How can I write this without so many floats? - python

float(float(1)/float(i) * float(score))

Assuming Python 2.x: 1.0 / i * score
The main case you need to worry about is the division because in Python 2.x, division is defaulted to integer division. In order to have floating-point division, either the dividend or divisor needs to be a float, hence the 1.0. Thus, 1.0/i will be a float, and multiplying a float by score (which can either be an integer or float) will result in another floating-point number.
In python 3.x, however, division defaults to floating-point division, so 1 / i * score would work.

What you want is simply float(score)/i in Python2. If one operand is a float, then the result will be a float too ,so code like score/float(i) or 1.0*score/i works as well.
You can also put from __future__ import division at the top of your .py file and you have float division by default. This means you can write score/i and it will be a float, like in Python3.

1.0 * score / i; should do it

Unless I'm totally wrong, a simple 1.0 / i * score should result in a float. I'm not sure if that's Python 3 only.

Related

i am trying to make a function that returns price excluding vat [duplicate]

This question already has answers here:
How can I force division to be floating point? Division keeps rounding down to 0?
(11 answers)
Closed 4 months ago.
I was trying to normalize a set of numbers from -100 to 0 to a range of 10-100 and was having problems only to notice that even with no variables at all, this does not evaluate the way I would expect it to:
>>> (20-10) / (100-10)
0
Float division doesn't work either:
>>> float((20-10) / (100-10))
0.0
If either side of the division is cast to a float it will work:
>>> (20-10) / float((100-10))
0.1111111111111111
Each side in the first example is evaluating as an int which means the final answer will be cast to an int. Since 0.111 is less than .5, it rounds to 0. It is not transparent in my opinion, but I guess that's the way it is.
What is the explanation?
You're using Python 2.x, where integer divisions will truncate instead of becoming a floating point number.
>>> 1 / 2
0
You should make one of them a float:
>>> float(10 - 20) / (100 - 10)
-0.1111111111111111
or from __future__ import division, which the forces / to adopt Python 3.x's behavior that always returns a float.
>>> from __future__ import division
>>> (10 - 20) / (100 - 10)
-0.1111111111111111
You're putting Integers in so Python is giving you an integer back:
>>> 10 / 90
0
If if you cast this to a float afterwards the rounding will have already been done, in other words, 0 integer will always become 0 float.
If you use floats on either side of the division then Python will give you the answer you expect.
>>> 10 / 90.0
0.1111111111111111
So in your case:
>>> float(20-10) / (100-10)
0.1111111111111111
>>> (20-10) / float(100-10)
0.1111111111111111
In Python 2.7, the / operator is an integer division if inputs are integers:
>>>20/15
1
>>>20.0/15.0
1.33333333333
>>>20.0/15
1.33333333333
In Python 3.3, the / operator is a float division even if the inputs are integer.
>>> 20/15
1.33333333333
>>>20.0/15
1.33333333333
For integer division in Python 3, we will use the // operator.
The // operator is an integer division operator in both Python 2.7 and Python 3.3.
In Python 2.7 and Python 3.3:
>>>20//15
1
Now, see the comparison
>>>a = 7.0/4.0
>>>b = 7/4
>>>print a == b
For the above program, the output will be False in Python 2.7 and True in Python 3.3.
In Python 2.7 a = 1.75 and b = 1.
