How to create a service in Python in Windows? - python

I have found http://code.activestate.com/recipes/576451-how-to-create-a-windows-service-in-python/
But that service does nothing. How can I use that service for running specific Python file?

You can put your business code in SvcDoRun. The sample at your link just logs a message every three seconds. Just don't forget to check self.hWaitStop periodically.
Sometimes it is convenient to create a worker thread and do all work on that thread, or maybe start a child process. An additional complication in this case is that you have to think about synchronization.

Related

Run specific django manage.py commands at intervals

I need to run a specific manage.py commands on an EC2 instance every X minutes. For example: python manage.py some_command.
I have looked up django-chronograph. Following the instructions, I've added chronograph to my settings.py but on runserver it keeps telling me No module named chronograph.
Is there something I'm missing to get this running? And after running how do I get manage.py commands to run using chronograph?
Edit: It's installed in the EC2 instance's virtualenv.
I would suggest you to configure cron to run your command at specific times/intervals.
First, install it by running pip install django-chronograph.
I would say handle this through cross, but if you don't want to use cross then:
Make sure you installed the module in the virtualenv (With easy_install, pip, or any other way that Amazon EC2 allows). After that you might want to look up the threading module documentation:
Python 2 threading module documentation
Python 3 threading module documentation
The purpose of using threading will be to have the following structure:
A "control" thread, which will use the chronograph module and do the time measurements, and putting the new work to do in an "input queue" on each scheduled time, for the worker threads (which will be active already) to process, or just trigger each worker thread (make it active) at the time you want to trigger each execution. In the first case you'll be taking advantage of parallel threads to do a big chunk of work and minimize io wait times, but since the work is in a queue, the workers will process one at a time. Meaning if you schedule two things too close together and the previous element is still being processed, the new item will have to wait (Depending on your programming logic and amount of worker threads some workers might start processing the new item, but is a bit more complex logic).
In the second case your control thread will actually trigger the start of a new thread (or group of threads) each time you want to trigger a scheduled action. If there's big data to process you might need to spawn a new queue for each task to process and create a group of worker threads for it for each task, but if the data is not that big then you can just get away with having the worker process just one data package and be done once execution is done and you get a result. Either way this method will allow you to schedule tasks without limitation on how close they can be, since new independent worker threads will be created for them every time.
Finally, you might want to create an "output queue" and output thread, to store and process (or output, or anything else you want to do with it...) the results of each worker threads.
The control thread will be basically trying to imitate cron in its logic, triggering actions at certain times depending on how it was configured.
There's also a multiprocessing module in python which will work with processes instead and take advantage of true multiprocessing hardware, but I don't think you'll really need it in this case, unless you see performance issues caused by cpu performance.
If you need any clarification, help, examples, just let me know.

How to detect unresponsive/frozen processes?

I have several scripts that I use to do some web crawling. They are always running, and should never stop. However, after about a week, they systematically "freeze": there is no output anymore, no response to Ctrl+C or anything. The only way is to kill the process and restart it.
I suspect that these issues come from the library I use for retrieving the data (urllib2), but the issue is very hard to reproduce.
I am thus wondering how I could check the state of the process and kill/restart it automatically if it is frozen. I was thinking of creating a PID file, and update it regularly. Another script could then periodically check the last modification date of this PID file, and restart the process if it's too old. I could use something like Monit to do the monitoring.
Is this how I should do it? Is there another best practice/common way for checking the responsiveness of a process?
If you have a process that is always running, has no connected terminal, and is the process group leader - that is a daemon. You undoubtedly know all that.
There are some defacto practices in coding programs like that. One is to have a signal handler which takes SIGHUP and forces the program to reinitialize itself. This means closing all of the open log files, rereading config scripts, etc. I do not know how applicable that is to your problem but it sometimes solves issues like frozen daemons at my work.
You can customize the idea by employing SIGUSR1 and SIGUSR2 signals to do special things, like write status to a file, or anything else. Since signals come in on an interrupt, the trap statement in scripts and signal handlers in python itself will push program state onto the interrupt stack and do "stuff".
In your case you may want the program fork/exec itself and then kill the parent.

