I want to take the difference between lists x and y:
>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 3, 5, 7, 9]
>>> x - y
# should return [0, 2, 4, 6, 8]
Use a list comprehension to compute the difference while maintaining the original order from x:
[item for item in x if item not in y]
If you don't need list properties (e.g. ordering), use a set difference, as the other answers suggest:
list(set(x) - set(y))
To allow x - y infix syntax, override __sub__ on a class inheriting from list:
class MyList(list):
def __init__(self, *args):
super(MyList, self).__init__(args)
def __sub__(self, other):
return self.__class__(*[item for item in self if item not in other])
Usage:
x = MyList(1, 2, 3, 4)
y = MyList(2, 5, 2)
z = x - y
Use set difference
>>> z = list(set(x) - set(y))
>>> z
[0, 8, 2, 4, 6]
Or you might just have x and y be sets so you don't have to do any conversions.
if duplicate and ordering items are problem :
[i for i in a if not i in b or b.remove(i)]
a = [1,2,3,3,3,3,4]
b = [1,3]
result: [2, 3, 3, 3, 4]
That is a "set subtraction" operation. Use the set data structure for that.
In Python 2.7:
x = {1,2,3,4,5,6,7,8,9,0}
y = {1,3,5,7,9}
print x - y
Output:
>>> print x - y
set([0, 8, 2, 4, 6])
For many use cases, the answer you want is:
ys = set(y)
[item for item in x if item not in ys]
This is a hybrid between aaronasterling's answer and quantumSoup's answer.
aaronasterling's version does len(y) item comparisons for each element in x, so it takes quadratic time. quantumSoup's version uses sets, so it does a single constant-time set lookup for each element in x—but, because it converts both x and y into sets, it loses the order of your elements.
By converting only y into a set, and iterating x in order, you get the best of both worlds—linear time, and order preservation.*
However, this still has a problem from quantumSoup's version: It requires your elements to be hashable. That's pretty much built into the nature of sets.** If you're trying to, e.g., subtract a list of dicts from another list of dicts, but the list to subtract is large, what do you do?
If you can decorate your values in some way that they're hashable, that solves the problem. For example, with a flat dictionary whose values are themselves hashable:
ys = {tuple(item.items()) for item in y}
[item for item in x if tuple(item.items()) not in ys]
If your types are a bit more complicated (e.g., often you're dealing with JSON-compatible values, which are hashable, or lists or dicts whose values are recursively the same type), you can still use this solution. But some types just can't be converted into anything hashable.
If your items aren't, and can't be made, hashable, but they are comparable, you can at least get log-linear time (O(N*log M), which is a lot better than the O(N*M) time of the list solution, but not as good as the O(N+M) time of the set solution) by sorting and using bisect:
ys = sorted(y)
def bisect_contains(seq, item):
index = bisect.bisect(seq, item)
return index < len(seq) and seq[index] == item
[item for item in x if bisect_contains(ys, item)]
If your items are neither hashable nor comparable, then you're stuck with the quadratic solution.
* Note that you could also do this by using a pair of OrderedSet objects, for which you can find recipes and third-party modules. But I think this is simpler.
** The reason set lookups are constant time is that all it has to do is hash the value and see if there's an entry for that hash. If it can't hash the value, this won't work.
If the lists allow duplicate elements, you can use Counter from collections:
from collections import Counter
result = list((Counter(x)-Counter(y)).elements())
If you need to preserve the order of elements from x:
result = [ v for c in [Counter(y)] for v in x if not c[v] or c.subtract([v]) ]
The other solutions have one of a few problems:
They don't preserve order, or
They don't remove a precise count of elements, e.g. for x = [1, 2, 2, 2] and y = [2, 2] they convert y to a set, and either remove all matching elements (leaving [1] only) or remove one of each unique element (leaving [1, 2, 2]), when the proper behavior would be to remove 2 twice, leaving [1, 2], or
They do O(m * n) work, where an optimal solution can do O(m + n) work
Alain was on the right track with Counter to solve #2 and #3, but that solution will lose ordering. The solution that preserves order (removing the first n copies of each value for n repetitions in the list of values to remove) is:
from collections import Counter
x = [1,2,3,4,3,2,1]
y = [1,2,2]
remaining = Counter(y)
out = []
for val in x:
if remaining[val]:
remaining[val] -= 1
else:
out.append(val)
# out is now [3, 4, 3, 1], having removed the first 1 and both 2s.
Try it online!
To make it remove the last copies of each element, just change the for loop to for val in reversed(x): and add out.reverse() immediately after exiting the for loop.
Constructing the Counter is O(n) in terms of y's length, iterating x is O(n) in terms of x's length, and Counter membership testing and mutation are O(1), while list.append is amortized O(1) (a given append can be O(n), but for many appends, the overall big-O averages O(1) since fewer and fewer of them require a reallocation), so the overall work done is O(m + n).
You can also test for to determine if there were any elements in y that were not removed from x by testing:
remaining = +remaining # Removes all keys with zero counts from Counter
if remaining:
# remaining contained elements with non-zero counts
Looking up values in sets are faster than looking them up in lists:
[item for item in x if item not in set(y)]
I believe this will scale slightly better than:
[item for item in x if item not in y]
Both preserve the order of the lists.
