This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
What’s with the love of dynamic Languages
I'm coming from a c#/java background i.e. strongly typed, OOP language.
I'm very much interested in Python, but I need to learn a little more about the advantages of a dynamic language.
What power does it really give me? (in web applications).
Can someone outline some of the advantages and cool tricks I can do?
I don't think of dynamically typed languages as "allowing cool tricks" (they do, but mostly it's not really sound to use "cool" tricks in production software -- they come in handy for testing, debugging, etc, but when it comes to getting good, fast stuff deployed for production, simplicity rules).
Rather, I think of such languages as "not getting in my way" -- in particular, not slowing me down by forcing me to redundantly specify things over and over. Not every statically typed languages does "get in your way" -- good ones with solid, logically correct type systems like Haskell let the compiler deduce types (though you may redundantly specify them if you like redundancy... or, more to the point, if you want stricter constraints than what the compiler can actually deduce from the code). But in Java (and to a lesser extent in C# except when you use the reasonably recent var keyword) redundancy is the rule, and that impacts productivity.
A compromise can be offered by third-party checking systems for Python, like typecheck -- I don't use it, myself, but I can see how somebody who really thinks static type checking adds a lot of value might be happy with it. There's even a syntax (which the Python compiler accepts but does nothing with) in recent Python versions to let you annotate your function arguments and return values -- its purpose is to let such packages as typecheck be extended to merge more naturally with the language proper (though I don't think typecheck does yet).
Edit:
As I wrote here, and I quote:
I love the explanations of Van Roy and
Haridi, p. 104-106 of their book,
though I may or may not agree with
their conclusions (which are basically
that the intrinsic difference is tiny
-- they point to Oz and Alice as interoperable languages without and
with static typing, respectively), all
the points they make are good. Most
importantly, I believe, the way
dynamic typing allows real modularity
(harder with static typing, since type
discipline must be enforced across
module boundaries), and "exploratory
computing in a computation model that
integrates several programming
paradigms".
"Dynamic typing is recommended", they
conclude, "when programs must be as
flexible as possible". I recommend
reading the Agile Manifesto to
understand why maximal flexibility is
crucial in most real-world application
programming -- and therefore why, in
said real world rather than in the
more academic circles Dr. Van Roy and
Dr. Hadidi move in, dynamic typing is
generally preferable, and not such a
tiny issue as they make the difference
to be. Still, they at least show more
awareness of the issues, in devoting 3
excellent pages of discussion about
it, pros and cons, than almost any
other book I've seen -- most books
have clearly delineated and preformed
precedence one way or the other, so
the discussion is rarely as balanced
as that;).
I enjoyed reading this comparison between Python and Java.
In relation with web, I would recommend doing a simple example with Django to see how it works.
Python (like all dynamic languages) defers attribute lookups until runtime. This allows you to break past the ideas of polymorphism and interfaces, and leverage the power of duck-typing, whereby you can use a type that merely looks like it should work, instead of having to worry about its ancestry or what it claims to implement.
Can't speak for python per se, but I was playing around with the PSObject class in Powershell last week which allows you to dynamically add members, methods, etc. Coming from a C++\C# background, this seemed like magic - no need to re-comile to get these constructs in-built making it a much nicer workflow for what I was doing.
Python is strongly typed and object oriented the difference is that Python is also dynamic.
In Python classes are objects like everything else and as every other object you can create and modify them at runtime. This basically means that you can create and change modules, metaclasses, classes, attributes/methods and functions at runtime. You can add base classes to already existing classes and several other things.
Is there a package naming convention for Python like Java's com.company.actualpackage? Most of the time I see simple, potentially colliding package names like "web".
If there is no such convention, is there a reason for it? What do you think of using the Java naming convention in the Python world?
Python has two "mantras" that cover this topic:
Explicit is better than implicit.
and
Namespaces are one honking great idea -- let's do more of those!
There is a convention for naming of and importing of modules that can be found in The Python Style Guide (PEP 8).
The biggest reason that there is no such convention to consistently prefix your modules names in a Java style, is because over time you end up with a lot of repetition in your code that doesn't really need to be there.
One of the problems with Java is it forces you to repeat yourself, constantly. There's a lot of boilerplate that goes into Java code that just isn't necessary in Python. (Getters/setters being a prime example of that.)