In Python 3.3 a = 1.75 and b = 1.75, just because / is a float division.
You need to change it to a float BEFORE you do the division. That is:
float(20 - 10) / (100 - 10)
It has to do with the version of python that you use. Basically it adopts the C behavior: if you divide two integers, the results will be rounded down to an integer. Also keep in mind that Python does the operations from left to right, which plays a role when you typecast.
Example:
Since this is a question that always pops in my head when I am doing arithmetic operations (should I convert to float and which number), an example from that aspect is presented:
>>> a = 1/2/3/4/5/4/3
>>> a
0
When we divide integers, not surprisingly it gets lower rounded.
>>> a = 1/2/3/4/5/4/float(3)
>>> a
0.0
If we typecast the last integer to float, we will still get zero, since by the time our number gets divided by the float has already become 0 because of the integer division.
>>> a = 1/2/3/float(4)/5/4/3
>>> a
0.0
Same scenario as above but shifting the float typecast a little closer to the left side.
>>> a = float(1)/2/3/4/5/4/3
>>> a
0.0006944444444444445
Finally, when we typecast the first integer to float, the result is the desired one, since beginning from the first division, i.e. the leftmost one, we use floats.
Extra 1: If you are trying to answer that to improve arithmetic evaluation, you should check this
Extra 2: Please be careful of the following scenario:
>>> a = float(1/2/3/4/5/4/3)
>>> a
0.0
Specifying a float by placing a '.' after the number will also cause it to default to float.
>>> 1 / 2
0
>>> 1. / 2.
0.5
Make at least one of them float, then it will be float division, not integer:
>>> (20.0-10) / (100-10)
0.1111111111111111
Casting the result to float is too late.
In python cv2 not updated the division calculation. so, you must include from __future__ import division in first line of the program.
Either way, it's integer division. 10/90 = 0. In the second case, you're merely casting 0 to a float.
Try casting one of the operands of "/" to be a float:
float(20-10) / (100-10)
You're casting to float after the division has already happened in your second example. Try this:
float(20-10) / float(100-10)
I'm somewhat surprised that no one has mentioned that the original poster might have liked rational numbers to result. Should you be interested in this, the Python-based program Sage has your back. (Currently still based on Python 2.x, though 3.x is under way.)
sage: (20-10) / (100-10)
1/9
This isn't a solution for everyone, because it does do some preparsing so these numbers aren't ints, but Sage Integer class elements. Still, worth mentioning as a part of the Python ecosystem.
Personally I preferred to insert a 1. * at the very beginning. So the expression become something like this:
1. * (20-10) / (100-10)
As I always do a division for some formula like:
accuracy = 1. * (len(y_val) - sum(y_val)) / len(y_val)
so it is impossible to simply add a .0 like 20.0. And in my case, wrapping with a float() may lose a little bit readability.
In Python 3, the “//” operator works as a floor division for integer and float arguments. However, the operator / returns a float value if one of the arguments is a float (this is similar to C++)
eg:
# A Python program to demonstrate the use of
# "//" for integers
print (5//2)
print (-5//2)
Output:
2
-3
# A Python program to demonstrate use of
# "/" for floating point numbers
print (5.0/2)
print (-5.0/2)
Output:
2.5
-2.5
ref: https://www.geeksforgeeks.org/division-operator-in-python/

