2.5d height-field"
mapFn = lambda a: (a[0], a[1], zFn(a[0],a[1]))
return itertools.imap(mapFn, xyIter)
#
# Representation conversion functions
#
def to_spherical(lon, lat, rad):
"Map from spherical to spherical coordinates (identity function)"
return lon, lat, rad
def to_cylindrical(lon, lat, rad):
"Map from spherical to cylindrical coordinates"
# angle, z, radius
return lon, rad*sin(lat), rad*cos(lat)
def to_cartesian(lon, lat, rad):
"Map from spherical to Cartesian coordinates"
# x, y, z
cos_lat = cos(lat)
return rad*cos_lat*cos(lon), rad*cos_lat*sin(lon), rad*sin(lat)
def bumpySphere(gridSize, radiusFn, outConv):
lonlat = patch2d(MIN_LON, MAX_LON, MIN_LAT, MAX_LAT, gridSize)
return list(outConv(*lonlatrad) for lonlatrad in patch2d_to_3d(lonlat, radiusFn))
# make a plain sphere of radius 10
sphere = bumpySphere(radians(5.0), lambda x,y: 10.0, to_cartesian)
# spiky-star-function maker
def starFnMaker(xWidth, xOffset, yWidth, yOffset, minRad, maxRad):
# make a spiky-star function:
# longitudinal and latitudinal triangular waveforms,
# joined as boolean intersection,
# resulting in a grid of positive square pyramids
def starFn(x, y, xWidth=xWidth, xOffset=xOffset, yWidth=yWidth, yOffset=yOffset, minRad=minRad, maxRad=maxRad):
xo = ((x-xOffset)/float(xWidth)) % 1.0 # xo in [0.0..1.0), progress across a single pattern-repetition
xh = 2 * min(xo, 1.0-xo) # height at xo in [0.0..1.0]
xHeight = minRad + xh*(maxRad-minRad)
yo = ((y-yOffset)/float(yWidth)) % 1.0
yh = 2 * min(yo, 1.0-yo)
yHeight = minRad + yh*(maxRad-minRad)
return min(xHeight, yHeight)
return starFn
# parameters to spike-star-function maker
width = 2*pi
horDivs = 20 # number of waveforms longitudinally
horShift = 0.0 # longitudinal offset in [0.0..1.0) of a wave
height = pi
verDivs = 10
verShift = 0.5 # leave spikes at the poles
minRad = 10.0
maxRad = 15.0
deathstarFn = starFnMaker(width/horDivs, width*horShift/horDivs, height/verDivs, height*verShift/verDivs, minRad, maxRad)
deathstar = bumpySphere(radians(2.0), deathstarFn, to_cartesian)