We can use set methods as well to find the difference between two list
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
y = [1, 3, 5, 7, 9]
list(set(x).difference(y))
[0, 2, 4, 6, 8]
Try this.
def subtract_lists(a, b):
""" Subtracts two lists. Throws ValueError if b contains items not in a """
# Terminate if b is empty, otherwise remove b[0] from a and recurse
return a if len(b) == 0 else [a[:i] + subtract_lists(a[i+1:], b[1:])
for i in [a.index(b[0])]][0]
>>> x = [1,2,3,4,5,6,7,8,9,0]
>>> y = [1,3,5,7,9]
>>> subtract_lists(x,y)
[2, 4, 6, 8, 0]
>>> x = [1,2,3,4,5,6,7,8,9,0,9]
>>> subtract_lists(x,y)
[2, 4, 6, 8, 0, 9] #9 is only deleted once
>>>
The answer provided by #aaronasterling looks good, however, it is not compatible with the default interface of list: x = MyList(1, 2, 3, 4) vs x = MyList([1, 2, 3, 4]). Thus, the below code can be used as a more python-list friendly:
class MyList(list):
def __init__(self, *args):
super(MyList, self).__init__(*args)
def __sub__(self, other):
return self.__class__([item for item in self if item not in other])
Example:
x = MyList([1, 2, 3, 4])
y = MyList([2, 5, 2])
z = x - y
from collections import Counter
y = Counter(y)
x = Counter(x)
print(list(x-y))
Let:
>>> xs = [1, 2, 3, 4, 3, 2, 1]
>>> ys = [1, 3, 3]
Keep each unique item only once xs - ys == {2, 4}
Take the set difference:
>>> set(xs) - set(ys)
{2, 4}
Remove all occurrences xs - ys == [2, 4, 2]
>>> [x for x in xs if x not in ys]
[2, 4, 2]
If ys is large, convert only1 ys into a set for better performance:
>>> ys_set = set(ys)
>>> [x for x in xs if x not in ys_set]
[2, 4, 2]
Only remove same number of occurrences xs - ys == [2, 4, 2, 1]
from collections import Counter, defaultdict
def diff(xs, ys):
counter = Counter(ys)
for x in xs:
if counter[x] > 0:
counter[x] -= 1
continue
yield x
>>> list(diff(xs, ys))
[2, 4, 2, 1]
1 Converting xs to set and taking the set difference is unnecessary (and slower, as well as order-destroying) since we only need to iterate once over xs.
This example subtracts two lists:
# List of pairs of points
list = []
list.append([(602, 336), (624, 365)])
list.append([(635, 336), (654, 365)])
list.append([(642, 342), (648, 358)])
list.append([(644, 344), (646, 356)])
list.append([(653, 337), (671, 365)])
list.append([(728, 13), (739, 32)])
list.append([(756, 59), (767, 79)])
itens_to_remove = []
itens_to_remove.append([(642, 342), (648, 358)])
itens_to_remove.append([(644, 344), (646, 356)])
print("Initial List Size: ", len(list))
for a in itens_to_remove:
for b in list:
if a == b :
list.remove(b)
print("Final List Size: ", len(list))
list1 = ['a', 'c', 'a', 'b', 'k']
list2 = ['a', 'a', 'a', 'a', 'b', 'c', 'c', 'd', 'e', 'f']
for e in list1:
try:
list2.remove(e)
except ValueError:
print(f'{e} not in list')
list2
# ['a', 'a', 'c', 'd', 'e', 'f']
This will change list2. if you want to protect list2 just copy it and use the copy of list2 in this code.
def listsubtraction(parent,child):
answer=[]
for element in parent:
if element not in child:
answer.append(element)
return answer
I think this should work. I am a beginner so pardon me for any mistakes
Related
So heres my code:
item = [0,1,2,3,4,5,6,7,8,9]
z = [] # list of integers
for item in z:
if item not in z:
print item
z contains a list of integers. I want to compare item to z and print out the numbers that are not in z when compared to item.
I can print the elements that are in z when compared not item, but when I try and do the opposite using the code above nothing prints.
Any help?
Your code is not doing what I think you think it is doing. The line for item in z: will iterate through z, each time making item equal to one single element of z. The original item list is therefore overwritten before you've done anything with it.
I think you want something like this:
item = [0,1,2,3,4,5,6,7,8,9]
for element in item:
if element not in z:
print(element)
But you could easily do this like:
[x for x in item if x not in z]
or (if you don't mind losing duplicates of non-unique elements):
set(item) - set(z)
>> items = [1,2,3,4]
>> Z = [3,4,5,6]
>> print list(set(items)-set(Z))
[1, 2]
Using list comprehension:
print [x for x in item if x not in Z]
or using filter function :
filter(lambda x: x not in Z, item)
Using set in any form may create a bug if the list being checked contains non-unique elements, e.g.:
print item
Out[39]: [0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print Z
Out[40]: [3, 4, 5, 6]
set(item) - set(Z)
Out[41]: {0, 1, 2, 7, 8, 9}
vs list comprehension as above
print [x for x in item if x not in Z]
Out[38]: [0, 1, 1, 2, 7, 8, 9]
or filter function:
filter(lambda x: x not in Z, item)
Out[38]: [0, 1, 1, 2, 7, 8, 9]
list1 = [1,2,3,4]; list2 = [0,3,3,6]
print set(list2) - set(list1)
If you run a loop taking items from z, how do you expect them not to be in z? IMHO it would make more sense comparing items from a different list to z.