Namespaces aren't so much of a problem in Python because you are able to give modules an alias upon import. Such as:
import com.company.actualpackage as shortername
So you're not only able to create or manipulate the namespace within your programs, but are able to create your own keystroke-saving aliases as well.
The Java's conventions also has its own drawbacks. Not every opensource package has a stable website behind it. What should a maintainer do if his website changes? Also, using this scheme package names become long and hard to remember. Finally, the name of the package should represent the purpose of the package, not its owner
An update for anyone else who comes looking for this:
As of 2012, PEP 423 addresses this. PEP 8 touches on the topic briefly, but only to say: all lowercase or underscores.
The gist of it: pick memorable, meaningful names that aren't already used on PyPI.
There is no Java-like naming convention for Python packages. You can of course adopt one for any package you develop yourself, but you might have to invasively edit any package you may adopt from third parties, and the "culturally alien" naming convention will probably sap the changes of your own packages to be widely adopted outside of your organization.
Technically, there would be nothing wrong with Java's convention in Python (it would just make some from statements a tad longer, no big deal), but in practice the cultural aspects make it pretty much unfeasible.
The reason there's normally no package hierarchy is because Python packages aren't easily extended that way. Packages are actual directories, and though you can make packages look in multiple directories for sub-modules (by adding directories to the __path__ list of the package) it's not convenient, and easily done wrong. As for why Python packages aren't easily extended that way, well, that's a design choice. Guido didn't like deep hierarchies (and still doesn't) and doesn't think they're necessary.
The convention is to pick a toplevel package name that's obvious but unique to your project -- for example, the name of the project itself. You can structure everything inside it however you want (because you are in control of it.) Splitting the package into separate bits with separate owners is a little more work, but with a few guidelines it's possible. It's rarely needed.
There's nothing stopping you using that convention if you want to, but it's not at all standard in the Python world and you'd probably get funny looks. It's not much fun to take care of admin on packages when they're deeply nested in com.
It may sound sloppy to someone coming from Java, but in reality it doesn't really seem to have caused any big difficulties, even with packages as poorly-named as web.py.
The place where you often do get namespace conflicts in practice is relative imports: where code in package.module1 tries to import module2 and there's both a package.module2 and a module2 in the standard library (which there commonly is as the stdlib is large and growing). Luckily, ambiguous relative imports are going away.
I've been using python for years and 99.9% of the collisions I have seen comer from new developers trying to name a file "xml.py". I can see some advantages to the Java scheme, but most developers are smart enough to pick reasonable package names, so it really is't that big of a problem.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
I'm currently primarily a D programmer and am looking to add another language to my toolbox, preferably one that supports the metaprogramming hacks that just can't be done in a statically compiled language like D.
I've read up on Lisp a little and I would love to find a language that allows some of the cool stuff that Lisp does, but without the strange syntax, etc. of Lisp. I don't want to start a language flame war, and I'm sure both Ruby and Python have their tradeoffs, so I'll list what's important to me personally. Please tell me whether Ruby, Python, or some other language would be best for me.
Important:
Good metaprogramming. Ability to create classes, methods, functions, etc. at runtime. Preferably, minimal distinction between code and data, Lisp style.
Nice, clean, sane syntax and consistent, intuitive semantics. Basically a well thought-out, fun to use, modern language.
Multiple paradigms. No one paradigm is right for every project, or even every small subproblem within a project.
An interesting language that actually affects the way one thinks about programming.
Somewhat important:
Performance. It would be nice if performance was decent, but when performance is a real priority, I'll use D instead.
Well-documented.
Not important:
Community size, library availability, etc. None of these are characteristics of the language itself, and all can change very quickly.
Job availability. I am not a full-time, professional programmer. I am a grad student and programming is tangentially relevant to my research.
Any features that are primarily designed with very large projects worked on by a million code monkeys in mind.
I've read up on Lisp a little and I would love to find a language that allows some of the cool stuff that Lisp does, but without the strange syntax, etc. of Lisp.
Wouldn't we all.
minimal distinction between code and data, Lisp style
Sadly, the minimal distinction between code and data and "strange" syntax are consequences of each other.