so i finally created the deformation using a set of control points that "pull" the spherical
surface. it is heavilly OO and ugly though ;)
thanks for all the help !!!
to use it > afile and with gnuplot : splot 'afile' w l
DsP
from math import sin, cos, pi ,sqrt,exp
class Point:
"""a 3d point class"""
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def __repr__(self):
return "%f %f %f\n"%(self.x,self.y,self.z)
def __str__(self):
return "point centered: %f %f %f\n"%(self.x,self.y,self.z)
def distance(self,b):
return sqrt((self.x - b.x)**2 +(self.y - b.y)**2 +(self.z -b.z)**2)
def displaceTowards(self,b):
self.x
class ControlPoint(Point):
"""a control point that deforms positions of other points"""
def __init__(self,p):
Point.__init__(self,p.x,p.y,p.z)
self.deformspoints=[]
def deforms(self,p):
self.deformspoints.append(p)
def deformothers(self):
self.deformspoints.sort()
#print self.deformspoints
for i in range(0,len(self.deformspoints)):
self.deformspoints[i].x += (self.x - self.deformspoints[i].x)/2
self.deformspoints[i].y += (self.y - self.deformspoints[i].y)/2
self.deformspoints[i].z += (self.z - self.deformspoints[i].z)/2
class Sphere:
"""returns points on a sphere"""
def __init__(self,radius,angleMin,angleMax,latMin,latMax,discrStep,ox,oy,oz):
toRad = pi/180
self.ox=ox
self.oy=oy
self.oz=oz
self.radius=radius
self.angleMin=angleMin
self.angleMax=angleMax
self.latMin=latMin
self.latMax=latMax
self.discrStep=discrStep
self.angleRange = (self.angleMax - self.angleMin)*toRad
self.angleOffset = self.angleMin*toRad
self.angleStep = self.angleRange / self.discrStep
self.latOffset = self.latMin*toRad
self.latRange = (self.latMax - self.latMin) * toRad
self.latAngleStep = self.latRange / self.discrStep
if(self.latOffset <0):
self.latOffset = 0
if(self.latRange > pi):
self.latRange = pi - latOffset
def CartesianPoints(self):
PointList = []
for lat in range(0,self.discrStep):
ang = lat * self.latAngleStep + self.latOffset
z = cos(ang) * self.radius + self.oz
radMod = sin(ang)*self.radius
for a in range(0,self.discrStep):
x = sin(a*self.angleStep+self.angleOffset)*radMod+self.ox
y = cos(a*self.angleStep+self.angleOffset)*radMod+self.oy
PointList.append(Point(x,y,z))
return PointList
mysphere = Sphere(10.0,0,360,0,180,50,10,10,10)
mylist = mysphere.CartesianPoints()
cpoints = [ControlPoint(Point(0.0,0.0,0.0)),ControlPoint(Point(20.0,0.0,0.0))]
deforpoints=[]
for cp in cpoints:
for p in mylist:
if(p.distance(cp) < 15.0):
cp.deforms(p)
"""print "cp ",cp,"deforms:"
for dp in cp.deformspoints:
print dp ,"at distance", dp.distance(cp)"""
cp.deformothers()
out= mylist.__repr__()
s = out.replace(","," ")
print s

Related

Need help writing the cursor function to implement the peano algorithm within arcpy

I am using the arcpy module for arcGIS to implement a peano curve algorithm and provide each object in the GIS Project with a spatial order value.
I have currently defined the Peano curve but need to write cursor functions that will compute and add the outputs to the new field after calling the Peano.
This is the code that I have so far. Areas related to the question are in bold. Thank you!
#return the fractional part from a double number
def GetFractionalPart(dbl):
return dbl - math.floor(dbl)
#Return the peano curve coordinate for a given x, y value
def Peano(x,y,k):
if (k==0 or (x==1 and y==1):
return 0.5
if x <= 0.5:
if y <= 0.5:
quad = 0
elif y <= 0.5:
quad = 3
else:
quad = 2
subpos = Peano(2 * abs(x - 0.5), 2 * abs(y - 0.5), k-1)
if (quad == 1 or quad == 3):
subpos = 1 - subpos
return GetFractionalPart((quad + subpos - 0.5)/4.0)
#Import modules and create geoprocessor
import arcpy
arcpy.env.OverwriteOutput = True
#Prepare two inputs as parameters
inp_fc = arcpy.GetParameterAsText(0)
PeanoOrder_fld = arcpy.GetParameterAsText(1)
#Add the double field
arcpy.AddField_management(inp_fc, PeanoOrder_fld, "DOUBLE")
#Get the extent for the feature class
desc = arcpy.Describe(inp_fc)
extent = desc.Extent
xmin = extent.XMin
ymin = extent.YMin
xmax = extent.XMax
ymax = extent.YMax
#Compute constants to scale the coordinates
dx = xmax - xmin
dy = ymax - ymin
if dx >= dy:
offsetx = 0.0
offsety = (1.0-dy/dx)/2.0
scale = dx
else:
offsetx = (1.0 - dx/dy)/2.0
offsety = 0.0
scale = dy
**#Get each object and compute its Peano curve spatial order
#Create an update cursor
rows = arcpy.UpdateCursor(inp_fc)
rows.___?___
row = rows.next( )**
#get the X,Y coordinate for each feature
#If a polygon use centroid, If a point use point itself
while row:
if desc.ShapeType.lower() in ["polyline", "polygon"]:
pnt = row.shape.centroid
else:
pnt = row.shape.getPart(0)
#Normalization
unitx = (pnt.X - xmin) / scale + offsetx
unity = (pnt.Y - ymin) / scale + offset
**#Call the Peano Function and add to attribute field
peanoPos = Peano(unitx, unity, 32)
row.__?__
rows.__?__
row =__?___
del row, rows**