No, z is undefined. item contains a list of integers.
I think what you're trying to do is this:
#z defined elsewhere
item = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for i in item:
if i not in z: print i
As has been stated in other answers, you may want to try using sets.
>>> item = set([0,1,2,3,4,5,6,7,8,9])
>>> z = set([2,3,4])
>>> print item - z
set([0, 1, 5, 6, 7, 8, 9])
Your code is a no-op. By the definition of the loop, "item" has to be in Z. A "For ... in" loop in Python means "Loop though the list called 'z', each time you loop, give me the next item in the list, and call it 'item'"
http://docs.python.org/tutorial/controlflow.html#for-statements
I think your confusion arises from the fact that you're using the variable name "item" twice, to mean two different things.
You are reassigning item to the values in z as you iterate through z. So the first time in your for loop, item = 0, next item = 1, etc... You are never checking one list against the other.
To do it very explicitly:
>>> item = [0,1,2,3,4,5,6,7,8,9]
>>> z = [0,1,2,3,4,5,6,7]
>>>
>>> for elem in item:
... if elem not in z:
... print elem
...
8
9
In the case where item and z are sorted iterators, we can reduce the complexity from O(n^2) to O(n+m) by doing this
def iexclude(sorted_iterator, exclude_sorted_iterator):
next_val = next(exclude_sorted_iterator)
for item in sorted_iterator:
try:
while next_val < item:
next_val = next(exclude_sorted_iterator)
continue
if item == next_val:
continue
except StopIteration:
pass
yield item
If the two are iterators, we also have the opportunity to reduce the memory footprint not storing z (exclude_sorted_iterator) as a list.
If the lists are sorted and you know the elements of the checking list are in the base list - you can do a more optimal O(n) solution by using two pointers (where n will be the length of the base_list:
base_list = [0, 1, 2, 3, 4, 5, 6, 7, 8]
checking_list = [1, 3, 5]
expected_return = [0, 2, 4, 6, 7, 8]
j = 0
i = 0
elements_not_in_checking_list = []
while i < len(base_list):
if j < len(checking_list) and base_list[i] == checking_list[j]:
i += 1
j += 1
else:
elements_not_in_checking_list.append(base_list[i])
i += 1
Many of the solutions already posted here will not preserve the original ordering of the elements (because sets are unordered) or are inefficient (because linear search in a list is slower than a lookup in a set).
You can make a set of elements to remove upfront, and then use a list comprehension to retain only the elements which aren't in the set:
items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
z = [3, 4, 5, 6]
set_z = set(z)
result = [e for e in items if e not in set_z]
Then, result contains:
[0, 1, 2, 7, 8, 9]
What is the most efficient way to rotate a list in python?
Right now I have something like this:
>>> def rotate(l, n):
... return l[n:] + l[:n]
...
>>> l = [1,2,3,4]
>>> rotate(l,1)
[2, 3, 4, 1]
>>> rotate(l,2)
[3, 4, 1, 2]
>>> rotate(l,0)
[1, 2, 3, 4]
>>> rotate(l,-1)
[4, 1, 2, 3]
Is there a better way?
A collections.deque is optimized for pulling and pushing on both ends. They even have a dedicated rotate() method.
from collections import deque
items = deque([1, 2])
items.append(3) # deque == [1, 2, 3]
items.rotate(1) # The deque is now: [3, 1, 2]
items.rotate(-1) # Returns deque to original state: [1, 2, 3]
item = items.popleft() # deque == [2, 3]
What about just using pop(0)?
list.pop([i])
Remove the item at the given position in the list, and return it. If
no index is specified, a.pop() removes and returns the last item in
the list. (The square brackets around the i in the method signature
denote that the parameter is optional, not that you should type square
brackets at that position. You will see this notation frequently in
the Python Library Reference.)
Numpy can do this using the roll command:
>>> import numpy
>>> a=numpy.arange(1,10) #Generate some data
>>> numpy.roll(a,1)
array([9, 1, 2, 3, 4, 5, 6, 7, 8])
>>> numpy.roll(a,-1)
array([2, 3, 4, 5, 6, 7, 8, 9, 1])
>>> numpy.roll(a,5)
array([5, 6, 7, 8, 9, 1, 2, 3, 4])
>>> numpy.roll(a,9)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
It depends on what you want to have happen when you do this:
>>> shift([1,2,3], 14)
You might want to change your:
def shift(seq, n):
return seq[n:]+seq[:n]
to:
def shift(seq, n):
n = n % len(seq)
return seq[n:] + seq[:n]
Simplest way I can think of:
a.append(a.pop(0))
Just some notes on timing:
If you're starting with a list, l.append(l.pop(0)) is the fastest method you can use. This can be shown with time complexity alone:
deque.rotate is O(k) (k=number of elements)
list to deque conversion is O(n)
list.append and list.pop are both O(1)
So if you are starting with deque objects, you can deque.rotate() at the cost of O(k). But, if the starting point is a list, the time complexity of using deque.rotate() is O(n). l.append(l.pop(0) is faster at O(1).