Why does 2/5 evaluate to 0 and not 0.4 [duplicate]

This question already has answers here:
How can I force division to be floating point? Division keeps rounding down to 0?
(11 answers)
Closed 4 months ago.
I was trying to normalize a set of numbers from -100 to 0 to a range of 10-100 and was having problems only to notice that even with no variables at all, this does not evaluate the way I would expect it to:
>>> (20-10) / (100-10)
0
Float division doesn't work either:
>>> float((20-10) / (100-10))
0.0
If either side of the division is cast to a float it will work:
>>> (20-10) / float((100-10))
0.1111111111111111
Each side in the first example is evaluating as an int which means the final answer will be cast to an int. Since 0.111 is less than .5, it rounds to 0. It is not transparent in my opinion, but I guess that's the way it is.
What is the explanation?
You're using Python 2.x, where integer divisions will truncate instead of becoming a floating point number.
>>> 1 / 2
0
You should make one of them a float:
>>> float(10 - 20) / (100 - 10)
-0.1111111111111111
or from __future__ import division, which the forces / to adopt Python 3.x's behavior that always returns a float.
>>> from __future__ import division
>>> (10 - 20) / (100 - 10)
-0.1111111111111111
You're putting Integers in so Python is giving you an integer back:
>>> 10 / 90
0
If if you cast this to a float afterwards the rounding will have already been done, in other words, 0 integer will always become 0 float.
If you use floats on either side of the division then Python will give you the answer you expect.
>>> 10 / 90.0
0.1111111111111111
So in your case:
>>> float(20-10) / (100-10)
0.1111111111111111
>>> (20-10) / float(100-10)
0.1111111111111111
In Python 2.7, the / operator is an integer division if inputs are integers:
>>>20/15
1
>>>20.0/15.0
1.33333333333
>>>20.0/15
1.33333333333
In Python 3.3, the / operator is a float division even if the inputs are integer.
>>> 20/15
1.33333333333
>>>20.0/15
1.33333333333
For integer division in Python 3, we will use the // operator.
The // operator is an integer division operator in both Python 2.7 and Python 3.3.
In Python 2.7 and Python 3.3:
>>>20//15
1
Now, see the comparison
>>>a = 7.0/4.0
>>>b = 7/4
>>>print a == b
For the above program, the output will be False in Python 2.7 and True in Python 3.3.
In Python 2.7 a = 1.75 and b = 1.
In Python 3.3 a = 1.75 and b = 1.75, just because / is a float division.
You need to change it to a float BEFORE you do the division. That is:
float(20 - 10) / (100 - 10)
It has to do with the version of python that you use. Basically it adopts the C behavior: if you divide two integers, the results will be rounded down to an integer. Also keep in mind that Python does the operations from left to right, which plays a role when you typecast.
Example:
Since this is a question that always pops in my head when I am doing arithmetic operations (should I convert to float and which number), an example from that aspect is presented:
>>> a = 1/2/3/4/5/4/3
>>> a
0
When we divide integers, not surprisingly it gets lower rounded.
>>> a = 1/2/3/4/5/4/float(3)
>>> a
0.0
If we typecast the last integer to float, we will still get zero, since by the time our number gets divided by the float has already become 0 because of the integer division.
>>> a = 1/2/3/float(4)/5/4/3
>>> a
0.0
Same scenario as above but shifting the float typecast a little closer to the left side.
>>> a = float(1)/2/3/4/5/4/3
>>> a
0.0006944444444444445
Finally, when we typecast the first integer to float, the result is the desired one, since beginning from the first division, i.e. the leftmost one, we use floats.
Extra 1: If you are trying to answer that to improve arithmetic evaluation, you should check this
Extra 2: Please be careful of the following scenario:
>>> a = float(1/2/3/4/5/4/3)
>>> a
0.0
Specifying a float by placing a '.' after the number will also cause it to default to float.
>>> 1 / 2
0
>>> 1. / 2.
0.5
Make at least one of them float, then it will be float division, not integer:
>>> (20.0-10) / (100-10)
0.1111111111111111
Casting the result to float is too late.
In python cv2 not updated the division calculation. so, you must include from __future__ import division in first line of the program.
Either way, it's integer division. 10/90 = 0. In the second case, you're merely casting 0 to a float.
Try casting one of the operands of "/" to be a float:
float(20-10) / (100-10)
You're casting to float after the division has already happened in your second example. Try this:
float(20-10) / float(100-10)
I'm somewhat surprised that no one has mentioned that the original poster might have liked rational numbers to result. Should you be interested in this, the Python-based program Sage has your back. (Currently still based on Python 2.x, though 3.x is under way.)
sage: (20-10) / (100-10)
1/9
This isn't a solution for everyone, because it does do some preparsing so these numbers aren't ints, but Sage Integer class elements. Still, worth mentioning as a part of the Python ecosystem.
Personally I preferred to insert a 1. * at the very beginning. So the expression become something like this:
1. * (20-10) / (100-10)
As I always do a division for some formula like:
accuracy = 1. * (len(y_val) - sum(y_val)) / len(y_val)
so it is impossible to simply add a .0 like 20.0. And in my case, wrapping with a float() may lose a little bit readability.
In Python 3, the “//” operator works as a floor division for integer and float arguments. However, the operator / returns a float value if one of the arguments is a float (this is similar to C++)
eg:
# A Python program to demonstrate the use of
# "//" for integers
print (5//2)
print (-5//2)
Output:
2
-3
# A Python program to demonstrate use of
# "/" for floating point numbers
print (5.0/2)
print (-5.0/2)
Output:
2.5
-2.5
ref: https://www.geeksforgeeks.org/division-operator-in-python/