Control the starting angle at which the point rotates on the circle

I'm trying to get the dot to start rotating at an angle of 330 degrees, but it starts at that point, jumps to 0 degrees, and does a full turn from 0 degrees to 360 degrees.
I'm trying to make it start at 330 degrees and end at 330 degrees.
Can anybody help me?
from manim import *
import numpy as np
class Turn( Scene ):
def construct( self ):
radius = 1
origin = ORIGIN
e1dir = RIGHT
e2dir = UP
x1 = origin + radius * e1dir * np.cos(np.deg2rad(330)) + radius * e2dir * np.sin(np.deg2rad(330))
r = lambda t: origin + radius * e1dir * np.cos(t * 1 * 2*PI) + radius * e2dir * np.sin(t * 1 * 2*PI)
def rmove(a, t):
p = r(t)
a.move_to(p)
def u1(mob):
t = t_parameter.get_value()
rmove(mob, t)
t_parameter = ValueTracker(0)
dot = Dot(point=x1, color=BLUE).add_updater(u1)
g1 = ParametricFunction(r, t_range=[0, 1], color=YELLOW)
self.add(VGroup(g1, dot))
self.wait(1)
self.play(UpdateFromAlphaFunc(t_parameter, lambda mob, alpha: mob.set_value(alpha)), run_time=3)
self.wait(1)