Just for the sake of illustration, here are some sample timings on 1M iterations:
Methods which require type conversion:
deque.rotate with deque object: 0.12380790710449219 seconds (fastest)
deque.rotate with type conversion: 6.853878974914551 seconds
np.roll with nparray: 6.0491721630096436 seconds
np.roll with type conversion: 27.558452129364014 seconds
List methods mentioned here:
l.append(l.pop(0)): 0.32483696937561035 seconds (fastest)
"shiftInPlace": 4.819645881652832 seconds
...
Timing code used is below.
collections.deque
Showing that creating deques from lists is O(n):
from collections import deque
import big_o
def create_deque_from_list(l):
return deque(l)
best, others = big_o.big_o(create_deque_from_list, lambda n: big_o.datagen.integers(n, -100, 100))
print best
# --> Linear: time = -2.6E-05 + 1.8E-08*n
If you need to create deque objects:
1M iterations # 6.853878974914551 seconds
setup_deque_rotate_with_create_deque = """
from collections import deque
import random
l = [random.random() for i in range(1000)]
"""
test_deque_rotate_with_create_deque = """
dl = deque(l)
dl.rotate(-1)
"""
timeit.timeit(test_deque_rotate_with_create_deque, setup_deque_rotate_with_create_deque)
If you already have deque objects:
1M iterations # 0.12380790710449219 seconds
setup_deque_rotate_alone = """
from collections import deque
import random
l = [random.random() for i in range(1000)]
dl = deque(l)
"""
test_deque_rotate_alone= """
dl.rotate(-1)
"""
timeit.timeit(test_deque_rotate_alone, setup_deque_rotate_alone)
np.roll
If you need to create nparrays
1M iterations # 27.558452129364014 seconds
setup_np_roll_with_create_npa = """
import numpy as np
import random
l = [random.random() for i in range(1000)]
"""
test_np_roll_with_create_npa = """
np.roll(l,-1) # implicit conversion of l to np.nparray
"""
If you already have nparrays:
1M iterations # 6.0491721630096436 seconds
setup_np_roll_alone = """
import numpy as np
import random
l = [random.random() for i in range(1000)]
npa = np.array(l)
"""
test_roll_alone = """
np.roll(npa,-1)
"""
timeit.timeit(test_roll_alone, setup_np_roll_alone)
"Shift in place"
Requires no type conversion
1M iterations # 4.819645881652832 seconds
setup_shift_in_place="""
import random
l = [random.random() for i in range(1000)]
def shiftInPlace(l, n):
n = n % len(l)
head = l[:n]
l[:n] = []
l.extend(head)
return l
"""
test_shift_in_place="""
shiftInPlace(l,-1)
"""
timeit.timeit(test_shift_in_place, setup_shift_in_place)
l.append(l.pop(0))
Requires no type conversion
1M iterations # 0.32483696937561035
setup_append_pop="""
import random
l = [random.random() for i in range(1000)]
"""
test_append_pop="""
l.append(l.pop(0))
"""
timeit.timeit(test_append_pop, setup_append_pop)
I also got interested in this and compared some of the suggested solutions with perfplot (a small project of mine).
It turns out that Kelly Bundy's suggestion
tmp = data[shift:]
tmp += data[:shift]
performs very well for all shifts.
Essentially, perfplot performs the shift for increasing large arrays and measures the time. Here are the results:
shift = 1:
shift = 100:
Code to reproduce the plot:
import numpy
import perfplot
import collections
shift = 100
def list_append(data):
return data[shift:] + data[:shift]
def list_append2(data):
tmp = data[shift:]
tmp += data[:shift]
return tmp
def shift_concatenate(data):
return numpy.concatenate([data[shift:], data[:shift]])
def roll(data):
return numpy.roll(data, -shift)
def collections_deque(data):
items = collections.deque(data)
items.rotate(-shift)
return items
def pop_append(data):
data = data.copy()
for _ in range(shift):
data.append(data.pop(0))
return data
b = perfplot.bench(
setup=lambda n: numpy.random.rand(n).tolist(),
kernels=[
list_append,
list_append2,
roll,
shift_concatenate,
collections_deque,
pop_append,
],
n_range=[2 ** k for k in range(7, 20)],
xlabel="len(data)",
)
b.show()
b.save("shift100.png")
If you just want to iterate over these sets of elements rather than construct a separate data structure, consider using iterators to construct a generator expression:
def shift(l,n):
return itertools.islice(itertools.cycle(l),n,n+len(l))
>>> list(shift([1,2,3],1))
[2, 3, 1]
This also depends on if you want to shift the list in place (mutating it), or if you want the function to return a new list. Because, according to my tests, something like this is at least twenty times faster than your implementation that adds two lists:
def shiftInPlace(l, n):
n = n % len(l)
head = l[:n]
l[:n] = []
l.extend(head)
return l
In fact, even adding a l = l[:] to the top of that to operate on a copy of the list passed in is still twice as fast.
