Accessing private variables when there's a getter/setter for them - python

I have a question about righteous way of programming in Python... Maybe there can be several different opinions, but here it goes:
Let's say I have a class with a couple of private attributes and that I have implemented two getters/setters (not overloading __getattr__ and __setattr__, but in a more “Java-tistic” style):
class MyClass:
def __init__(self):
self.__private1 = "Whatever1"
def setPrivate1(self, private1):
if isinstance(private1, str) and (private1.startswith("private")):
self.__private1 = private1
else:
raise AttributeError("Kaputt")
def getPrivate1(self):
return self.__private1
Now let's say a few lines below, in another method of the same class, I need to re-set the value of that “__private1”. Since it's the same class, I still have direct access to the private attribute self.__private1.
My question is: Should I use:
self.setPrivate1("privateBlaBlaBla")
or should I access directly as:
self.__private1 ="privateBlaBlaBla"
since I am the one setting the new value, I know that said value (“privateBlaBlaBla”) is correct (an str() that starts with “private”), so it is not going to leave the system inconsistent. On the other hand, if another programmer takes my code, and needs to change the functionality for the self.__private1 attribute, he will need to go through all the code, and see if the value of __private1 has been manually set somewhere else.
My guess is that the right thing to do is to always using the setPrivate1 method, and only access directly the __private1 variable in the get/set, but I'd like to know the opinion of more experienced Python programmers.

You can't present a classic example of bad Python and then expect people to have opinions on what do to about it. Use getters and setters.
class MyClass:
def __init__(self):
self._private1 = "Whatever1"
#property
def private1(self):
return self._private1
#private1.setter
def private1(self, value):
self._private1 = value
A side comment -- using double underscore names can be confusing, because Python actually mangles the name to stop you accessing them from outside the class. This provides no real security, but causes no end of headaches. The easiest way to avoid the headaches is to use single-underscore names, which is basically a universal convention for private. (Ish.)
If you want an opinion -- use properties =). If you want an opinion on your JavaPython monstrosity, I would use the setter -- after all, you've written it, that's what it's there for! There's no obvious benefit to setting the variable by hand, but there are several drawbacks.

Neither. In Python, use properties, not getters and setters.
class MyClass:
def __init__(self):
self._private1 = "Whatever1"
#property
def private1(self):
return self._private1
#private1.setter
def private1(self, private1):
if isinstance(private1, str) and (private1.startswith("private")):
self._private1 = private1
else:
raise AttributeError("Kaputt")
Then later on in your code, set the _private1 attribute with
self.private1="privateBlaBlaBla"

Related

Why are private members __numerator and __denominator accessible, in particular, can be printed, in the following Python code? [duplicate]

I'm coming from the Java world and reading Bruce Eckels' Python 3 Patterns, Recipes and Idioms.
While reading about classes, it goes on to say that in Python there is no need to declare instance variables. You just use them in the constructor, and boom, they are there.
So for example:
class Simple:
def __init__(self, s):
print("inside the simple constructor")
self.s = s
def show(self):
print(self.s)
def showMsg(self, msg):
print(msg + ':', self.show())
If that’s true, then any object of class Simple can just change the value of variable s outside of the class.
For example:
if __name__ == "__main__":
x = Simple("constructor argument")
x.s = "test15" # this changes the value
x.show()
x.showMsg("A message")
In Java, we have been taught about public/private/protected variables. Those keywords make sense because at times you want variables in a class to which no one outside the class has access to.
Why is that not required in Python?
It's cultural. In Python, you don't write to other classes' instance or class variables. In Java, nothing prevents you from doing the same if you really want to - after all, you can always edit the source of the class itself to achieve the same effect. Python drops that pretence of security and encourages programmers to be responsible. In practice, this works very nicely.
If you want to emulate private variables for some reason, you can always use the __ prefix from PEP 8. Python mangles the names of variables like __foo so that they're not easily visible to code outside the namespace that contains them (although you can get around it if you're determined enough, just like you can get around Java's protections if you work at it).
By the same convention, the _ prefix means _variable should be used internally in the class (or module) only, even if you're not technically prevented from accessing it from somewhere else. You don't play around with another class's variables that look like __foo or _bar.
Private variables in Python is more or less a hack: the interpreter intentionally renames the variable.
class A:
def __init__(self):
self.__var = 123
def printVar(self):
print self.__var
Now, if you try to access __var outside the class definition, it will fail:
>>> x = A()
>>> x.__var # this will return error: "A has no attribute __var"
>>> x.printVar() # this gives back 123
But you can easily get away with this:
>>> x.__dict__ # this will show everything that is contained in object x
# which in this case is something like {'_A__var' : 123}
>>> x._A__var = 456 # you now know the masked name of private variables
>>> x.printVar() # this gives back 456
You probably know that methods in OOP are invoked like this: x.printVar() => A.printVar(x). If A.printVar() can access some field in x, this field can also be accessed outside A.printVar()... After all, functions are created for reusability, and there isn't any special power given to the statements inside.
As correctly mentioned by many of the comments above, let's not forget the main goal of Access Modifiers: To help users of code understand what is supposed to change and what is supposed not to. When you see a private field you don't mess around with it. So it's mostly syntactic sugar which is easily achieved in Python by the _ and __.
Python does not have any private variables like C++ or Java does. You could access any member variable at any time if wanted, too. However, you don't need private variables in Python, because in Python it is not bad to expose your classes' member variables. If you have the need to encapsulate a member variable, you can do this by using "#property" later on without breaking existing client code.
In Python, the single underscore "_" is used to indicate that a method or variable is not considered as part of the public API of a class and that this part of the API could change between different versions. You can use these methods and variables, but your code could break, if you use a newer version of this class.
The double underscore "__" does not mean a "private variable". You use it to define variables which are "class local" and which can not be easily overridden by subclasses. It mangles the variables name.
For example:
class A(object):
def __init__(self):
self.__foobar = None # Will be automatically mangled to self._A__foobar
class B(A):
def __init__(self):
self.__foobar = 1 # Will be automatically mangled to self._B__foobar
self.__foobar's name is automatically mangled to self._A__foobar in class A. In class B it is mangled to self._B__foobar. So every subclass can define its own variable __foobar without overriding its parents variable(s). But nothing prevents you from accessing variables beginning with double underscores. However, name mangling prevents you from calling this variables /methods incidentally.
I strongly recommend you watch Raymond Hettinger's Python's class development toolkit from PyCon 2013, which gives a good example why and how you should use #property and "__"-instance variables.
If you have exposed public variables and you have the need to encapsulate them, then you can use #property. Therefore you can start with the simplest solution possible. You can leave member variables public unless you have a concrete reason to not do so. Here is an example:
class Distance:
def __init__(self, meter):
self.meter = meter
d = Distance(1.0)
print(d.meter)
# prints 1.0
class Distance:
def __init__(self, meter):
# Customer request: Distances must be stored in millimeters.
# Public available internals must be changed.
# This would break client code in C++.
# This is why you never expose public variables in C++ or Java.
# However, this is Python.
self.millimeter = meter * 1000
# In Python we have #property to the rescue.
#property
def meter(self):
return self.millimeter *0.001
#meter.setter
def meter(self, value):
self.millimeter = value * 1000
d = Distance(1.0)
print(d.meter)
# prints 1.0
There is a variation of private variables in the underscore convention.
In [5]: class Test(object):
...: def __private_method(self):
...: return "Boo"
...: def public_method(self):
...: return self.__private_method()
...:
In [6]: x = Test()
In [7]: x.public_method()
Out[7]: 'Boo'
In [8]: x.__private_method()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-8-fa17ce05d8bc> in <module>()
----> 1 x.__private_method()
AttributeError: 'Test' object has no attribute '__private_method'
There are some subtle differences, but for the sake of programming pattern ideological purity, it's good enough.