Metropolis monte carlo ideal gas simulation volume goes to zero

I'm trying to do simple simulation of ideal gas according to Clapeyron equation `pv=nkbT' using Metropolis Monte Carlo algorithm.This is very simple example,where I consider molecules in 2D with no interactions with each other and energy is equeal to E=pV wher V is area of circle containing all molecules.
My problem is that after very few monte carlo steps volume of my gas goes always to almost zero,no matter how many molecules or pressure I put.I can't figure out if I have bug in my code,or it is becouse I don't have any molecules interactions.
All help will be much appriciated,here is my code
My results are shown in plot bellow,x-axis are monte carlo steps and y-axis is volume,i would expected as a result some none zero constant value of volume after greater number of steps.
import numpy as np
import random
import matplotlib.pyplot as plt
def centroid(arr):
length = arr.shape[0]
sum_x = sum([i.x for i in arr])
sum_y = sum([i.y for i in arr])
return sum_x/length, sum_y/length
class Molecule:
def __init__(self, xpos, ypos):
self.pos = (xpos, ypos)
self.x = xpos
self.y = ypos
class IdealGas:
# CONSTANTS
def __init__(self, n,full_radius, pressure, T, number_of_runs):
gas = []
for i in range(0, n):
gas.append(Molecule(random.random() * full_radius,
random.random() * full_radius))
self.gas = np.array(gas)
self.center = centroid(self.gas)
self.small_radius = full_radius/4.
self.pressure = pressure
self.kbT = 9.36E-18 * T
self.n = n
self.number_of_runs = number_of_runs
def update_pos(self):
random_molecule = np.random.choice(self.gas)
old_state_x = random_molecule.x
old_state_y = random_molecule.y
old_radius = np.linalg.norm(np.array([old_state_x,old_state_y])-np.array([self.center[0],self.center[1]]))
energy_old = np.pi * self.pressure * old_radius**2
random_molecule.x = old_state_x + (random.random() * self.small_radius) * np.random.choice([-1, 1])
random_molecule.y = old_state_y + (random.random() * self.small_radius) * np.random.choice([-1, 1])
new_radius = np.linalg.norm(np.array([random_molecule.x,random_molecule.y])-np.array([self.center[0],self.center[1]]))
energy_new = np.pi * self.pressure * new_radius**2
if energy_new - energy_old <= 0.0:
return random_molecule
elif np.exp((-1.0 * (energy_new - energy_old)) / self.kbT) > random.random():
return random_molecule
else:
random_molecule.x = old_state_x
random_molecule.y = old_state_y
return random_molecule
def monte_carlo_step(self):
gas = []
for molecule in range(0, self.n):
gas.append(self.update_pos())
self.gas = np.array(gas)
#self.center = centroid(self.gas)
return self.gas
def simulation(self):
volume = []
for run in range(self.number_of_runs):
step_gas = self.monte_carlo_step()
step_centroid = centroid(step_gas)
step_radius = max([np.linalg.norm(np.array([gas.x,gas.y])-np.array([step_centroid[0],step_centroid[1]]))
for gas in step_gas])
step_volume = np.pi * step_radius**2
volume.append(step_volume)
return volume
Gas = IdealGas(500, 50, 1000, 300, 100)
vol = Gas.simulation()
plt.plot(vol)
plt.show()
You only allow your molecules to move if the new radius is inferior to the old radius:
if energy_new - energy_old <= 0.0:
is equivalent to:
np.pi * self.pressure * new_radius**2 <= np.pi * self.pressure * old_radius**2
that is:
abs(new_radius) <= abs(old_radius)
So all molecules goes to the centroïd.
To me your hypothesis are too strong: you fix temperature, pressure and number of molecules. According to the ideal gas equation, it means volumne v=nRT/p is constant too. If the volume can change, then pressure or temperature has to change. In your simulation, allowing pressure to change would mean that the product of pressure and volume is constant, so that energy is constant, so molecules can move freely in an arbitraty large volume.
By the way I think molecules should be initialized with:
(random.random() - 0.5) * full_radius
so that the occupy all the plane around zero.

projecting points onto a parallel grid at a depth from camera (maya)