How do I run long term (infinite) Python processes?

I've recently started experimenting with using Python for web development. So far I've had some success using Apache with mod_wsgi and the Django web framework for Python 2.7. However I have run into some issues with having processes constantly running, updating information and such.
I have written a script I call "daemonManager.py" that can start and stop all or individual python update loops (Should I call them Daemons?). It does that by forking, then loading the module for the specific functions it should run and starting an infinite loop. It saves a PID file in /var/run to keep track of the process. So far so good. The problems I've encountered are:
Now and then one of the processes will just quit. I check ps in the morning and the process is just gone. No errors were logged (I'm using the logging module), and I'm covering every exception I can think of and logging them. Also I don't think these quitting processes has anything to do with my code, because all my processes run completely different code and exit at pretty similar intervals. I could be wrong of course. Is it normal for Python processes to just die after they've run for days/weeks? How should I tackle this problem? Should I write another daemon that periodically checks if the other daemons are still running? What if that daemon stops? I'm at a loss on how to handle this.
How can I programmatically know if a process is still running or not? I'm saving the PID files in /var/run and checking if the PID file is there to determine whether or not the process is running. But if the process just dies of unexpected causes, the PID file will remain. I therefore have to delete these files every time a process crashes (a couple of times per week), which sort of defeats the purpose. I guess I could check if a process is running at the PID in the file, but what if another process has started and was assigned the PID of the dead process? My daemon would think that the process is running fine even if it's long dead. Again I'm at a loss just how to deal with this.
Any useful answer on how to best run infinite Python processes, hopefully also shedding some light on the above problems, I will accept
I'm using Apache 2.2.14 on an Ubuntu machine.
My Python version is 2.7.2
I'll open by stating that this is one way to manage a long running process (LRP) -- not de facto by any stretch.
In my experience, the best possible product comes from concentrating on the specific problem you're dealing with, while delegating supporting tech to other libraries. In this case, I'm referring to the act of backgrounding processes (the art of the double fork), monitoring, and log redirection.
My favorite solution is http://supervisord.org/
Using a system like supervisord, you basically write a conventional python script that performs a task while stuck in an "infinite" loop.
#!/usr/bin/python
import sys
import time
def main_loop():
while 1:
# do your stuff...
time.sleep(0.1)
if __name__ == '__main__':
try:
main_loop()
except KeyboardInterrupt:
print >> sys.stderr, '\nExiting by user request.\n'
sys.exit(0)
Writing your script this way makes it simple and convenient to develop and debug (you can easily start/stop it in a terminal, watching the log output as events unfold). When it comes time to throw into production, you simply define a supervisor config that calls your script (here's the full example for defining a "program", much of which is optional: http://supervisord.org/configuration.html#program-x-section-example).
Supervisor has a bunch of configuration options so I won't enumerate them, but I will say that it specifically solves the problems you describe:
Backgrounding/Daemonizing
PID tracking (can be configured to restart a process should it terminate unexpectedly)
Log normally in your script (stream handler if using logging module rather than printing) but let supervisor redirect to a file for you.
You should consider Python processes as able to run "forever" assuming you don't have any memory leaks in your program, the Python interpreter, or any of the Python libraries / modules that you are using. (Even in the face of memory leaks, you might be able to run forever if you have sufficient swap space on a 64-bit machine. Decades, if not centuries, should be doable. I've had Python processes survive just fine for nearly two years on limited hardware -- before the hardware needed to be moved.)
Ensuring programs restart when they die used to be very simple back when Linux distributions used SysV-style init -- you just add a new line to the /etc/inittab and init(8) would spawn your program at boot and re-spawn it if it dies. (I know of no mechanism to replicate this functionality with the new upstart init-replacement that many distributions are using these days. I'm not saying it is impossible, I just don't know how to do it.)
But even the init(8) mechanism of years gone by wasn't as flexible as some would have liked. The daemontools package by DJB is one example of process control-and-monitoring tools intended to keep daemons living forever. The Linux-HA suite provides another similar tool, though it might provide too much "extra" functionality to be justified for this task. monit is another option.
I assume you are running Unix/Linux but you don't really say. I have no direct advice on your issue. So I don't expect to be the "right" answer to this question. But there is something to explore here.
First, if your daemons are crashing, you should fix that. Only programs with bugs should crash. Perhaps you should launch them under a debugger and see what happens when they crash (if that's possible). Do you have any trace logging in these processes? If not, add them. That might help diagnose your crash.
Second, are your daemons providing services (opening pipes and waiting for requests) or are they performing periodic cleanup? If they are periodic cleanup processes you should use cron to launch them periodically rather then have them run in an infinite loop. Cron processes should be preferred over daemon processes. Similarly, if they are services that open ports and service requests, have you considered making them work with INETD? Again, a single daemon (inetd) should be preferred to a bunch of daemon processes.
Third, saving a PID in a file is not very effective, as you've discovered. Perhaps a shared IPC, like a semaphore, would work better. I don't have any details here though.
Fourth, sometimes I need stuff to run in the context of the website. I use a cron process that calls wget with a maintenance URL. You set a special cookie and include the cookie info in with wget command line. If the special cookie doesn't exist, return 403 rather than performing the maintenance process. The other benefit here is login to the database and other environmental concerns of avoided since the code that serves normal web pages are serving the maintenance process.
Hope that gives you ideas. I think avoiding daemons if you can is the best place to start. If you can run your python within mod_wsgi that saves you having to support multiple "environments". Debugging a process that fails after running for days at a time is just brutal.