If you want easy-to-read syntax, you have Python. However, the code is not represented in any of the commonly-used built-in data structures. It fails—as most languages do—in item #1 of your 'important' list. That makes it difficult to provide useful help.
You can't have it all. Remember, you aren't the first to have this thought. If something like your ideal language existed, we'd all be using it. Since the real world falls short of your ideals, you'll have to re-prioritize your wish list. The "important" section has to be rearranged to identify what's really important to you.
Honestly, as far as metaprogramming facilities go, Ruby and Python are a lot more similar than some of their adherent like to admit. This review of both language offers a pretty good comparison/review:
http://regebro.wordpress.com/2009/07/12/python-vs-ruby/
So, just pick one based on some criteria. Maybe you like Rails and want to study that code. Maybe SciPy is your thing. Look at the ecosystem of libraries, community, etc, and pick one. You certainly won't lose out on some metaprogramming nirvana based on your choice of either.
Disclaimer: I only dabble in either language, but I have at least written small working programs (not just quick scripts, for which I use Perl, bash or GNU make) in both.
Ruby can be really nice for the "multiple paradigms" point 3, because it works hard to make it easy to create domain-specific languages. For example, browse online and look at a couple of bits of Ruby on Rails code, and a couple of bits of Rake code. They're both Ruby, and you can see the similarities, but they don't look like what you'd normally think of as the same language.
Python seems to me to be a bit more predictable (possibly correlated to 'clean' and 'sane' point 2), but I don't really know whether that's because of the language itself or just that it's typically used by people with different values. I have never attempted deep magic in Python. I would certainly say that both languages are well thought out.
Both score well in 1 and 4. [Edit: actually 1 is pretty arguable - there is "eval" in both, as common in interpreted languages, but they're hardly conceptually pure. You can define closures, assign methods to objects, and whatnot. Not sure whether this goes as far as you want.]
Personally I find Ruby more fun, but in part that's because it's easier to get distracted thinking of cool ways to do things. I've actually used Python more. Sometimes you don't want cool, you want to get on with it so it's done before bedtime...
Neither of them is difficult to get into, so you could just decide to do your next minor task in one, and the one after that in the other. Or pick up an introductory book on each from the library, skim-read them both and see what grabs you.
There's not really a huge difference between python and ruby at least at an ideological level. For the most part, they're just different flavors of the same thing. Thus, I would recommend seeing which one matches your programming style more.
Have you considered Smalltalk? It offers a very simple, clear and extensible syntax with reflectivity and introspection capabilities and a fully integrated development environment that takes advantage of those capabilities. Have a look at some of the work being done in Squeak Smalltalk for instance. A lot of researchers using Squeak hang out on the Squeak mailing list and #squeak on freenode, so you can get help on complex issues very easily.
Other indicators of its current relevance: it runs on any platform you'd care to name (including the iPhone); Gilad Bracha is basing his Newspeak work on Squeak; the V8 team cut their teeth on Smalltalk VMs; and Dan Ingalls and Randal Schwartz have recently returned to Smalltalk work after years in the wilderness.
Best of luck with your search - let us know what you decide in the end.
Lisp satisfies all your criteria, including performance, and it is the only language that doesn't have (strange) syntax. If you eschew it on such an astoundingly ill-informed/wrong-headed basis and consequently miss out on the experience of using e.g. Emacs+SLIME+CL, you'll be doing yourself a great disservice.
Your 4 "important" points lead to Ruby exactly, while the 2 "somewhat important" points ruled by Python. So be it.
You are describing Ruby.
Good metaprogramming. Ability to create classes, methods, functions,
etc. at runtime. Preferably, minimal
distinction between code and data,
Lisp style.
It's very easy to extend and modify existing primitives at runtime. In ruby everything is an object, strings, integers, even functions.
You can also construct shortcuts for syntactic sugar, for example with class_eval.
Nice, clean, sane syntax and consistent, intuitive semantics.
Basically a well thought-out, fun to
use, modern language.
Ruby follows the principle of less surprise, and when comparing Ruby code vs the equivalent in other language many people consider it more "beautiful".
Multiple paradigms. No one paradigm is right for every project,
or even every small subproblem within
a project.