I am attempting to create a grid of locators that serve as projected points onto a parallel finite plane from a camera in maya at a specified depth. The grid should line up with a specified resolution so as to match rendered output.
At the moment my calculations are off and I am looking for some help to ascertain how my formula for ascertaining the projected points is incorrect.
I have a self contained python script and image showing the current position of locators that are spawned as an example.
image showing current spawned locators are off on y and z axis
import maya.cmds as mc
import maya.OpenMaya as om
res = [mc.getAttr('defaultResolution.width'),
mc.getAttr('defaultResolution.height')]
print res
grid = [5, 5]
def projectedGridPoint(camera, coord, depth, res):
selList = om.MSelectionList()
selList.add(camera)
dagPath = om.MDagPath()
selList.getDagPath(0,dagPath)
dagPath.extendToShape()
camMtx = dagPath.inclusiveMatrix()
fnCam = om.MFnCamera(dagPath)
mFloatMtx = fnCam.projectionMatrix()
projMtx = om.MMatrix(mFloatMtx.matrix)
#center of camera
eyePt = fnCam.eyePoint()
#offset position
z = eyePt.z - depth
#calculated xy positions
x = (2 * z * coord[0] / res[0]) - z
y = (2 * z * coord[1] / res[1]) - z
return om.MPoint(x,y,depth) * camMtx * projMtx.inverse()
for y in range(grid[1] + 1):
for x in range(grid[0] + 1):
coord = ( x / float(grid[0]) * res[0], y / float(grid[1]) * res[1] )
pt = projectedGridPoint('camera1', coord, 10, res)
mc.spaceLocator(a=1, p=[pt.x, pt.y, pt.z])
Once I adjusted Theodox's answer to account for all possible grid divisions, such that the ndc_x and ndc_y was always in the range of -1 and 1. I was able to get a working solution.
import maya.api.OpenMaya as om
import maya.cmds as cmds
def projectedGridPoint(camera, coord, depth):
selList = om.MGlobal.getSelectionListByName(camera)
dagPath = selList.getDagPath(0)
dagPath.extendToShape()
view = dagPath.inclusiveMatrix()
fnCam = om.MFnCamera(dagPath)
projection = om.MMatrix(fnCam.projectionMatrix())
viewProj = projection * view
r = om.MPoint(coord[0],coord[1], -1 * depth) * projection.inverse()
return r.homogenize() * view
xx, yy = (6, 6)
for y in range(yy + 1):
for x in range(xx + 1):
ndc_x = -1
ndc_y = -1
if x > 0:
ndc_x = (x / float(xx) * 2) - 1
if y > 0:
ndc_y = (y / float(yy) * 2) - 1
coord = ( ndc_x, ndc_y)
print coord
pt = projectedGridPoint('camera1', coord, 0)
c,_ = cmds.polyCube(w = 0.1, d = 0.1, h = 0.1)
cmds.xform(c, t = (pt[0], pt[1], pt[2]))
I think you want something a bit more like this (note, i converted it to API 2 to cut down on the boilerplate)
import maya.api.OpenMaya as om
import maya.cmds as cmds
def projectedGridPoint(camera, coord, depth):
selList = om.MGlobal.getSelectionListByName(camera)
dagPath = selList.getDagPath(0)
dagPath.extendToShape()
view = dagPath.inclusiveMatrix()
fnCam = om.MFnCamera(dagPath)
projection = om.MMatrix(fnCam.projectionMatrix())
viewProj = projection * view
r = om.MPoint(coord[0],coord[1], -1 * depth) * projection.inverse()
return r.homogenize() * view
xx, yy = (2, 2)
for y in range(yy):
for x in range(xx):
ndc_x = 2.0 * x / float(xx - 1) - 1
ndc_y = 2.0 * y / float(yy - 1) - 1
coord = ( ndc_x, ndc_y)
pt = projectedGridPoint('camera1', coord,0)
c,_ = cmds.polyCube(w = 0.1, d = 0.1, h = 0.1)
cmds.xform(c, t = (pt[0], pt[1], pt[2]))
The coords are supplied as normalized device coordinates (from -1,-1 to 1, 1 at the corners of the view) and the depth goes from the near to far clip planes -- a depth of 1 is right on the near plane and a depth of 0 is on the far plane. I think in practice I'd lock the depth at 0 and use the clip plane setting on the camera to set the depth
edit I rationalized the original, wonky method of converting index values to NDC coordinates