There are examples out there of #private decorators that more closely implement the concept, but your mileage may vary. Arguably, one could also write a class definition that uses meta.
As mentioned earlier, you can indicate that a variable or method is private by prefixing it with an underscore. If you don't feel like this is enough, you can always use the property decorator. Here's an example:
class Foo:
def __init__(self, bar):
self._bar = bar
#property
def bar(self):
"""Getter for '_bar'."""
return self._bar
This way, someone or something that references bar is actually referencing the return value of the bar function rather than the variable itself, and therefore it can be accessed but not changed. However, if someone really wanted to, they could simply use _bar and assign a new value to it. There is no surefire way to prevent someone from accessing variables and methods that you wish to hide, as has been said repeatedly. However, using property is the clearest message you can send that a variable is not to be edited. property can also be used for more complex getter/setter/deleter access paths, as explained here: https://docs.python.org/3/library/functions.html#property
Python has limited support for private identifiers, through a feature that automatically prepends the class name to any identifiers starting with two underscores. This is transparent to the programmer, for the most part, but the net effect is that any variables named this way can be used as private variables.
See here for more on that.
In general, Python's implementation of object orientation is a bit primitive compared to other languages. But I enjoy this, actually. It's a very conceptually simple implementation and fits well with the dynamic style of the language.
The only time I ever use private variables is when I need to do other things when writing to or reading from the variable and as such I need to force the use of a setter and/or getter.
Again this goes to culture, as already stated. I've been working on projects where reading and writing other classes variables was free-for-all. When one implementation became deprecated it took a lot longer to identify all code paths that used that function. When use of setters and getters was forced, a debug statement could easily be written to identify that the deprecated method had been called and the code path that calls it.
When you are on a project where anyone can write an extension, notifying users about deprecated methods that are to disappear in a few releases hence is vital to keep module breakage at a minimum upon upgrades.
So my answer is; if you and your colleagues maintain a simple code set then protecting class variables is not always necessary. If you are writing an extensible system then it becomes imperative when changes to the core is made that needs to be caught by all extensions using the code.
"In java, we have been taught about public/private/protected variables"
"Why is that not required in python?"
For the same reason, it's not required in Java.
You're free to use -- or not use private and protected.
As a Python and Java programmer, I've found that private and protected are very, very important design concepts. But as a practical matter, in tens of thousands of lines of Java and Python, I've never actually used private or protected.
Why not?
Here's my question "protected from whom?"
Other programmers on my team? They have the source. What does protected mean when they can change it?
Other programmers on other teams? They work for the same company. They can -- with a phone call -- get the source.
Clients? It's work-for-hire programming (generally). The clients (generally) own the code.
So, who -- precisely -- am I protecting it from?
In Python 3, if you just want to "encapsulate" the class attributes, like in Java, you can just do the same thing like this:
class Simple:
def __init__(self, str):
print("inside the simple constructor")
self.__s = str
def show(self):
print(self.__s)
def showMsg(self, msg):
print(msg + ':', self.show())
To instantiate this do:
ss = Simple("lol")
ss.show()
Note that: print(ss.__s) will throw an error.
In practice, Python 3 will obfuscate the global attribute name. It is turning this like a "private" attribute, like in Java. The attribute's name is still global, but in an inaccessible way, like a private attribute in other languages.
But don't be afraid of it. It doesn't matter. It does the job too. ;)
Private and protected concepts are very important. But Python is just a tool for prototyping and rapid development with restricted resources available for development, and that is why some of the protection levels are not so strictly followed in Python. You can use "__" in a class member. It works properly, but it does not look good enough. Each access to such field contains these characters.
Also, you can notice that the Python OOP concept is not perfect. Smalltalk or Ruby are much closer to a pure OOP concept. Even C# or Java are closer.
Python is a very good tool. But it is a simplified OOP language. Syntactically and conceptually simplified. The main goal of Python's existence is to bring to developers the possibility to write easy readable code with a high abstraction level in a very fast manner.
Here's how I handle Python 3 class fields:
class MyClass:
def __init__(self, public_read_variable, private_variable):
self.public_read_variable_ = public_read_variable
self.__private_variable = private_variable
I access the __private_variable with two underscores only inside MyClass methods.
I do read access of the public_read_variable_ with one underscore
outside the class, but never modify the variable:
my_class = MyClass("public", "private")
print(my_class.public_read_variable_) # OK
my_class.public_read_variable_ = 'another value' # NOT OK, don't do that.
So I’m new to Python but I have a background in C# and JavaScript. Python feels like a mix of the two in terms of features. JavaScript also struggles in this area and the way around it here, is to create a closure. This prevents access to data you don’t want to expose by returning a different object.
def print_msg(msg):
# This is the outer enclosing function
def printer():
# This is the nested function
print(msg)
return printer # returns the nested function
# Now let's try calling this function.
# Output: Hello
another = print_msg("Hello")
another()
https://www.programiz.com/python-programming/closure
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures#emulating_private_methods_with_closures
About sources (to change the access rights and thus bypass language encapsulation like Java or C++):
You don't always have the sources and even if you do, the sources are managed by a system that only allows certain programmers to access a source (in a professional context). Often, every programmer is responsible for certain classes and therefore knows what he can and cannot do. The source manager also locks the sources being modified and of course, manages the access rights of programmers.
So I trust more in software than in human, by experience. So convention is good, but multiple protections are better, like access management (real private variable) + sources management.
I have been thinking about private class attributes and methods (named members in further reading) since I have started to develop a package that I want to publish. The thought behind it were never to make it impossible to overwrite these members, but to have a warning for those who touch them. I came up with a few solutions that might help. The first solution is used in one of my favorite Python books, Fluent Python.
Upsides of technique 1:
It is unlikely to be overwritten by accident.
It is easily understood and implemented.
Its easier to handle than leading double underscore for instance attributes.
*In the book the hash-symbol was used, but you could use integer converted to strings as well. In Python it is forbidden to use klass.1
class Technique1:
def __init__(self, name, value):
setattr(self, f'private#{name}', value)
setattr(self, f'1{name}', value)
Downsides of technique 1:
Methods are not easily protected with this technique though. It is possible.
Attribute lookups are just possible via getattr
Still no warning to the user
Another solution I came across was to write __setattr__. Pros:
It is easily implemented and understood
It works with methods
Lookup is not affected
The user gets a warning or error
class Demonstration:
def __init__(self):
self.a = 1
def method(self):
return None
def __setattr__(self, name, value):
if not getattr(self, name, None):
super().__setattr__(name, value)
else:
raise ValueError(f'Already reserved name: {name}')
d = Demonstration()
#d.a = 2
d.method = None
Cons:
You can still overwrite the class
To have variables not just constants, you need to map allowed input.
Subclasses can still overwrite methods
To prevent subclasses from overwriting methods you can use __init_subclass__:
class Demonstration:
__protected = ['method']
def method(self):
return None
def __init_subclass__(cls):
protected_methods = Demonstration.__protected
subclass_methods = dir(cls)
for i in protected_methods:
p = getattr(Demonstration,i)
j = getattr(cls, i)
if not p is j:
raise ValueError(f'Protected method "{i}" was touched')
You see, there are ways to protect your class members, but it isn't any guarantee that users don't overwrite them anyway. This should just give you some ideas. In the end, you could also use a meta class, but this might open up new dangers to encounter. The techniques used here are also very simple minded and you should definitely take a look at the documentation, you can find useful feature to this technique and customize them to your need.