You can follow imperative, object oriented, functional and reflective.
An interesting language that actually affects the way one thinks
about programming.
That's very subjective, but from my point of view the ability to use many paradigms at the same time allows for very interesting ideas.
I've tried Python and it doesn't fit your important points.
Compare code examples that do the same thing (join with a newline non-empty descriptions of items from a myList list) in different languages (languages are arranged in reverse-alphabetic order):
Ruby:
myList.collect { |f| f.description }.select { |d| d != "" }.join("\n")
Or
myList.map(&:description).reject(&:empty?).join("\n")
Python:
descriptions = (f.description() for f in mylist)
"\n".join(filter(len, descriptions))
Or
"\n".join(f.description() for f in mylist if f.description())
Perl:
join "\n", grep { $_ } map { $_->description } #myList;
Or
join "\n", grep /./, map { $_->description } #myList;
Javascript:
myList.map(function(e) e.description())
.filter(function(e) e).join("\n")
Io:
myList collect(description) select(!="") join("\n")
Here's an Io guide.
Ruby would be better than Lisp in terms of being "mainstream" (whatever that really means, but one realistic concern is how easy it would be to find answers to your questions on Lisp programming if you were to go with that.) In any case, I found Ruby very easy to pick up. In the same amount of time that I had spent first learning Python (or other languages for that matter), I was soon writing better code much more efficiently than I ever had before. That's just one person's opinion, though; take it with a grain of salt, I guess. I know much more about Ruby at this point than I do Python or Lisp, but you should know that I was a Python person for quite a while before I switched.
Lisp is definitely quite cool and worth looking into; as you said, the size of community, etc. can change quite quickly. That being said, the size itself isn't as important as the quality of the community. For example, the #ruby-lang channel is still filled with some incredibly smart people. Lisp seems to attract some really smart people too. I can't speak much about the Python community as I don't have a lot of firsthand experience, but it seems to be "too big" sometimes. (I remember people being quite rude on their IRC channel, and from what I've heard from friends that are really into Python, that seems to be the rule rather than the exception.)
Anyway, some resources that you might find useful are:
1) The Pragmatic Programmers Ruby Metaprogramming series (http://www.pragprog.com/screencasts/v-dtrubyom/the-ruby-object-model-and-metaprogramming) -- not free, but the later episodes are quite intriguing. (The code is free, if you want to download it and see what you'd be learning about.)
2) On Lisp by Paul Graham (http://www.paulgraham.com/onlisp.html). It's a little old, but it's a classic (and downloadable for free).
#Jason I respectively disagree. There are differences that make Ruby superior to Python for metaprogramming - both philosophical and pragmatic. For starters, Ruby gets inheritance right with Single Inheritance and Mixins. And when it comes to metaprogramming you simply need to understand that it's all about the self. The canonical difference here is that in Ruby you have access to the self object at runtime - in Python you do not!
Unlike Python, in Ruby there is no separate compile or runtime phase. In Ruby, every line of code is executed against a particular self object. In Ruby every class inherits from both object and a hidden metaclass. This makes for some interesting dynamics:
class Ninja
def rank
puts "Orange Clan"
end
self.name #=> "Ninja"
end
Using self.name accesses the Ninja classes' metaclass name method to return the class name of Ninja. Does metaprogramming flower so beautiful in Python? I sincerely doubt it!
I am using Python for many projects and I think Python does provide all the features you asked for.
important:
Metaprogramming: Python supports metaclasses and runtime class/method generation etc
Syntax: Well thats somehow subjective. I like Pythons syntax for its simplicity, but some People complain that Python is whitespace-sensitive.
Paradigms: Python supports procedural, object-oriented and basic functional programming.
I think Python has a very practical oriented style, it was very inspiring for me.
Somewhat important:
Performance: Well its a scripting language. But writing C extensions for Python is a common optimization practice.
Documentation: I cannot complain. Its not that detailed as someone may know from Java, but its good enough.
As you are grad student you may want to read this paper claiming that Python is all a scientist needs.
Unfortunately I cannot compare Python to Ruby, since I never used that language.