Various implementations with some timing at http://gist.github.com/288272
For an immutable implementation, you could use something like this:
def shift(seq, n):
shifted_seq = []
for i in range(len(seq)):
shifted_seq.append(seq[(i-n) % len(seq)])
return shifted_seq
print shift([1, 2, 3, 4], 1)
Possibly a ringbuffer is more suitable. It is not a list, although it is likely that it can behave enough like a list for your purposes.
The problem is that the efficiency of a shift on a list is O(n), which becomes significant for large enough lists.
Shifting in a ringbuffer is simply updating the head location which is O(1)
If efficiency is your goal, (cycles? memory?) you may be better off looking at the array module: http://docs.python.org/library/array.html
Arrays do not have the overhead of lists.
As far as pure lists go though, what you have is about as good as you can hope to do.
I think you are looking for this:
a.insert(0, x)
Another alternative:
def move(arr, n):
return [arr[(idx-n) % len(arr)] for idx,_ in enumerate(arr)]
def solution(A, K):
if len(A) == 0:
return A
K = K % len(A)
return A[-K:] + A[:-K]
# use case
A = [1, 2, 3, 4, 5, 6]
K = 3
print(solution(A, K))
For example, given
A = [3, 8, 9, 7, 6]
K = 3
the function should return [9, 7, 6, 3, 8]. Three rotations were made:
[3, 8, 9, 7, 6] -> [6, 3, 8, 9, 7]
[6, 3, 8, 9, 7] -> [7, 6, 3, 8, 9]
[7, 6, 3, 8, 9] -> [9, 7, 6, 3, 8]
For another example, given
A = [0, 0, 0]
K = 1
the function should return [0, 0, 0]
Given
A = [1, 2, 3, 4]
K = 4
the function should return [1, 2, 3, 4]
I take this cost model as a reference:
http://scripts.mit.edu/~6.006/fall07/wiki/index.php?title=Python_Cost_Model
Your method of slicing the list and concatenating two sub-lists are linear-time operations. I would suggest using pop, which is a constant-time operation, e.g.:
def shift(list, n):
for i in range(n)
temp = list.pop()
list.insert(0, temp)
I don't know if this is 'efficient', but it also works:
x = [1,2,3,4]
x.insert(0,x.pop())
EDIT: Hello again, I just found a big problem with this solution!
Consider the following code:
class MyClass():
def __init__(self):
self.classlist = []
def shift_classlist(self): # right-shift-operation
self.classlist.insert(0, self.classlist.pop())
if __name__ == '__main__':
otherlist = [1,2,3]
x = MyClass()
# this is where kind of a magic link is created...
x.classlist = otherlist
for ii in xrange(2): # just to do it 2 times
print '\n\n\nbefore shift:'
print ' x.classlist =', x.classlist
print ' otherlist =', otherlist
x.shift_classlist()
print 'after shift:'
print ' x.classlist =', x.classlist
print ' otherlist =', otherlist, '<-- SHOULD NOT HAVE BIN CHANGED!'
The shift_classlist() method executes the same code as my x.insert(0,x.pop())-solution, otherlist is a list indipendent from the class. After passing the content of otherlist to the MyClass.classlist list, calling the shift_classlist() also changes the otherlist list:
CONSOLE OUTPUT:
before shift:
x.classlist = [1, 2, 3]
otherlist = [1, 2, 3]
after shift:
x.classlist = [3, 1, 2]
otherlist = [3, 1, 2] <-- SHOULD NOT HAVE BIN CHANGED!
before shift:
x.classlist = [3, 1, 2]
otherlist = [3, 1, 2]
after shift:
x.classlist = [2, 3, 1]
otherlist = [2, 3, 1] <-- SHOULD NOT HAVE BIN CHANGED!
I use Python 2.7. I don't know if thats a bug, but I think it's more likely that I missunderstood something here.
Does anyone of you know why this happens?
The following method is O(n) in place with constant auxiliary memory:
def rotate(arr, shift):
pivot = shift % len(arr)
dst = 0
src = pivot
while (dst != src):
arr[dst], arr[src] = arr[src], arr[dst]
dst += 1
src += 1
if src == len(arr):
src = pivot
elif dst == pivot:
pivot = src
Note that in python, this approach is horribly inefficient compared to others as it can't take advantage of native implementations of any of the pieces.