How do I make certain variables inaccessible when importing a program in Python? [duplicate]

I'm coming from the Java world and reading Bruce Eckels' Python 3 Patterns, Recipes and Idioms.
While reading about classes, it goes on to say that in Python there is no need to declare instance variables. You just use them in the constructor, and boom, they are there.
So for example:
class Simple:
def __init__(self, s):
print("inside the simple constructor")
self.s = s
def show(self):
print(self.s)
def showMsg(self, msg):
print(msg + ':', self.show())
If that’s true, then any object of class Simple can just change the value of variable s outside of the class.
For example:
if __name__ == "__main__":
x = Simple("constructor argument")
x.s = "test15" # this changes the value
x.show()
x.showMsg("A message")
In Java, we have been taught about public/private/protected variables. Those keywords make sense because at times you want variables in a class to which no one outside the class has access to.
Why is that not required in Python?
It's cultural. In Python, you don't write to other classes' instance or class variables. In Java, nothing prevents you from doing the same if you really want to - after all, you can always edit the source of the class itself to achieve the same effect. Python drops that pretence of security and encourages programmers to be responsible. In practice, this works very nicely.
If you want to emulate private variables for some reason, you can always use the __ prefix from PEP 8. Python mangles the names of variables like __foo so that they're not easily visible to code outside the namespace that contains them (although you can get around it if you're determined enough, just like you can get around Java's protections if you work at it).
By the same convention, the _ prefix means _variable should be used internally in the class (or module) only, even if you're not technically prevented from accessing it from somewhere else. You don't play around with another class's variables that look like __foo or _bar.
Private variables in Python is more or less a hack: the interpreter intentionally renames the variable.
class A:
def __init__(self):
self.__var = 123
def printVar(self):
print self.__var
Now, if you try to access __var outside the class definition, it will fail:
>>> x = A()
>>> x.__var # this will return error: "A has no attribute __var"
>>> x.printVar() # this gives back 123
But you can easily get away with this:
>>> x.__dict__ # this will show everything that is contained in object x
# which in this case is something like {'_A__var' : 123}
>>> x._A__var = 456 # you now know the masked name of private variables
>>> x.printVar() # this gives back 456
You probably know that methods in OOP are invoked like this: x.printVar() => A.printVar(x). If A.printVar() can access some field in x, this field can also be accessed outside A.printVar()... After all, functions are created for reusability, and there isn't any special power given to the statements inside.
As correctly mentioned by many of the comments above, let's not forget the main goal of Access Modifiers: To help users of code understand what is supposed to change and what is supposed not to. When you see a private field you don't mess around with it. So it's mostly syntactic sugar which is easily achieved in Python by the _ and __.
Python does not have any private variables like C++ or Java does. You could access any member variable at any time if wanted, too. However, you don't need private variables in Python, because in Python it is not bad to expose your classes' member variables. If you have the need to encapsulate a member variable, you can do this by using "#property" later on without breaking existing client code.
In Python, the single underscore "_" is used to indicate that a method or variable is not considered as part of the public API of a class and that this part of the API could change between different versions. You can use these methods and variables, but your code could break, if you use a newer version of this class.
The double underscore "__" does not mean a "private variable". You use it to define variables which are "class local" and which can not be easily overridden by subclasses. It mangles the variables name.
For example:
class A(object):
def __init__(self):
self.__foobar = None # Will be automatically mangled to self._A__foobar
class B(A):
def __init__(self):
self.__foobar = 1 # Will be automatically mangled to self._B__foobar
self.__foobar's name is automatically mangled to self._A__foobar in class A. In class B it is mangled to self._B__foobar. So every subclass can define its own variable __foobar without overriding its parents variable(s). But nothing prevents you from accessing variables beginning with double underscores. However, name mangling prevents you from calling this variables /methods incidentally.
I strongly recommend you watch Raymond Hettinger's Python's class development toolkit from PyCon 2013, which gives a good example why and how you should use #property and "__"-instance variables.
If you have exposed public variables and you have the need to encapsulate them, then you can use #property. Therefore you can start with the simplest solution possible. You can leave member variables public unless you have a concrete reason to not do so. Here is an example:
class Distance:
def __init__(self, meter):
self.meter = meter
d = Distance(1.0)
print(d.meter)
# prints 1.0
class Distance:
def __init__(self, meter):
# Customer request: Distances must be stored in millimeters.
# Public available internals must be changed.
# This would break client code in C++.
# This is why you never expose public variables in C++ or Java.
# However, this is Python.
self.millimeter = meter * 1000
# In Python we have #property to the rescue.
#property
def meter(self):
return self.millimeter *0.001
#meter.setter
def meter(self, value):
self.millimeter = value * 1000
d = Distance(1.0)
print(d.meter)
# prints 1.0
There is a variation of private variables in the underscore convention.
In [5]: class Test(object):
...: def __private_method(self):
...: return "Boo"
...: def public_method(self):
...: return self.__private_method()
...:
In [6]: x = Test()
In [7]: x.public_method()
Out[7]: 'Boo'
In [8]: x.__private_method()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-8-fa17ce05d8bc> in <module>()
----> 1 x.__private_method()
AttributeError: 'Test' object has no attribute '__private_method'
There are some subtle differences, but for the sake of programming pattern ideological purity, it's good enough.
There are examples out there of #private decorators that more closely implement the concept, but your mileage may vary. Arguably, one could also write a class definition that uses meta.
As mentioned earlier, you can indicate that a variable or method is private by prefixing it with an underscore. If you don't feel like this is enough, you can always use the property decorator. Here's an example:
class Foo:
def __init__(self, bar):
self._bar = bar
#property
def bar(self):
"""Getter for '_bar'."""
return self._bar
This way, someone or something that references bar is actually referencing the return value of the bar function rather than the variable itself, and therefore it can be accessed but not changed. However, if someone really wanted to, they could simply use _bar and assign a new value to it. There is no surefire way to prevent someone from accessing variables and methods that you wish to hide, as has been said repeatedly. However, using property is the clearest message you can send that a variable is not to be edited. property can also be used for more complex getter/setter/deleter access paths, as explained here: https://docs.python.org/3/library/functions.html#property
Python has limited support for private identifiers, through a feature that automatically prepends the class name to any identifiers starting with two underscores. This is transparent to the programmer, for the most part, but the net effect is that any variables named this way can be used as private variables.
See here for more on that.
In general, Python's implementation of object orientation is a bit primitive compared to other languages. But I enjoy this, actually. It's a very conceptually simple implementation and fits well with the dynamic style of the language.
The only time I ever use private variables is when I need to do other things when writing to or reading from the variable and as such I need to force the use of a setter and/or getter.
Again this goes to culture, as already stated. I've been working on projects where reading and writing other classes variables was free-for-all. When one implementation became deprecated it took a lot longer to identify all code paths that used that function. When use of setters and getters was forced, a debug statement could easily be written to identify that the deprecated method had been called and the code path that calls it.
When you are on a project where anyone can write an extension, notifying users about deprecated methods that are to disappear in a few releases hence is vital to keep module breakage at a minimum upon upgrades.
So my answer is; if you and your colleagues maintain a simple code set then protecting class variables is not always necessary. If you are writing an extensible system then it becomes imperative when changes to the core is made that needs to be caught by all extensions using the code.
"In java, we have been taught about public/private/protected variables"
"Why is that not required in python?"
For the same reason, it's not required in Java.
You're free to use -- or not use private and protected.
As a Python and Java programmer, I've found that private and protected are very, very important design concepts. But as a practical matter, in tens of thousands of lines of Java and Python, I've never actually used private or protected.
Why not?
Here's my question "protected from whom?"
Other programmers on my team? They have the source. What does protected mean when they can change it?
Other programmers on other teams? They work for the same company. They can -- with a phone call -- get the source.
Clients? It's work-for-hire programming (generally). The clients (generally) own the code.
So, who -- precisely -- am I protecting it from?
In Python 3, if you just want to "encapsulate" the class attributes, like in Java, you can just do the same thing like this:
class Simple:
def __init__(self, str):
print("inside the simple constructor")
self.__s = str
def show(self):
print(self.__s)
def showMsg(self, msg):
print(msg + ':', self.show())
To instantiate this do:
ss = Simple("lol")
ss.show()
Note that: print(ss.__s) will throw an error.
In practice, Python 3 will obfuscate the global attribute name. It is turning this like a "private" attribute, like in Java. The attribute's name is still global, but in an inaccessible way, like a private attribute in other languages.
But don't be afraid of it. It doesn't matter. It does the job too. ;)
Private and protected concepts are very important. But Python is just a tool for prototyping and rapid development with restricted resources available for development, and that is why some of the protection levels are not so strictly followed in Python. You can use "__" in a class member. It works properly, but it does not look good enough. Each access to such field contains these characters.
Also, you can notice that the Python OOP concept is not perfect. Smalltalk or Ruby are much closer to a pure OOP concept. Even C# or Java are closer.
Python is a very good tool. But it is a simplified OOP language. Syntactically and conceptually simplified. The main goal of Python's existence is to bring to developers the possibility to write easy readable code with a high abstraction level in a very fast manner.
Here's how I handle Python 3 class fields:
class MyClass:
def __init__(self, public_read_variable, private_variable):
self.public_read_variable_ = public_read_variable
self.__private_variable = private_variable
I access the __private_variable with two underscores only inside MyClass methods.
I do read access of the public_read_variable_ with one underscore
outside the class, but never modify the variable:
my_class = MyClass("public", "private")
print(my_class.public_read_variable_) # OK
my_class.public_read_variable_ = 'another value' # NOT OK, don't do that.
So I’m new to Python but I have a background in C# and JavaScript. Python feels like a mix of the two in terms of features. JavaScript also struggles in this area and the way around it here, is to create a closure. This prevents access to data you don’t want to expose by returning a different object.
def print_msg(msg):
# This is the outer enclosing function
def printer():
# This is the nested function
print(msg)
return printer # returns the nested function
# Now let's try calling this function.
# Output: Hello
another = print_msg("Hello")
another()
https://www.programiz.com/python-programming/closure
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures#emulating_private_methods_with_closures
About sources (to change the access rights and thus bypass language encapsulation like Java or C++):
You don't always have the sources and even if you do, the sources are managed by a system that only allows certain programmers to access a source (in a professional context). Often, every programmer is responsible for certain classes and therefore knows what he can and cannot do. The source manager also locks the sources being modified and of course, manages the access rights of programmers.
So I trust more in software than in human, by experience. So convention is good, but multiple protections are better, like access management (real private variable) + sources management.
I have been thinking about private class attributes and methods (named members in further reading) since I have started to develop a package that I want to publish. The thought behind it were never to make it impossible to overwrite these members, but to have a warning for those who touch them. I came up with a few solutions that might help. The first solution is used in one of my favorite Python books, Fluent Python.
Upsides of technique 1:
It is unlikely to be overwritten by accident.
It is easily understood and implemented.
Its easier to handle than leading double underscore for instance attributes.
*In the book the hash-symbol was used, but you could use integer converted to strings as well. In Python it is forbidden to use klass.1
class Technique1:
def __init__(self, name, value):
setattr(self, f'private#{name}', value)
setattr(self, f'1{name}', value)
Downsides of technique 1:
Methods are not easily protected with this technique though. It is possible.
Attribute lookups are just possible via getattr
Still no warning to the user
Another solution I came across was to write __setattr__. Pros:
It is easily implemented and understood
It works with methods
Lookup is not affected
The user gets a warning or error
class Demonstration:
def __init__(self):
self.a = 1
def method(self):
return None
def __setattr__(self, name, value):
if not getattr(self, name, None):
super().__setattr__(name, value)
else:
raise ValueError(f'Already reserved name: {name}')
d = Demonstration()
#d.a = 2
d.method = None
Cons:
You can still overwrite the class
To have variables not just constants, you need to map allowed input.
Subclasses can still overwrite methods
To prevent subclasses from overwriting methods you can use __init_subclass__:
class Demonstration:
__protected = ['method']
def method(self):
return None
def __init_subclass__(cls):
protected_methods = Demonstration.__protected
subclass_methods = dir(cls)
for i in protected_methods:
p = getattr(Demonstration,i)
j = getattr(cls, i)
if not p is j:
raise ValueError(f'Protected method "{i}" was touched')
You see, there are ways to protect your class members, but it isn't any guarantee that users don't overwrite them anyway. This should just give you some ideas. In the end, you could also use a meta class, but this might open up new dangers to encounter. The techniques used here are also very simple minded and you should definitely take a look at the documentation, you can find useful feature to this technique and customize them to your need.