Regards,
Dennis
Well, if you don't like the lisp syntax perhaps assembler is the way to go. :-)
It certainly has minimal distinction between code and data, is multi-paradigm (or maybe that is no-paradigm) and it's a mind expanding (if tedious) experience both in terms of the learning and the tricks you can do.
Io satisfies all of your "Important" points. I don't think there's a better language out there for doing crazy meta hackery.
one that supports the metaprogramming hacks that just can't be done in a statically compiled language
I would love to find a language that allows some of the cool stuff that Lisp does
Lisp can be compiled.
Did you try Rebol?
My answer would be neither. I know both languages, took a class on Ruby and been programming in python for several years. Lisp is good at metaprogramming due to the fact that its sole purpose is to transform lists, its own source code is just a list of tokens so metaprogramming is natural. The three languages I like best for this type of thing is Rebol, Forth and Factor. Rebol is a very strong dialecting language which takes code from its input stream, runs an expression against it and transforms it using rules written in the language. Very expressive and extremely good at dialecting. Factor and Forth are more or less completely divorced from syntax and you program them by defining and calling words. They are generally mostly written in their own language. You don't write applications in traditional sense, you extend the language by writing your own words to define your particular application. Factor can be especially nice as it has many features I have only seen in smalltalk for evaluating and working with source code. A really nice workspace, interactive documents, etc.
There isn't really a lot to separate Python and Ruby. I'd say the Python community is larger and more mature than the Ruby community, and that's really important for me. Ruby is a more flexible language, which has positive and negative repercussions. However, I'm sure there will be plenty of people to go into detail on both these languages, so I'll throw a third option into the ring. How about JavaScript?
JavaScript was originally designed to be Scheme for the web, and it's prototype-based, which is an advantage over Python and Ruby as far as multi-paradigm and metaprogramming is concerned. The syntax isn't as nice as the other two, but it is probably the most widely deployed language in existence, and performance is getting better every day.
If you like the lisp-style code-is-data concept, but don't like the Lispy syntax, maybe Prolog would be a good choice.
Whether that qualifies as a "fun to use, modern language", I'll leave to others to judge. ;-)
Ruby is my choice after exploring Python, Smalltalk, and Ruby.
What about OCaml ?
OCaml features: a static type system, type inference, parametric polymorphism, tail recursion, pattern matching, first class lexical closures, functors (parametric modules), exception handling, and incremental generational automatic garbage collection.
I think that it satisfies the following:
Important:
Nice, clean, sane syntax and consistent, intuitive semantics. Basically a well thought-out, fun to use, modern language.
Multiple paradigms. No one paradigm is right for every project, or even every small subproblem within a project.
An interesting language that actually affects the way one thinks about programming.
Somewhat important:
Performance. It would be nice if performance was decent, but when performance is a real priority, I'll use D instead.
Well-documented.
I've use Python a very bit, but much more Ruby. However I'd argue they both provide what you asked for.
If I see all your four points then you may at least check:
http://www.iolanguage.com/
And Mozart/Oz may be interesting for you also:
http://mozart.github.io/
Regards
Friedrich
For python-style syntax and lisp-like macros (macros that are real code) and good DSL see converge.
I'm not sure that Python would fulfill all things you desire (especially the point about the minimal distinction between code and data), but there is one argument in favour of python. There is a project out there which makes it easy for you to program extensions for python in D, so you can have the best of both worlds. http://pyd.dsource.org/celerid.html
if you love the rose, you have to learn to live with the thorns :)
I would recommend you go with Ruby.
When I first started to learn it, I found it really easy to pick up.
Do not to mix Ruby Programming Language with Ruby Implementations, thinking that POSIX threads are not possible in ruby.
You can simply compile with pthread support, and this was already possible at the time this thread was created, if you pardon the pun.
The answer to this question is simple. If you like lisp, you will probably prefer ruby. Or, whatever you like.
I suggest that you try out both languages and pick the one that appeals to you. Both Python and Ruby can do what you want.
Also read this thread.
Go with JS just check out AJS (Alternative JavaScript Syntax) at my github http://github.com/visionmedia it will give you some cleaner looking closures etc :D
Concerning your main-point (meta-programming):
Version 1.6 of Groovy has AST (Abstract Syntax Tree) programming built-in as a standard and integrated feature.
Ruby has RubyParser, but it's an add-on.