How does django-cron work?

A normal approach to cron jobs with a django site would be to use cron to run custom management commands periodically.
But I found this http://code.google.com/p/django-cron/
How does it work, without needing cron? What invokes it to poll?
If it just sets up an address for an http request to hit periodically, what if the job takes a long time, won't the server time out?
It continually fires off a Timer thread, whose whole purpose is to wait a defined amount of time (the polling frequency you set in settings.py) and then run the execute on the django-cron queue again.
It depends on Django being a long-lived process, which if configured correctly it is. It runs a thread to check every 5 minutes (by default) to see if there are any jobs that need to be run, and if so runs them.

starting my own threads within python paste

I'm writing a web application using pylons and paste. I have some work I want to do after an HTTP request is finished (send some emails, write some stuff to the db, etc) that I don't want to block the HTTP request on.
If I start a thread to do this work, is that OK? I always see this stuff about paste killing off hung threads, etc. Will it kill my threads which are doing work?
What else can I do here? Is there a way I can make the request return but have some code run after it's done?
Thanks.
You could use a thread approach (maybe setting the Thead.daemon property would help--but I'm not sure).
However, I would suggest looking into a task queuing system. You can place a task on a queue (which is very fast), then a listener can handle the tasks asynchronously, allowing the HTTP request to return quickly. There are two task queues that I know of for Django:
Django Queue Service
Celery
You could also consider using an more "enterprise" messaging solution, such as RabbitMQ or ActiveMQ.
Edit: previous answer with some good pointers.
I think the best solution is messaging system because it can be configured to not loose the task if the pylons process goes down. I would always use processes over threads especially in this case. If you are using python 2.6+ use the built in multiprocessing or you can always install the processing module which you can find on pypi (I can't post link because of I am a new user).
Take a look at gearman, it was specifically made for farming out tasks to 'workers' to handle. They can even handle it in a different language entirely. You can come back and ask if the task was completed, or just let it complete. That should work well for many tasks.
If you absolutely need to ensure it was completed, I'd suggest queuing tasks in a database or somewhere persistent, then have a separate process that runs through it ensuring each one gets handled appropriately.
To answer your basic question directly, you should be able to use threads just as you'd like. The "killing hung threads" part is paste cleaning up its own threads, not yours.
There are other packages that might help, etc, but I'd suggest you start with simple threads and see how far you get. Only then will you know what you need next.
(Note, "Thread.daemon" should be mostly irrelevant to you here. Setting that true will ensure a thread you start will not prevent the entire process from exiting. Doing so would mean, however, that if the process exited "cleanly" (as opposed to being forced to exit) your thread would be terminated even if it wasn't done its work. Whether that's a problem, and how you handle things like that, depend entirely on your own requirements and design.

Categories