How can I make some attributes not exposed in self-defined object? not using self.__name [duplicate]

I'm coming from the Java world and reading Bruce Eckels' Python 3 Patterns, Recipes and Idioms.
While reading about classes, it goes on to say that in Python there is no need to declare instance variables. You just use them in the constructor, and boom, they are there.
So for example:
class Simple:
def __init__(self, s):
print("inside the simple constructor")
self.s = s
def show(self):
print(self.s)
def showMsg(self, msg):
print(msg + ':', self.show())
If that’s true, then any object of class Simple can just change the value of variable s outside of the class.
For example:
if __name__ == "__main__":
x = Simple("constructor argument")
x.s = "test15" # this changes the value
x.show()
x.showMsg("A message")
In Java, we have been taught about public/private/protected variables. Those keywords make sense because at times you want variables in a class to which no one outside the class has access to.
Why is that not required in Python?
It's cultural. In Python, you don't write to other classes' instance or class variables. In Java, nothing prevents you from doing the same if you really want to - after all, you can always edit the source of the class itself to achieve the same effect. Python drops that pretence of security and encourages programmers to be responsible. In practice, this works very nicely.
If you want to emulate private variables for some reason, you can always use the __ prefix from PEP 8. Python mangles the names of variables like __foo so that they're not easily visible to code outside the namespace that contains them (although you can get around it if you're determined enough, just like you can get around Java's protections if you work at it).
By the same convention, the _ prefix means _variable should be used internally in the class (or module) only, even if you're not technically prevented from accessing it from somewhere else. You don't play around with another class's variables that look like __foo or _bar.
Private variables in Python is more or less a hack: the interpreter intentionally renames the variable.
class A:
def __init__(self):
self.__var = 123
def printVar(self):
print self.__var
Now, if you try to access __var outside the class definition, it will fail:
>>> x = A()
>>> x.__var # this will return error: "A has no attribute __var"
>>> x.printVar() # this gives back 123
But you can easily get away with this:
>>> x.__dict__ # this will show everything that is contained in object x
# which in this case is something like {'_A__var' : 123}
>>> x._A__var = 456 # you now know the masked name of private variables
>>> x.printVar() # this gives back 456
You probably know that methods in OOP are invoked like this: x.printVar() => A.printVar(x). If A.printVar() can access some field in x, this field can also be accessed outside A.printVar()... After all, functions are created for reusability, and there isn't any special power given to the statements inside.
As correctly mentioned by many of the comments above, let's not forget the main goal of Access Modifiers: To help users of code understand what is supposed to change and what is supposed not to. When you see a private field you don't mess around with it. So it's mostly syntactic sugar which is easily achieved in Python by the _ and __.
Python does not have any private variables like C++ or Java does. You could access any member variable at any time if wanted, too. However, you don't need private variables in Python, because in Python it is not bad to expose your classes' member variables. If you have the need to encapsulate a member variable, you can do this by using "#property" later on without breaking existing client code.
In Python, the single underscore "_" is used to indicate that a method or variable is not considered as part of the public API of a class and that this part of the API could change between different versions. You can use these methods and variables, but your code could break, if you use a newer version of this class.
The double underscore "__" does not mean a "private variable". You use it to define variables which are "class local" and which can not be easily overridden by subclasses. It mangles the variables name.
For example:
class A(object):
def __init__(self):
self.__foobar = None # Will be automatically mangled to self._A__foobar
class B(A):
def __init__(self):
self.__foobar = 1 # Will be automatically mangled to self._B__foobar
self.__foobar's name is automatically mangled to self._A__foobar in class A. In class B it is mangled to self._B__foobar. So every subclass can define its own variable __foobar without overriding its parents variable(s). But nothing prevents you from accessing variables beginning with double underscores. However, name mangling prevents you from calling this variables /methods incidentally.
I strongly recommend you watch Raymond Hettinger's Python's class development toolkit from PyCon 2013, which gives a good example why and how you should use #property and "__"-instance variables.
If you have exposed public variables and you have the need to encapsulate them, then you can use #property. Therefore you can start with the simplest solution possible. You can leave member variables public unless you have a concrete reason to not do so. Here is an example:
class Distance:
def __init__(self, meter):
self.meter = meter
d = Distance(1.0)
print(d.meter)
# prints 1.0
class Distance:
def __init__(self, meter):
# Customer request: Distances must be stored in millimeters.
# Public available internals must be changed.
# This would break client code in C++.
# This is why you never expose public variables in C++ or Java.
# However, this is Python.
self.millimeter = meter * 1000
# In Python we have #property to the rescue.
#property
def meter(self):
return self.millimeter *0.001
#meter.setter
def meter(self, value):
self.millimeter = value * 1000
d = Distance(1.0)
print(d.meter)
# prints 1.0
There is a variation of private variables in the underscore convention.
In [5]: class Test(object):
...: def __private_method(self):
...: return "Boo"
...: def public_method(self):
...: return self.__private_method()
...:
In [6]: x = Test()
In [7]: x.public_method()
Out[7]: 'Boo'
In [8]: x.__private_method()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-8-fa17ce05d8bc> in <module>()
----> 1 x.__private_method()
AttributeError: 'Test' object has no attribute '__private_method'
There are some subtle differences, but for the sake of programming pattern ideological purity, it's good enough.
There are examples out there of #private decorators that more closely implement the concept, but your mileage may vary. Arguably, one could also write a class definition that uses meta.
As mentioned earlier, you can indicate that a variable or method is private by prefixing it with an underscore. If you don't feel like this is enough, you can always use the property decorator. Here's an example:
class Foo:
def __init__(self, bar):
self._bar = bar
#property
def bar(self):
"""Getter for '_bar'."""
return self._bar
This way, someone or something that references bar is actually referencing the return value of the bar function rather than the variable itself, and therefore it can be accessed but not changed. However, if someone really wanted to, they could simply use _bar and assign a new value to it. There is no surefire way to prevent someone from accessing variables and methods that you wish to hide, as has been said repeatedly. However, using property is the clearest message you can send that a variable is not to be edited. property can also be used for more complex getter/setter/deleter access paths, as explained here: https://docs.python.org/3/library/functions.html#property
Python has limited support for private identifiers, through a feature that automatically prepends the class name to any identifiers starting with two underscores. This is transparent to the programmer, for the most part, but the net effect is that any variables named this way can be used as private variables.
See here for more on that.
In general, Python's implementation of object orientation is a bit primitive compared to other languages. But I enjoy this, actually. It's a very conceptually simple implementation and fits well with the dynamic style of the language.
The only time I ever use private variables is when I need to do other things when writing to or reading from the variable and as such I need to force the use of a setter and/or getter.
Again this goes to culture, as already stated. I've been working on projects where reading and writing other classes variables was free-for-all. When one implementation became deprecated it took a lot longer to identify all code paths that used that function. When use of setters and getters was forced, a debug statement could easily be written to identify that the deprecated method had been called and the code path that calls it.
When you are on a project where anyone can write an extension, notifying users about deprecated methods that are to disappear in a few releases hence is vital to keep module breakage at a minimum upon upgrades.
So my answer is; if you and your colleagues maintain a simple code set then protecting class variables is not always necessary. If you are writing an extensible system then it becomes imperative when changes to the core is made that needs to be caught by all extensions using the code.
"In java, we have been taught about public/private/protected variables"
"Why is that not required in python?"
For the same reason, it's not required in Java.
You're free to use -- or not use private and protected.
As a Python and Java programmer, I've found that private and protected are very, very important design concepts. But as a practical matter, in tens of thousands of lines of Java and Python, I've never actually used private or protected.
Why not?
Here's my question "protected from whom?"
Other programmers on my team? They have the source. What does protected mean when they can change it?
Other programmers on other teams? They work for the same company. They can -- with a phone call -- get the source.
Clients? It's work-for-hire programming (generally). The clients (generally) own the code.
So, who -- precisely -- am I protecting it from?
In Python 3, if you just want to "encapsulate" the class attributes, like in Java, you can just do the same thing like this:
class Simple:
def __init__(self, str):
print("inside the simple constructor")
self.__s = str
def show(self):
print(self.__s)
def showMsg(self, msg):
print(msg + ':', self.show())
To instantiate this do:
ss = Simple("lol")
ss.show()
Note that: print(ss.__s) will throw an error.
In practice, Python 3 will obfuscate the global attribute name. It is turning this like a "private" attribute, like in Java. The attribute's name is still global, but in an inaccessible way, like a private attribute in other languages.
But don't be afraid of it. It doesn't matter. It does the job too. ;)
Private and protected concepts are very important. But Python is just a tool for prototyping and rapid development with restricted resources available for development, and that is why some of the protection levels are not so strictly followed in Python. You can use "__" in a class member. It works properly, but it does not look good enough. Each access to such field contains these characters.
Also, you can notice that the Python OOP concept is not perfect. Smalltalk or Ruby are much closer to a pure OOP concept. Even C# or Java are closer.
Python is a very good tool. But it is a simplified OOP language. Syntactically and conceptually simplified. The main goal of Python's existence is to bring to developers the possibility to write easy readable code with a high abstraction level in a very fast manner.
Here's how I handle Python 3 class fields:
class MyClass:
def __init__(self, public_read_variable, private_variable):
self.public_read_variable_ = public_read_variable
self.__private_variable = private_variable
I access the __private_variable with two underscores only inside MyClass methods.
I do read access of the public_read_variable_ with one underscore
outside the class, but never modify the variable:
my_class = MyClass("public", "private")
print(my_class.public_read_variable_) # OK
my_class.public_read_variable_ = 'another value' # NOT OK, don't do that.
So I’m new to Python but I have a background in C# and JavaScript. Python feels like a mix of the two in terms of features. JavaScript also struggles in this area and the way around it here, is to create a closure. This prevents access to data you don’t want to expose by returning a different object.
def print_msg(msg):
# This is the outer enclosing function
def printer():
# This is the nested function
print(msg)
return printer # returns the nested function
# Now let's try calling this function.
# Output: Hello
another = print_msg("Hello")
another()
https://www.programiz.com/python-programming/closure
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures#emulating_private_methods_with_closures
About sources (to change the access rights and thus bypass language encapsulation like Java or C++):
You don't always have the sources and even if you do, the sources are managed by a system that only allows certain programmers to access a source (in a professional context). Often, every programmer is responsible for certain classes and therefore knows what he can and cannot do. The source manager also locks the sources being modified and of course, manages the access rights of programmers.
So I trust more in software than in human, by experience. So convention is good, but multiple protections are better, like access management (real private variable) + sources management.
I have been thinking about private class attributes and methods (named members in further reading) since I have started to develop a package that I want to publish. The thought behind it were never to make it impossible to overwrite these members, but to have a warning for those who touch them. I came up with a few solutions that might help. The first solution is used in one of my favorite Python books, Fluent Python.
Upsides of technique 1:
It is unlikely to be overwritten by accident.
It is easily understood and implemented.
Its easier to handle than leading double underscore for instance attributes.
*In the book the hash-symbol was used, but you could use integer converted to strings as well. In Python it is forbidden to use klass.1
class Technique1:
def __init__(self, name, value):
setattr(self, f'private#{name}', value)
setattr(self, f'1{name}', value)
Downsides of technique 1:
Methods are not easily protected with this technique though. It is possible.
Attribute lookups are just possible via getattr
Still no warning to the user
Another solution I came across was to write __setattr__. Pros:
It is easily implemented and understood
It works with methods
Lookup is not affected
The user gets a warning or error
class Demonstration:
def __init__(self):
self.a = 1
def method(self):
return None
def __setattr__(self, name, value):
if not getattr(self, name, None):
super().__setattr__(name, value)
else:
raise ValueError(f'Already reserved name: {name}')
d = Demonstration()
#d.a = 2
d.method = None
Cons:
You can still overwrite the class
To have variables not just constants, you need to map allowed input.
Subclasses can still overwrite methods
To prevent subclasses from overwriting methods you can use __init_subclass__:
class Demonstration:
__protected = ['method']
def method(self):
return None
def __init_subclass__(cls):
protected_methods = Demonstration.__protected
subclass_methods = dir(cls)
for i in protected_methods:
p = getattr(Demonstration,i)
j = getattr(cls, i)
if not p is j:
raise ValueError(f'Protected method "{i}" was touched')
You see, there are ways to protect your class members, but it isn't any guarantee that users don't overwrite them anyway. This should just give you some ideas. In the end, you could also use a meta class, but this might open up new dangers to encounter. The techniques used here are also very simple minded and you should definitely take a look at the documentation, you can find useful feature to this technique and customize them to your need.