I have similar thing. For example, to shift by two...
def Shift(*args):
return args[len(args)-2:]+args[:len(args)-2]
I think you've got the most efficient way
def shift(l,n):
n = n % len(l)
return l[-U:] + l[:-U]
Jon Bentley in Programming Pearls (Column 2) describes an elegant and efficient algorithm for rotating an n-element vector x left by i positions:
Let's view the problem as transforming the array ab into the array
ba, but let's also assume that we have a function that reverses the
elements in a specified portion of the array. Starting with ab, we
reverse a to get arb, reverse b to get
arbr, and then reverse the whole
thing to get (arbr)r,
which is exactly ba. This results in the following code for
rotation:
reverse(0, i-1)
reverse(i, n-1)
reverse(0, n-1)
This can be translated to Python as follows:
def rotate(x, i):
i %= len(x)
x[:i] = reversed(x[:i])
x[i:] = reversed(x[i:])
x[:] = reversed(x)
return x
Demo:
>>> def rotate(x, i):
... i %= len(x)
... x[:i] = reversed(x[:i])
... x[i:] = reversed(x[i:])
... x[:] = reversed(x)
... return x
...
>>> rotate(list('abcdefgh'), 1)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
>>> rotate(list('abcdefgh'), 3)
['d', 'e', 'f', 'g', 'h', 'a', 'b', 'c']
>>> rotate(list('abcdefgh'), 8)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> rotate(list('abcdefgh'), 9)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
I was looking for in place solution to this problem. This solves the purpose in O(k).
def solution(self, list, k):
r=len(list)-1
i = 0
while i<k:
temp = list[0]
list[0:r] = list[1:r+1]
list[r] = temp
i+=1
return list
What is the use case? Often, we don't actually need a fully shifted array --we just need to access a handful of elements in the shifted array.
Getting Python slices is runtime O(k) where k is the slice, so a sliced rotation is runtime N. The deque rotation command is also O(k). Can we do better?
Consider an array that is extremely large (let's say, so large it would be computationally slow to slice it). An alternative solution would be to leave the original array alone and simply calculate the index of the item that would have existed in our desired index after a shift of some kind.
Accessing a shifted element thus becomes O(1).
def get_shifted_element(original_list, shift_to_left, index_in_shifted):
# back calculate the original index by reversing the left shift
idx_original = (index_in_shifted + shift_to_left) % len(original_list)
return original_list[idx_original]
my_list = [1, 2, 3, 4, 5]
print get_shifted_element(my_list, 1, 2) ----> outputs 4
print get_shifted_element(my_list, -2, 3) -----> outputs 2
Following function copies sent list to a templist, so that pop function does not affect the original list:
def shift(lst, n, toreverse=False):
templist = []
for i in lst: templist.append(i)
if toreverse:
for i in range(n): templist = [templist.pop()]+templist
else:
for i in range(n): templist = templist+[templist.pop(0)]
return templist
Testing:
lst = [1,2,3,4,5]
print("lst=", lst)
print("shift by 1:", shift(lst,1))
print("lst=", lst)
print("shift by 7:", shift(lst,7))
print("lst=", lst)
print("shift by 1 reverse:", shift(lst,1, True))
print("lst=", lst)
print("shift by 7 reverse:", shift(lst,7, True))
print("lst=", lst)
Output:
lst= [1, 2, 3, 4, 5]
shift by 1: [2, 3, 4, 5, 1]
lst= [1, 2, 3, 4, 5]
shift by 7: [3, 4, 5, 1, 2]
lst= [1, 2, 3, 4, 5]
shift by 1 reverse: [5, 1, 2, 3, 4]
lst= [1, 2, 3, 4, 5]
shift by 7 reverse: [4, 5, 1, 2, 3]
lst= [1, 2, 3, 4, 5]
For a list X = ['a', 'b', 'c', 'd', 'e', 'f'] and a desired shift value of shift less than list length, we can define the function list_shift() as below
def list_shift(my_list, shift):
assert shift < len(my_list)
return my_list[shift:] + my_list[:shift]
Examples,
list_shift(X,1) returns ['b', 'c', 'd', 'e', 'f', 'a']
list_shift(X,3) returns ['d', 'e', 'f', 'a', 'b', 'c']
I'm "old school" I define efficiency in lowest latency, processor time and memory usage, our nemesis are the bloated libraries. So there is exactly one right way:
def rotatel(nums):
back = nums.pop(0)
nums.append(back)
return nums
Below is an efficient algorithm that doesn't require the use of any additional data structure:
def rotate(nums: List[int], k: int):
k = k%len(nums)
l, r = 0, len(nums)-1
while (l<r):
nums[l], nums[r]= nums[r], nums[l]
l,r=l+1,r-1
l,r = 0, k-1
while (l<r):
nums[l], nums[r]=nums[r], nums[l]
l,r=l+1,r-1
l,r=k,len(nums)-1
while (l<r):
nums[l], nums[r]=nums[r], nums[l]
l,r=l+1,r-1
I have two lists of the same length which contains a variety of different elements. I'm trying to compare them to find the number of elements which exist in both lists, but have different indexes.
Here are some example inputs/outputs to demonstrate what I mean:
>>> compare([1, 2, 3, 4], [4, 3, 2, 1])
4
>>> compare([1, 2, 3], [1, 2, 3])
0
# Each item in the first list has the same index in the other
>>> compare([1, 2, 4, 4], [1, 4, 4, 2])
2
# The 3rd '4' in both lists don't count, since they have the same indexes
>>> compare([1, 2, 3, 3], [5, 3, 5, 5])
1
# Duplicates don't count
The lists are always the same size.