Quiver plot arrows in Matplotlib are ridiculously too large

I was working on creating a python script that could model electric field lines, but the quiver plot comes out with arrows that are way too large. I've tried changing the units and the scale, but the documentation on matplotlib makes no sense too me... This seems to only be a major issue when there is only one charge in the system, but the arrows are still slightly oversized with any number of charges. The arrows tend to be oversized in all situations, but it is most evident with only one particle.
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
import astropy as astro
k = 9 * 10 ** 9
def get_inputs():
inputs_loop = False
while inputs_loop is False:
""""
get inputs
"""
inputs_loop = True
particles_loop = False
while particles_loop is False:
try:
particles_loop = True
"""
get n particles with n charges.
"""
num_particles = int(raw_input('How many particles are in the system? '))
parts = []
for i in range(num_particles):
parts.append([float(raw_input("What is the charge of particle %s in Coulombs? " % (str(i + 1)))),
[float(raw_input("What is the x position of particle %s? " % (str(i + 1)))),
float(raw_input('What is the y position of particle %s? ' % (str(i + 1))))]])
except ValueError:
print 'Could not convert input to proper data type. Please try again.'
particles_loop = False
return parts
def vec_addition(vectors):
x_sum = 0
y_sum = 0
for b in range(len(vectors)):
x_sum += vectors[b][0]
y_sum += vectors[b][1]
return [x_sum,y_sum]
def electric_field(particle, point):
if particle[0] > 0:
"""
Electric field exitation is outwards
If the x position of the particle is > the point, then a different calculation must be made than in not.
"""
field_vector_x = k * (
particle[0] / np.sqrt((particle[1][0] - point[0]) ** 2 + (particle[1][1] - point[1]) ** 2) ** 2) * \
(np.cos(np.arctan2((point[1] - particle[1][1]), (point[0] - particle[1][0]))))
field_vector_y = k * (
particle[0] / np.sqrt((particle[1][0] - point[0]) ** 2 + (particle[1][1] - point[1]) ** 2) ** 2) * \
(np.sin(np.arctan2((point[1] - particle[1][1]), (point[0] - particle[1][0]))))
"""
Defining the direction of the components
"""
if point[1] < particle[1][1] and field_vector_y > 0:
print field_vector_y
field_vector_y *= -1
elif point[1] > particle[1][1] and field_vector_y < 0:
print field_vector_y
field_vector_y *= -1
else:
pass
if point[0] < particle[1][0] and field_vector_x > 0:
print field_vector_x
field_vector_x *= -1
elif point[0] > particle[1][0] and field_vector_x < 0:
print field_vector_x
field_vector_x *= -1
else:
pass
"""
If the charge is negative
"""
elif particle[0] < 0:
field_vector_x = k * (
particle[0] / np.sqrt((particle[1][0] - point[0]) ** 2 + (particle[1][1] - point[1]) ** 2) ** 2) * (
np.cos(np.arctan2((point[1] - particle[1][1]), (point[0] - particle[1][0]))))
field_vector_y = k * (
particle[0] / np.sqrt((particle[1][0] - point[0]) ** 2 + (particle[1][1] - point[1]) ** 2) ** 2) * (
np.sin(np.arctan2((point[1] - particle[1][1]), (point[0] - particle[1][0]))))
"""
Defining the direction of the components
"""
if point[1] > particle[1][1] and field_vector_y > 0:
print field_vector_y
field_vector_y *= -1
elif point[1] < particle[1][1] and field_vector_y < 0:
print field_vector_y
field_vector_y *= -1
else:
pass
if point[0] > particle[1][0] and field_vector_x > 0:
print field_vector_x
field_vector_x *= -1
elif point[0] < particle[1][0] and field_vector_x < 0:
print field_vector_x
field_vector_x *= -1
else:
pass
return [field_vector_x, field_vector_y]
def main(particles):
"""
Graphs the electrical field lines.
:param particles:
:return:
"""
"""
plot particle positions
"""
particle_x = 0
particle_y = 0
for i in range(len(particles)):
if particles[i][0]<0:
particle_x = particles[i][1][0]
particle_y = particles[i][1][1]
plt.plot(particle_x,particle_y,'r+',linewidth=1.5)
else:
particle_x = particles[i][1][0]
particle_y = particles[i][1][1]
plt.plot(particle_x,particle_y,'r_',linewidth=1.5)
"""
Plotting out the quiver plot.
"""
parts_x = [particles[i][1][0] for i in range(len(particles))]