How to Prevent Attributes from Being Used Outside of the Class [duplicate]

I'm coming from the Java world and reading Bruce Eckels' Python 3 Patterns, Recipes and Idioms.
While reading about classes, it goes on to say that in Python there is no need to declare instance variables. You just use them in the constructor, and boom, they are there.
So for example:
class Simple:
def __init__(self, s):
print("inside the simple constructor")
self.s = s
def show(self):
print(self.s)
def showMsg(self, msg):
print(msg + ':', self.show())
If that’s true, then any object of class Simple can just change the value of variable s outside of the class.
For example:
if __name__ == "__main__":
x = Simple("constructor argument")
x.s = "test15" # this changes the value
x.show()
x.showMsg("A message")
In Java, we have been taught about public/private/protected variables. Those keywords make sense because at times you want variables in a class to which no one outside the class has access to.
Why is that not required in Python?
It's cultural. In Python, you don't write to other classes' instance or class variables. In Java, nothing prevents you from doing the same if you really want to - after all, you can always edit the source of the class itself to achieve the same effect. Python drops that pretence of security and encourages programmers to be responsible. In practice, this works very nicely.
If you want to emulate private variables for some reason, you can always use the __ prefix from PEP 8. Python mangles the names of variables like __foo so that they're not easily visible to code outside the namespace that contains them (although you can get around it if you're determined enough, just like you can get around Java's protections if you work at it).
By the same convention, the _ prefix means _variable should be used internally in the class (or module) only, even if you're not technically prevented from accessing it from somewhere else. You don't play around with another class's variables that look like __foo or _bar.
Private variables in Python is more or less a hack: the interpreter intentionally renames the variable.
class A:
def __init__(self):
self.__var = 123
def printVar(self):
print self.__var
Now, if you try to access __var outside the class definition, it will fail:
>>> x = A()
>>> x.__var # this will return error: "A has no attribute __var"
>>> x.printVar() # this gives back 123
But you can easily get away with this:
>>> x.__dict__ # this will show everything that is contained in object x
# which in this case is something like {'_A__var' : 123}
>>> x._A__var = 456 # you now know the masked name of private variables
>>> x.printVar() # this gives back 456
You probably know that methods in OOP are invoked like this: x.printVar() => A.printVar(x). If A.printVar() can access some field in x, this field can also be accessed outside A.printVar()... After all, functions are created for reusability, and there isn't any special power given to the statements inside.
As correctly mentioned by many of the comments above, let's not forget the main goal of Access Modifiers: To help users of code understand what is supposed to change and what is supposed not to. When you see a private field you don't mess around with it. So it's mostly syntactic sugar which is easily achieved in Python by the _ and __.
Python does not have any private variables like C++ or Java does. You could access any member variable at any time if wanted, too. However, you don't need private variables in Python, because in Python it is not bad to expose your classes' member variables. If you have the need to encapsulate a member variable, you can do this by using "#property" later on without breaking existing client code.
In Python, the single underscore "_" is used to indicate that a method or variable is not considered as part of the public API of a class and that this part of the API could change between different versions. You can use these methods and variables, but your code could break, if you use a newer version of this class.
The double underscore "__" does not mean a "private variable". You use it to define variables which are "class local" and which can not be easily overridden by subclasses. It mangles the variables name.
For example:
class A(object):
def __init__(self):
self.__foobar = None # Will be automatically mangled to self._A__foobar
class B(A):
def __init__(self):
self.__foobar = 1 # Will be automatically mangled to self._B__foobar
self.__foobar's name is automatically mangled to self._A__foobar in class A. In class B it is mangled to self._B__foobar. So every subclass can define its own variable __foobar without overriding its parents variable(s). But nothing prevents you from accessing variables beginning with double underscores. However, name mangling prevents you from calling this variables /methods incidentally.
I strongly recommend you watch Raymond Hettinger's Python's class development toolkit from PyCon 2013, which gives a good example why and how you should use #property and "__"-instance variables.
If you have exposed public variables and you have the need to encapsulate them, then you can use #property. Therefore you can start with the simplest solution possible. You can leave member variables public unless you have a concrete reason to not do so. Here is an example:
class Distance:
def __init__(self, meter):
self.meter = meter
d = Distance(1.0)
print(d.meter)
# prints 1.0
class Distance:
def __init__(self, meter):
# Customer request: Distances must be stored in millimeters.
# Public available internals must be changed.
# This would break client code in C++.
# This is why you never expose public variables in C++ or Java.
# However, this is Python.
self.millimeter = meter * 1000
# In Python we have #property to the rescue.
#property
def meter(self):
return self.millimeter *0.001
#meter.setter
def meter(self, value):
self.millimeter = value * 1000
d = Distance(1.0)
print(d.meter)
# prints 1.0
There is a variation of private variables in the underscore convention.
In [5]: class Test(object):
...: def __private_method(self):
...: return "Boo"
...: def public_method(self):
...: return self.__private_method()
...:
In [6]: x = Test()
In [7]: x.public_method()
Out[7]: 'Boo'
In [8]: x.__private_method()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-8-fa17ce05d8bc> in <module>()
----> 1 x.__private_method()
AttributeError: 'Test' object has no attribute '__private_method'
There are some subtle differences, but for the sake of programming pattern ideological purity, it's good enough.
There are examples out there of #private decorators that more closely implement the concept, but your mileage may vary. Arguably, one could also write a class definition that uses meta.
As mentioned earlier, you can indicate that a variable or method is private by prefixing it with an underscore. If you don't feel like this is enough, you can always use the property decorator. Here's an example:
class Foo:
def __init__(self, bar):
self._bar = bar
#property
def bar(self):
"""Getter for '_bar'."""
return self._bar
This way, someone or something that references bar is actually referencing the return value of the bar function rather than the variable itself, and therefore it can be accessed but not changed. However, if someone really wanted to, they could simply use _bar and assign a new value to it. There is no surefire way to prevent someone from accessing variables and methods that you wish to hide, as has been said repeatedly. However, using property is the clearest message you can send that a variable is not to be edited. property can also be used for more complex getter/setter/deleter access paths, as explained here: https://docs.python.org/3/library/functions.html#property
Python has limited support for private identifiers, through a feature that automatically prepends the class name to any identifiers starting with two underscores. This is transparent to the programmer, for the most part, but the net effect is that any variables named this way can be used as private variables.
See here for more on that.