This is the algorithm I have so far:
def compare(list1, list2):
# Eliminate any direct matches
list1 = [a for (a, b) in zip(list1, list2) if a != b]
list2 = [b for (a, b) in zip(list1, list2) if a != b]
out = 0
for possible in list1:
if possible in list2:
index = list2.index(possible)
del list2[index]
out += 1
return out
Is there a more concise and eloquent way to do the same thing?
This python function does hold for the examples you provided:
def compare(list1, list2):
D = {e:i for i, e in enumerate(list1)}
return len(set(e for i, e in enumerate(list2) if D.get(e) not in (None, i)))
since duplicates don't count, you can use sets to find only the elements in each list. A set only holds unique elements. Then select only the elements shared between both using list.index
def compare(l1, l2):
s1, s2 = set(l1), set(l2)
shared = s1 & s2 # intersection, only the elements in both
return len([e for e in shared if l1.index(e) != l2.index(e)])
You can actually bring this down to a one-liner if you want
def compare(l1, l2):
return len([e for e in set(l1) & set(l2) if l1.index(e) != l2.index(e)])
Alternative:
Functionally you can use the reduce builtin (in python3, you have to do from functools import reduce first). This avoids construction of the list which saves excess memory usage. It uses a lambda function to do the work.
def compare(l1, l2):
return reduce(lambda acc, e: acc + int(l1.index(e) != l2.index(e)),
set(l1) & set(l2), 0)
A brief explanation:
reduce is a functional programming contruct that reduces an iterable to a single item traditionally. Here we use reduce to reduce the set intersection to a single value.
lambda functions are anonymous functions. Saying lambda x, y: x + 1 is like saying def func(x, y): return x + y except that the function has no name. reduce takes a function as its first argument. The first argument a the lambda receives when used with reduce is the result of the previous function, the accumulator.
set(l1) & set(l2) is a set consisting of unique elements that are in both l1 and l2. It is iterated over, and each element is taken out one at a time and used as the second argument to the lambda function.
0 is the initial value for the accumulator. We use this since we assume there are 0 shared elements with different indices to start.
I dont claim it is the simplest answer, but it is a one-liner.
import numpy as np
import itertools
l1 = [1, 2, 3, 4]
l2 = [1, 3, 2, 4]
print len(np.unique(list(itertools.chain.from_iterable([[a,b] for a,b in zip(l1,l2) if a!= b]))))
I explain:
[[a,b] for a,b in zip(l1,l2) if a!= b]
is the list of couples from zip(l1,l2) with different items. Number of elements in this list is number of positions where items at same position differ between the two lists.
Then, list(itertools.chain.from_iterable() is for merging component lists of a list. For instance :
>>> list(itertools.chain.from_iterable([[3,2,5],[5,6],[7,5,3,1]]))
[3, 2, 5, 5, 6, 7, 5, 3, 1]
Then, discard duplicates with np.unique(), and take len().
What is the most efficient way to rotate a list in python?
Right now I have something like this:
>>> def rotate(l, n):
... return l[n:] + l[:n]
...
>>> l = [1,2,3,4]
>>> rotate(l,1)
[2, 3, 4, 1]
>>> rotate(l,2)
[3, 4, 1, 2]
>>> rotate(l,0)
[1, 2, 3, 4]
>>> rotate(l,-1)
[4, 1, 2, 3]
Is there a better way?
A collections.deque is optimized for pulling and pushing on both ends. They even have a dedicated rotate() method.
from collections import deque
items = deque([1, 2])
items.append(3) # deque == [1, 2, 3]
items.rotate(1) # The deque is now: [3, 1, 2]
items.rotate(-1) # Returns deque to original state: [1, 2, 3]
item = items.popleft() # deque == [2, 3]
What about just using pop(0)?
list.pop([i])
Remove the item at the given position in the list, and return it. If
no index is specified, a.pop() removes and returns the last item in
the list. (The square brackets around the i in the method signature
denote that the parameter is optional, not that you should type square
brackets at that position. You will see this notation frequently in
the Python Library Reference.)
Numpy can do this using the roll command:
>>> import numpy
>>> a=numpy.arange(1,10) #Generate some data
>>> numpy.roll(a,1)
array([9, 1, 2, 3, 4, 5, 6, 7, 8])
>>> numpy.roll(a,-1)
array([2, 3, 4, 5, 6, 7, 8, 9, 1])
>>> numpy.roll(a,5)
array([5, 6, 7, 8, 9, 1, 2, 3, 4])
>>> numpy.roll(a,9)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
It depends on what you want to have happen when you do this:
>>> shift([1,2,3], 14)
You might want to change your:
def shift(seq, n):
return seq[n:]+seq[:n]
to:
def shift(seq, n):
n = n % len(seq)
return seq[n:] + seq[:n]
Simplest way I can think of:
a.append(a.pop(0))
Just some notes on timing:
If you're starting with a list, l.append(l.pop(0)) is the fastest method you can use. This can be shown with time complexity alone:
deque.rotate is O(k) (k=number of elements)
list to deque conversion is O(n)
list.append and list.pop are both O(1)
So if you are starting with deque objects, you can deque.rotate() at the cost of O(k). But, if the starting point is a list, the time complexity of using deque.rotate() is O(n). l.append(l.pop(0) is faster at O(1).