graph_x_min = min(parts_x)
graph_x_max = max(parts_x)
x,y = np.meshgrid(np.arange(graph_x_min-(graph_x_max-graph_x_min),graph_x_max+(graph_x_max-graph_x_min)),
np.arange(graph_x_min-(graph_x_max-graph_x_min),graph_x_max+(graph_x_max-graph_x_min)))
if len(particles)<2:
for x_pos in range(int(particles[0][1][0]-10),int(particles[0][1][0]+10)):
for y_pos in range(int(particles[0][1][0]-10),int(particles[0][1][0]+10)):
vecs = []
for particle_n in particles:
vecs.append(electric_field(particle_n, [x_pos, y_pos]))
final_vector = vec_addition(vecs)
distance = np.sqrt((final_vector[0] - x_pos) ** 2 + (final_vector[1] - y_pos) ** 2)
plt.quiver(x_pos, y_pos, final_vector[0], final_vector[1], distance, angles='xy', scale_units='xy',
scale=1, width=0.05)
plt.axis([particles[0][1][0]-10,particles[0][1][0]+10,
particles[0][1][0] - 10, particles[0][1][0] + 10])
else:
for x_pos in range(int(graph_x_min-(graph_x_max-graph_x_min)),int(graph_x_max+(graph_x_max-graph_x_min))):
for y_pos in range(int(graph_x_min-(graph_x_max-graph_x_min)),int(graph_x_max+(graph_x_max-graph_x_min))):
vecs = []
for particle_n in particles:
vecs.append(electric_field(particle_n,[x_pos,y_pos]))
final_vector = vec_addition(vecs)
distance = np.sqrt((final_vector[0]-x_pos)**2+(final_vector[1]-y_pos)**2)
plt.quiver(x_pos,y_pos,final_vector[0],final_vector[1],distance,angles='xy',units='xy')
plt.axis([graph_x_min-(graph_x_max-graph_x_min),graph_x_max+(graph_x_max-graph_x_min),graph_x_min-(graph_x_max-graph_x_min),graph_x_max+(graph_x_max-graph_x_min)])
plt.grid()
plt.show()
g = get_inputs()
main(g)}
You may set the scale such that it roughly corresponds to the u and v vectors.
plt.quiver(x_pos, y_pos, final_vector[0], final_vector[1], scale=1e9, units="xy")
This would result in something like this:
If I interprete it correctly, you want to draw the field vectors for point charges. Looking around at how other people have done that, one finds e.g. this blog entry by Christian Hill. He uses a streamplot instead of a quiver but we might take the code for calculating the field and replace the plot.
In any case, we do not want and do not need 100 different quiver plots, as in the code from the question, but only one single quiver plot that draws the entire field. We will of course run into a problem if we want to have the field vector's length denote the field strength, as the magnitude goes with the distance from the particles by the power of 3. A solution might be to scale the field logarithmically before plotting, such that the arrow lengths are still somehow visible, even at some distance from the particles. The quiver plot's scale parameter then can be used to adapt the lengths of the arrows such that they somehow fit to other plot parameters.
""" Original code by Christian Hill
http://scipython.com/blog/visualizing-a-vector-field-with-matplotlib/
Changes made to display the field as a quiver plot instead of streamlines
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
def E(q, r0, x, y):
"""Return the electric field vector E=(Ex,Ey) due to charge q at r0."""
den = ((x-r0[0])**2 + (y-r0[1])**2)**1.5
return q * (x - r0[0]) / den, q * (y - r0[1]) / den
# Grid of x, y points
nx, ny = 32, 32
x = np.linspace(-2, 2, nx)
y = np.linspace(-2, 2, ny)
X, Y = np.meshgrid(x, y)
charges = [[5.,[-1,0]],[-5.,[+1,0]]]
# Electric field vector, E=(Ex, Ey), as separate components
Ex, Ey = np.zeros((ny, nx)), np.zeros((ny, nx))
for charge in charges:
ex, ey = E(*charge, x=X, y=Y)
Ex += ex
Ey += ey
fig = plt.figure()
ax = fig.add_subplot(111)
f = lambda x:np.sign(x)*np.log10(1+np.abs(x))
ax.quiver(x, y, f(Ex), f(Ey), scale=33)
# Add filled circles for the charges themselves
charge_colors = {True: 'red', False: 'blue'}
for q, pos in charges:
ax.add_artist(Circle(pos, 0.05, color=charge_colors[q>0]))
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
ax.set_aspect('equal')
plt.show()
(Note that the field here is not normalized in any way, which should no matter for visualization at all.)
A different option is to look at e.g. this code which also draws field lines from point charges.

Categories