In general, Python's implementation of object orientation is a bit primitive compared to other languages. But I enjoy this, actually. It's a very conceptually simple implementation and fits well with the dynamic style of the language.
The only time I ever use private variables is when I need to do other things when writing to or reading from the variable and as such I need to force the use of a setter and/or getter.
Again this goes to culture, as already stated. I've been working on projects where reading and writing other classes variables was free-for-all. When one implementation became deprecated it took a lot longer to identify all code paths that used that function. When use of setters and getters was forced, a debug statement could easily be written to identify that the deprecated method had been called and the code path that calls it.
When you are on a project where anyone can write an extension, notifying users about deprecated methods that are to disappear in a few releases hence is vital to keep module breakage at a minimum upon upgrades.
So my answer is; if you and your colleagues maintain a simple code set then protecting class variables is not always necessary. If you are writing an extensible system then it becomes imperative when changes to the core is made that needs to be caught by all extensions using the code.
"In java, we have been taught about public/private/protected variables"
"Why is that not required in python?"
For the same reason, it's not required in Java.
You're free to use -- or not use private and protected.
As a Python and Java programmer, I've found that private and protected are very, very important design concepts. But as a practical matter, in tens of thousands of lines of Java and Python, I've never actually used private or protected.
Why not?
Here's my question "protected from whom?"
Other programmers on my team? They have the source. What does protected mean when they can change it?
Other programmers on other teams? They work for the same company. They can -- with a phone call -- get the source.
Clients? It's work-for-hire programming (generally). The clients (generally) own the code.
So, who -- precisely -- am I protecting it from?
In Python 3, if you just want to "encapsulate" the class attributes, like in Java, you can just do the same thing like this:
class Simple:
def __init__(self, str):
print("inside the simple constructor")
self.__s = str
def show(self):
print(self.__s)
def showMsg(self, msg):
print(msg + ':', self.show())
To instantiate this do:
ss = Simple("lol")
ss.show()
Note that: print(ss.__s) will throw an error.
In practice, Python 3 will obfuscate the global attribute name. It is turning this like a "private" attribute, like in Java. The attribute's name is still global, but in an inaccessible way, like a private attribute in other languages.
But don't be afraid of it. It doesn't matter. It does the job too. ;)
Private and protected concepts are very important. But Python is just a tool for prototyping and rapid development with restricted resources available for development, and that is why some of the protection levels are not so strictly followed in Python. You can use "__" in a class member. It works properly, but it does not look good enough. Each access to such field contains these characters.
Also, you can notice that the Python OOP concept is not perfect. Smalltalk or Ruby are much closer to a pure OOP concept. Even C# or Java are closer.
Python is a very good tool. But it is a simplified OOP language. Syntactically and conceptually simplified. The main goal of Python's existence is to bring to developers the possibility to write easy readable code with a high abstraction level in a very fast manner.
Here's how I handle Python 3 class fields:
class MyClass:
def __init__(self, public_read_variable, private_variable):
self.public_read_variable_ = public_read_variable
self.__private_variable = private_variable
I access the __private_variable with two underscores only inside MyClass methods.
I do read access of the public_read_variable_ with one underscore
outside the class, but never modify the variable:
my_class = MyClass("public", "private")
print(my_class.public_read_variable_) # OK
my_class.public_read_variable_ = 'another value' # NOT OK, don't do that.
So I’m new to Python but I have a background in C# and JavaScript. Python feels like a mix of the two in terms of features. JavaScript also struggles in this area and the way around it here, is to create a closure. This prevents access to data you don’t want to expose by returning a different object.
def print_msg(msg):
# This is the outer enclosing function
def printer():
# This is the nested function
print(msg)
return printer # returns the nested function
# Now let's try calling this function.
# Output: Hello
another = print_msg("Hello")
another()
https://www.programiz.com/python-programming/closure
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures#emulating_private_methods_with_closures
About sources (to change the access rights and thus bypass language encapsulation like Java or C++):
You don't always have the sources and even if you do, the sources are managed by a system that only allows certain programmers to access a source (in a professional context). Often, every programmer is responsible for certain classes and therefore knows what he can and cannot do. The source manager also locks the sources being modified and of course, manages the access rights of programmers.
So I trust more in software than in human, by experience. So convention is good, but multiple protections are better, like access management (real private variable) + sources management.
I have been thinking about private class attributes and methods (named members in further reading) since I have started to develop a package that I want to publish. The thought behind it were never to make it impossible to overwrite these members, but to have a warning for those who touch them. I came up with a few solutions that might help. The first solution is used in one of my favorite Python books, Fluent Python.
Upsides of technique 1:
It is unlikely to be overwritten by accident.
It is easily understood and implemented.
Its easier to handle than leading double underscore for instance attributes.
*In the book the hash-symbol was used, but you could use integer converted to strings as well. In Python it is forbidden to use klass.1
class Technique1:
def __init__(self, name, value):
setattr(self, f'private#{name}', value)
setattr(self, f'1{name}', value)
Downsides of technique 1:
Methods are not easily protected with this technique though. It is possible.
Attribute lookups are just possible via getattr
Still no warning to the user
Another solution I came across was to write __setattr__. Pros:
It is easily implemented and understood
It works with methods
Lookup is not affected
The user gets a warning or error
class Demonstration:
def __init__(self):
self.a = 1
def method(self):
return None
def __setattr__(self, name, value):
if not getattr(self, name, None):
super().__setattr__(name, value)
else:
raise ValueError(f'Already reserved name: {name}')
d = Demonstration()
#d.a = 2
d.method = None
Cons:
You can still overwrite the class
To have variables not just constants, you need to map allowed input.
Subclasses can still overwrite methods
To prevent subclasses from overwriting methods you can use __init_subclass__:
class Demonstration:
__protected = ['method']
def method(self):
return None
def __init_subclass__(cls):
protected_methods = Demonstration.__protected
subclass_methods = dir(cls)
for i in protected_methods:
p = getattr(Demonstration,i)
j = getattr(cls, i)
if not p is j:
raise ValueError(f'Protected method "{i}" was touched')
You see, there are ways to protect your class members, but it isn't any guarantee that users don't overwrite them anyway. This should just give you some ideas. In the end, you could also use a meta class, but this might open up new dangers to encounter. The techniques used here are also very simple minded and you should definitely take a look at the documentation, you can find useful feature to this technique and customize them to your need.

advantage and disadvantage of #property in a Python Object [duplicate]