Using fractions in equations using python

I'm trying to write this equation with python:
(1/100)*((102/65520)*x - 1)*10
wolfram alpha link
But I don't know how to apply the fractions in order to get the right result.
Does anyone know how I should write it?
You are using 'integer' division, which is default in python 2, so results are being rounded (1/100 is equal to 0, nooooo!).
You have too make the division 'floaty'. I can think of two solutions:
1) Make the dividends become floats directly
(1.0/100)*((102.0/65520)*x - 1)*10
You can cast integers into floats with float(), too. Then, float(102) is equivalent to 102.0
(float(1)/100)*(float(102)/65520)*x - 1)*10
2) Use float division (default in Python 3):
from future import __division__
Now / is float division and your code line works as it is.
Note: You should use '//' for integer division, just in case.
Credits on the second one for:
How can I force division to be floating point? Division keeps rounding down to 0

I'm learning Python and why is a floating-point used in this example?

http://learnpythonthehardway.org/book/ex4.html
There's an extra credit question asking me to explain why the floating-point 4.0 is used instead of 4.
I understand that a floating point is used for accuracy, but I can't fathom why it is necessary in any case in this example.
There doesn't actually seem to be any need for a float instead of an int in that particular example. It could have an effect if you were to divide something by it, but that's not happening here. (And even then, it'd depend on whether you were using Python 2 or 3, as float division is the default in 3).
If you look at the comments below, zedshaw (the author) admits as much:
Михаил Груздев: And why 4.0 used for space? Maybe it's drivers variable value should be floating-point?
zedshaw: Simply to introduce floating point as a little puzzle. Mathematically the exercise doesn't make much sense, it's just practice. Continue on for now.
A floating point is used because in Python an int divided by an int produces an int (integer division) which is not intended here. If you divide a float by an int or an int by a float, you get a float.
Example:
4/3
=> 1
4.0/3
=> 1.3333333333333333
2*4/3
=> 2
2*4.0/3
=> 2.6666666666666665
This is because of something called Integer Division. Basically this means that if you divide two integers, the resulting number must be an integer. So, for example 3/4 would result in 0 and 4/3 would result in 1. This is because 3/4 in "real" math would give you 0.75 and to turn 0.75 into and integer, Python truncates the floating point values and leaves you with 0.
The easiest way to fix this is to use 4.0 instead of 4. Turning the integer into a float and disregarding Integer Division because integer divided by float results in a float. 3/4.0 equals 0.75 like you want it to.
Arithmetic with integer operands has an integer result.
>>> 3 / 2
1

Negative integer division surprising result

In my application I encountered the following and was surprised by the results:
8/-7=-2 (both integers).
What does this mean?
For the actual values, i.e. 8.0/(-7.0), the result is roughly -1.143.
Your result using integer division is being rounded down toward the more negative value of -2. (This is also known as "Floor division")
This is why you will get the somewhat perplexing answers of:
>>> 8/(-7)
-2
>>> 8/7
1
Note: This is "fixed" in Python 3, where the result of 8/(-7) would be -1.143. So if you have no reason to be using Python 2, you should upgrade. ;)
In Python 3, if you still want integer division, you can use the // operator. This will give you the same answer as 8/(-7) would in Python 2.
Here's a Python Enhancement Proposal on the subject: PEP 238 -- Changing the Division Operator
Python always does the "floor division" for both negative numbers division and positive numbers division.
That is
1/10 = 0
1/-10 = -1
But sometime we need 1/-10 to be 0
I figure out it can be done by using the float division first then cast result to int, e.g.
int(float(1)/-10) = 0
That works fine for me, no need to import the future division or upgrade to Python 3
Hope it can help you~
To have Python automatically convert integer division to float, you can use:
from __future__ import division
Now:
8/-7=-1.1428571428571428
This feature is not in the standard Python 2 not to break existing code that relied on integer division.
However, this is the default behavior for Python 3.
When both values are integers when dividing Python uses Floor division.
In Python, / operator is for integer division. You can look at it as float division followed by a floor operation.
For example,
8/7 == floor(8.0/7.0) == 1
8/-7 == floor(8.0/-7.0) == -2

Categories