This question already has answers here:
What's the pythonic way to use getters and setters?
(8 answers)
Closed 4 months ago.
What advantages does the #property notation hold over the classic getter+setter? In which specific cases/situations should a programmer choose to use one over the other?
With properties:
class MyClass(object):
#property
def my_attr(self):
return self._my_attr
#my_attr.setter
def my_attr(self, value):
self._my_attr = value
Without properties:
class MyClass(object):
def get_my_attr(self):
return self._my_attr
def set_my_attr(self, value):
self._my_attr = value
Prefer properties. It's what they're there for.
The reason is that all attributes are public in Python. Starting names with an underscore or two is just a warning that the given attribute is an implementation detail that may not stay the same in future versions of the code. It doesn't prevent you from actually getting or setting that attribute. Therefore, standard attribute access is the normal, Pythonic way of, well, accessing attributes.
The advantage of properties is that they are syntactically identical to attribute access, so you can change from one to another without any changes to client code. You could even have one version of a class that uses properties (say, for code-by-contract or debugging) and one that doesn't for production, without changing the code that uses it. At the same time, you don't have to write getters and setters for everything just in case you might need to better control access later.
In Python you don't use getters or setters or properties just for the fun of it. You first just use attributes and then later, only if needed, eventually migrate to a property without having to change the code using your classes.
There is indeed a lot of code with extension .py that uses getters and setters and inheritance and pointless classes everywhere where e.g. a simple tuple would do, but it's code from people writing in C++ or Java using Python.
That's not Python code.
Using properties lets you begin with normal attribute accesses and then back them up with getters and setters afterwards as necessary.
The short answer is: properties wins hands down. Always.
There is sometimes a need for getters and setters, but even then, I would "hide" them to the outside world. There are plenty of ways to do this in Python (getattr, setattr, __getattribute__, etc..., but a very concise and clean one is:
def set_email(self, value):
if '#' not in value:
raise Exception("This doesn't look like an email address.")
self._email = value
def get_email(self):
return self._email
email = property(get_email, set_email)
Here's a brief article that introduces the topic of getters and setters in Python.
[TL;DR? You can skip to the end for a code example.]
I actually prefer to use a different idiom, which is a little involved for using as a one off, but is nice if you have a more complex use case.
A bit of background first.
Properties are useful in that they allow us to handle both setting and getting values in a programmatic way but still allow attributes to be accessed as attributes. We can turn 'gets' into 'computations' (essentially) and we can turn 'sets' into 'events'. So let's say we have the following class, which I've coded with Java-like getters and setters.
class Example(object):
def __init__(self, x=None, y=None):
self.x = x
self.y = y
def getX(self):
return self.x or self.defaultX()
def getY(self):
return self.y or self.defaultY()
def setX(self, x):
self.x = x
def setY(self, y):
self.y = y
def defaultX(self):
return someDefaultComputationForX()
def defaultY(self):
return someDefaultComputationForY()
You may be wondering why I didn't call defaultX and defaultY in the object's __init__ method. The reason is that for our case I want to assume that the someDefaultComputation methods return values that vary over time, say a timestamp, and whenever x (or y) is not set (where, for the purpose of this example, "not set" means "set to None") I want the value of x's (or y's) default computation.
So this is lame for a number of reasons describe above. I'll rewrite it using properties:
class Example(object):
def __init__(self, x=None, y=None):
self._x = x
self._y = y
#property
def x(self):
return self.x or self.defaultX()
#x.setter
def x(self, value):
self._x = value
#property
def y(self):
return self.y or self.defaultY()
#y.setter
def y(self, value):
self._y = value
# default{XY} as before.
What have we gained? We've gained the ability to refer to these attributes as attributes even though, behind the scenes, we end up running methods.
Of course the real power of properties is that we generally want these methods to do something in addition to just getting and setting values (otherwise there is no point in using properties). I did this in my getter example. We are basically running a function body to pick up a default whenever the value isn't set. This is a very common pattern.
But what are we losing, and what can't we do?
The main annoyance, in my view, is that if you define a getter (as we do here) you also have to define a setter.[1] That's extra noise that clutters the code.
Another annoyance is that we still have to initialize the x and y values in __init__. (Well, of course we could add them using setattr() but that is more extra code.)
Third, unlike in the Java-like example, getters cannot accept other parameters. Now I can hear you saying already, well, if it's taking parameters it's not a getter! In an official sense, that is true. But in a practical sense there is no reason we shouldn't be able to parameterize an named attribute -- like x -- and set its value for some specific parameters.
It'd be nice if we could do something like:
e.x[a,b,c] = 10
e.x[d,e,f] = 20
for example. The closest we can get is to override the assignment to imply some special semantics:
e.x = [a,b,c,10]
e.x = [d,e,f,30]
and of course ensure that our setter knows how to extract the first three values as a key to a dictionary and set its value to a number or something.
But even if we did that we still couldn't support it with properties because there is no way to get the value because we can't pass parameters at all to the getter. So we've had to return everything, introducing an asymmetry.
The Java-style getter/setter does let us handle this, but we're back to needing getter/setters.
In my mind what we really want is something that capture the following requirements:
Users define just one method for a given attribute and can indicate there
whether the attribute is read-only or read-write. Properties fail this test
if the attribute writable.
There is no need for the user to define an extra variable underlying the function, so we don't need the __init__ or setattr in the code. The variable just exists by the fact we've created this new-style attribute.
Any default code for the attribute executes in the method body itself.
We can set the attribute as an attribute and reference it as an attribute.
We can parameterize the attribute.
In terms of code, we want a way to write:
def x(self, *args):
return defaultX()
and be able to then do:
print e.x -> The default at time T0
e.x = 1
print e.x -> 1
e.x = None
print e.x -> The default at time T1
and so forth.
We also want a way to do this for the special case of a parameterizable attribute, but still allow the default assign case to work. You'll see how I tackled this below.
Now to the point (yay! the point!). The solution I came up for for this is as follows.
We create a new object to replace the notion of a property. The object is intended to store the value of a variable set to it, but also maintains a handle on code that knows how to calculate a default. Its job is to store the set value or to run the method if that value is not set.
Let's call it an UberProperty.
class UberProperty(object):
def __init__(self, method):
self.method = method
self.value = None
self.isSet = False
def setValue(self, value):
self.value = value
self.isSet = True
def clearValue(self):
self.value = None
self.isSet = False
I assume method here is a class method, value is the value of the UberProperty, and I have added isSet because None may be a real value and this allows us a clean way to declare there really is "no value". Another way is a sentinel of some sort.
This basically gives us an object that can do what we want, but how do we actually put it on our class? Well, properties use decorators; why can't we? Let's see how it might look (from here on I'm going to stick to using just a single 'attribute', x).
class Example(object):
#uberProperty
def x(self):
return defaultX()
This doesn't actually work yet, of course. We have to implement uberProperty and
make sure it handles both gets and sets.
Let's start with gets.
My first attempt was to simply create a new UberProperty object and return it:
def uberProperty(f):
return UberProperty(f)
I quickly discovered, of course, that this doens't work: Python never binds the callable to the object and I need the object in order to call the function. Even creating the decorator in the class doesn't work, as although now we have the class, we still don't have an object to work with.
So we're going to need to be able to do more here. We do know that a method need only be represented the one time, so let's go ahead and keep our decorator, but modify UberProperty to only store the method reference:
class UberProperty(object):
def __init__(self, method):
self.method = method
It is also not callable, so at the moment nothing is working.
How do we complete the picture? Well, what do we end up with when we create the example class using our new decorator:
class Example(object):
#uberProperty
def x(self):
return defaultX()
print Example.x <__main__.UberProperty object at 0x10e1fb8d0>
print Example().x <__main__.UberProperty object at 0x10e1fb8d0>
in both cases we get back the UberProperty which of course is not a callable, so this isn't of much use.
What we need is some way to dynamically bind the UberProperty instance created by the decorator after the class has been created to an object of the class before that object has been returned to that user for use. Um, yeah, that's an __init__ call, dude.
Let's write up what we want our find result to be first. We're binding an UberProperty to an instance, so an obvious thing to return would be a BoundUberProperty. This is where we'll actually maintain state for the x attribute.
class BoundUberProperty(object):
def __init__(self, obj, uberProperty):
self.obj = obj
self.uberProperty = uberProperty
self.isSet = False
def setValue(self, value):
self.value = value
self.isSet = True
def getValue(self):
return self.value if self.isSet else self.uberProperty.method(self.obj)
def clearValue(self):
del self.value
self.isSet = False
Now we the representation; how do get these on to an object? There are a few approaches, but the easiest one to explain just uses the __init__ method to do that mapping. By the time __init__ is called our decorators have run, so just need to look through the object's __dict__ and update any attributes where the value of the attribute is of type UberProperty.
Now, uber-properties are cool and we'll probably want to use them a lot, so it makes sense to just create a base class that does this for all subclasses. I think you know what the base class is going to be called.
class UberObject(object):
def __init__(self):
for k in dir(self):
v = getattr(self, k)
if isinstance(v, UberProperty):
v = BoundUberProperty(self, v)
setattr(self, k, v)
We add this, change our example to inherit from UberObject, and ...
e = Example()
print e.x -> <__main__.BoundUberProperty object at 0x104604c90>
After modifying x to be:
#uberProperty
def x(self):
return *datetime.datetime.now()*
We can run a simple test:
print e.x.getValue()
print e.x.getValue()
e.x.setValue(datetime.date(2013, 5, 31))
print e.x.getValue()
e.x.clearValue()
print e.x.getValue()
And we get the output we wanted:
2013-05-31 00:05:13.985813
2013-05-31 00:05:13.986290
2013-05-31
2013-05-31 00:05:13.986310
(Gee, I'm working late.)
Note that I have used getValue, setValue, and clearValue here. This is because I haven't yet linked in the means to have these automatically returned.
But I think this is a good place to stop for now, because I'm getting tired. You can also see that the core functionality we wanted is in place; the rest is window dressing. Important usability window dressing, but that can wait until I have a change to update the post.
I'll finish up the example in the next posting by addressing these things:
We need to make sure UberObject's __init__ is always called by subclasses.
So we either force it be called somewhere or we prevent it from being implemented.
We'll see how to do this with a metaclass.
We need to make sure we handle the common case where someone 'aliases'
a function to something else, such as:
class Example(object):
#uberProperty
def x(self):
...
y = x
We need e.x to return e.x.getValue() by default.
What we'll actually see is this is one area where the model fails.
It turns out we'll always need to use a function call to get the value.
But we can make it look like a regular function call and avoid having to use e.x.getValue(). (Doing this one is obvious, if you haven't already fixed it out.)
We need to support setting e.x directly, as in e.x = <newvalue>. We can do this in the parent class too, but we'll need to update our __init__ code to handle it.
Finally, we'll add parameterized attributes. It should be pretty obvious how we'll do this, too.
Here's the code as it exists up to now:
import datetime
class UberObject(object):
def uberSetter(self, value):
print 'setting'
def uberGetter(self):
return self
def __init__(self):
for k in dir(self):
v = getattr(self, k)
if isinstance(v, UberProperty):
v = BoundUberProperty(self, v)
setattr(self, k, v)
class UberProperty(object):
def __init__(self, method):
self.method = method
class BoundUberProperty(object):
def __init__(self, obj, uberProperty):
self.obj = obj
self.uberProperty = uberProperty
self.isSet = False
def setValue(self, value):
self.value = value
self.isSet = True
def getValue(self):
return self.value if self.isSet else self.uberProperty.method(self.obj)
def clearValue(self):
del self.value
self.isSet = False
def uberProperty(f):
return UberProperty(f)
class Example(UberObject):
#uberProperty
def x(self):
return datetime.datetime.now()
[1] I may be behind on whether this is still the case.
I think both have their place. One issue with using #property is that it is hard to extend the behaviour of getters or setters in subclasses using standard class mechanisms. The problem is that the actual getter/setter functions are hidden in the property.
You can actually get hold of the functions, e.g. with
class C(object):
_p = 1
#property
def p(self):
return self._p
#p.setter
def p(self, val):
self._p = val
you can access the getter and setter functions as C.p.fget and C.p.fset, but you can't easily use the normal method inheritance (e.g. super) facilities to extend them. After some digging into the intricacies of super, you can indeed use super in this way:
# Using super():
class D(C):
# Cannot use super(D,D) here to define the property
# since D is not yet defined in this scope.
#property
def p(self):
return super(D,D).p.fget(self)
#p.setter
def p(self, val):
print 'Implement extra functionality here for D'
super(D,D).p.fset(self, val)
# Using a direct reference to C
class E(C):
p = C.p
#p.setter
def p(self, val):
print 'Implement extra functionality here for E'
C.p.fset(self, val)
Using super() is, however, quite clunky, since the property has to be redefined, and you have to use the slightly counter-intuitive super(cls,cls) mechanism to get an unbound copy of p.
Using properties is to me more intuitive and fits better into most code.
Comparing
o.x = 5
ox = o.x
vs.
o.setX(5)
ox = o.getX()
is to me quite obvious which is easier to read. Also properties allows for private variables much easier.
I feel like properties are about letting you get the overhead of writing getters and setters only when you actually need them.
Java Programming culture strongly advise to never give access to properties, and instead, go through getters and setters, and only those which are actually needed.
It's a bit verbose to always write these obvious pieces of code, and notice that 70% of the time they are never replaced by some non-trivial logic.
In Python, people actually care for that kind of overhead, so that you can embrace the following practice :
Do not use getters and setters at first, when if they not needed
Use #property to implement them without changing the syntax of the rest of your code.
I would prefer to use neither in most cases. The problem with properties is that they make the class less transparent. Especially, this is an issue if you were to raise an exception from a setter. For example, if you have an Account.email property:
class Account(object):
#property
def email(self):
return self._email
#email.setter
def email(self, value):
if '#' not in value:
raise ValueError('Invalid email address.')
self._email = value
then the user of the class does not expect that assigning a value to the property could cause an exception:
a = Account()
a.email = 'badaddress'
--> ValueError: Invalid email address.
As a result, the exception may go unhandled, and either propagate too high in the call chain to be handled properly, or result in a very unhelpful traceback being presented to the program user (which is sadly too common in the world of python and java).
I would also avoid using getters and setters:
because defining them for all properties in advance is very time consuming,
makes the amount of code unnecessarily longer, which makes understanding and maintaining the code more difficult,
if you were define them for properties only as needed, the interface of the class would change, hurting all users of the class
Instead of properties and getters/setters I prefer doing the complex logic in well defined places such as in a validation method:
class Account(object):
...
def validate(self):
if '#' not in self.email:
raise ValueError('Invalid email address.')
or a similiar Account.save method.
Note that I am not trying to say that there are no cases when properties are useful, only that you may be better off if you can make your classes simple and transparent enough that you don't need them.
I am surprised that nobody has mentioned that properties are bound methods of a descriptor class, Adam Donohue and NeilenMarais get at exactly this idea in their posts -- that getters and setters are functions and can be used to:
validate
alter data
duck type (coerce type to another type)
This presents a smart way to hide implementation details and code cruft like regular expression, type casts, try .. except blocks, assertions or computed values.
In general doing CRUD on an object may often be fairly mundane but consider the example of data that will be persisted to a relational database. ORM's can hide implementation details of particular SQL vernaculars in the methods bound to fget, fset, fdel defined in a property class that will manage the awful if .. elif .. else ladders that are so ugly in OO code -- exposing the simple and elegant self.variable = something and obviate the details for the developer using the ORM.
If one thinks of properties only as some dreary vestige of a Bondage and Discipline language (i.e. Java) they are missing the point of descriptors.
In complex projects I prefer using read-only properties (or getters) with explicit setter function:
class MyClass(object):
...
#property
def my_attr(self):
...
def set_my_attr(self, value):
...
In long living projects debugging and refactoring takes more time than writing the code itself. There are several downsides for using #property.setter that makes debugging even harder:
1) python allows creating new attributes for an existing object. This makes a following misprint very hard to track:
my_object.my_atttr = 4.
If your object is a complicated algorithm then you will spend quite some time trying to find out why it doesn't converge (notice an extra 't' in the line above)
2) setter sometimes might evolve to a complicated and slow method (e.g. hitting a database). It would be quite hard for another developer to figure out why the following function is very slow. He might spend a lot of time on profiling do_something() method, while my_object.my_attr = 4. is actually the cause of slowdown:
def slow_function(my_object):
my_object.my_attr = 4.
my_object.do_something()
Both #property and traditional getters and setters have their advantages. It depends on your use case.
Advantages of #property
You don't have to change the interface while changing the implementation of data access. When your project is small, you probably want to use direct attribute access to access a class member. For example, let's say you have an object foo of type Foo, which has a member num. Then you can simply get this member with num = foo.num. As your project grows, you may feel like there needs to be some checks or debugs on the simple attribute access. Then you can do that with a #property within the class. The data access interface remains the same so that there is no need to modify client code.
Cited from PEP-8:
For simple public data attributes, it is best to expose just the attribute name, without complicated accessor/mutator methods. Keep in mind that Python provides an easy path to future enhancement, should you find that a simple data attribute needs to grow functional behavior. In that case, use properties to hide functional implementation behind simple data attribute access syntax.
Using #property for data access in Python is regarded as Pythonic:
It can strengthen your self-identification as a Python (not Java) programmer.
It can help your job interview if your interviewer thinks Java-style getters and setters are anti-patterns.
Advantages of traditional getters and setters
Traditional getters and setters allow for more complicated data access than simple attribute access. For example, when you are setting a class member, sometimes you need a flag indicating where you would like to force this operation even if something doesn't look perfect. While it is not obvious how to augment a direct member access like foo.num = num, You can easily augment your traditional setter with an additional force parameter:
def Foo:
def set_num(self, num, force=False):
...
Traditional getters and setters make it explicit that a class member access is through a method. This means:
What you get as the result may not be the same as what is exactly stored within that class.
Even if the access looks like a simple attribute access, the performance can vary greatly from that.
Unless your class users expect a #property hiding behind every attribute access statement, making such things explicit can help minimize your class users surprises.
As mentioned by #NeilenMarais and in this post, extending traditional getters and setters in subclasses is easier than extending properties.
Traditional getters and setters have been widely used for a long time in different languages. If you have people from different backgrounds in your team, they look more familiar than #property. Also, as your project grows, if you may need to migrate from Python to another language that doesn't have #property, using traditional getters and setters would make the migration smoother.
Caveats
Neither #property nor traditional getters and setters makes the class member private, even if you use double underscore before its name:
class Foo:
def __init__(self):
self.__num = 0
#property
def num(self):
return self.__num
#num.setter
def num(self, num):
self.__num = num
def get_num(self):
return self.__num
def set_num(self, num):
self.__num = num
foo = Foo()
print(foo.num) # output: 0
print(foo.get_num()) # output: 0
print(foo._Foo__num) # output: 0
Here is an excerpts from "Effective Python: 90 Specific Ways to Write Better Python" (Amazing book. I highly recommend it).
Things to Remember
✦ Define new class interfaces using simple public attributes and avoid
defining setter and getter methods.
✦ Use #property to define special behavior when attributes are
accessed on your objects, if necessary.
✦ Follow the rule of least surprise and avoid odd side effects in your
#property methods.
✦ Ensure that #property methods are fast; for slow or complex
work—especially involving I/O or causing side effects—use normal
methods instead.
One advanced but common use of #property is transitioning what was
once a simple numerical attribute into an on-the-fly calculation. This
is extremely helpful because it lets you migrate all existing usage of
a class to have new behaviors without requiring any of the call sites
to be rewritten (which is especially important if there’s calling code
that you don’t control). #property also provides an important stopgap
for improving interfaces over time.
I especially like #property because it lets you make incremental
progress toward a better data model over time.
#property is a tool to
help you address problems you’ll come across in real-world code. Don’t
overuse it. When you find yourself repeatedly extending #property
methods, it’s probably time to refactor your class instead of further
paving over your code’s poor design.
✦ Use #property to give existing instance attributes
new functionality.
✦ Make incremental progress toward better data
models by using #property.
✦ Consider refactoring a class and all call
sites when you find yourself using #property too heavily.

Categories