Just for the sake of illustration, here are some sample timings on 1M iterations:
Methods which require type conversion:
deque.rotate with deque object: 0.12380790710449219 seconds (fastest)
deque.rotate with type conversion: 6.853878974914551 seconds
np.roll with nparray: 6.0491721630096436 seconds
np.roll with type conversion: 27.558452129364014 seconds
List methods mentioned here:
l.append(l.pop(0)): 0.32483696937561035 seconds (fastest)
"shiftInPlace": 4.819645881652832 seconds
...
Timing code used is below.
collections.deque
Showing that creating deques from lists is O(n):
from collections import deque
import big_o
def create_deque_from_list(l):
return deque(l)
best, others = big_o.big_o(create_deque_from_list, lambda n: big_o.datagen.integers(n, -100, 100))
print best
# --> Linear: time = -2.6E-05 + 1.8E-08*n
If you need to create deque objects:
1M iterations # 6.853878974914551 seconds
setup_deque_rotate_with_create_deque = """
from collections import deque
import random
l = [random.random() for i in range(1000)]
"""
test_deque_rotate_with_create_deque = """
dl = deque(l)
dl.rotate(-1)
"""
timeit.timeit(test_deque_rotate_with_create_deque, setup_deque_rotate_with_create_deque)
If you already have deque objects:
1M iterations # 0.12380790710449219 seconds
setup_deque_rotate_alone = """
from collections import deque
import random
l = [random.random() for i in range(1000)]
dl = deque(l)
"""
test_deque_rotate_alone= """
dl.rotate(-1)
"""
timeit.timeit(test_deque_rotate_alone, setup_deque_rotate_alone)
np.roll
If you need to create nparrays
1M iterations # 27.558452129364014 seconds
setup_np_roll_with_create_npa = """
import numpy as np
import random
l = [random.random() for i in range(1000)]
"""
test_np_roll_with_create_npa = """
np.roll(l,-1) # implicit conversion of l to np.nparray
"""
If you already have nparrays:
1M iterations # 6.0491721630096436 seconds
setup_np_roll_alone = """
import numpy as np
import random
l = [random.random() for i in range(1000)]
npa = np.array(l)
"""
test_roll_alone = """
np.roll(npa,-1)
"""
timeit.timeit(test_roll_alone, setup_np_roll_alone)
"Shift in place"
Requires no type conversion
1M iterations # 4.819645881652832 seconds
setup_shift_in_place="""
import random
l = [random.random() for i in range(1000)]
def shiftInPlace(l, n):
n = n % len(l)
head = l[:n]
l[:n] = []
l.extend(head)
return l
"""
test_shift_in_place="""
shiftInPlace(l,-1)
"""
timeit.timeit(test_shift_in_place, setup_shift_in_place)
l.append(l.pop(0))
Requires no type conversion
1M iterations # 0.32483696937561035
setup_append_pop="""
import random
l = [random.random() for i in range(1000)]
"""
test_append_pop="""
l.append(l.pop(0))
"""
timeit.timeit(test_append_pop, setup_append_pop)
I also got interested in this and compared some of the suggested solutions with perfplot (a small project of mine).
It turns out that Kelly Bundy's suggestion
tmp = data[shift:]
tmp += data[:shift]
performs very well for all shifts.
Essentially, perfplot performs the shift for increasing large arrays and measures the time. Here are the results:
shift = 1:
shift = 100:
Code to reproduce the plot:
import numpy
import perfplot
import collections
shift = 100
def list_append(data):
return data[shift:] + data[:shift]
def list_append2(data):
tmp = data[shift:]
tmp += data[:shift]
return tmp
def shift_concatenate(data):
return numpy.concatenate([data[shift:], data[:shift]])
def roll(data):
return numpy.roll(data, -shift)
def collections_deque(data):
items = collections.deque(data)
items.rotate(-shift)
return items
def pop_append(data):
data = data.copy()
for _ in range(shift):
data.append(data.pop(0))
return data
b = perfplot.bench(
setup=lambda n: numpy.random.rand(n).tolist(),
kernels=[
list_append,
list_append2,
roll,
shift_concatenate,
collections_deque,
pop_append,
],
n_range=[2 ** k for k in range(7, 20)],
xlabel="len(data)",
)
b.show()
b.save("shift100.png")
If you just want to iterate over these sets of elements rather than construct a separate data structure, consider using iterators to construct a generator expression:
def shift(l,n):
return itertools.islice(itertools.cycle(l),n,n+len(l))
>>> list(shift([1,2,3],1))
[2, 3, 1]
This also depends on if you want to shift the list in place (mutating it), or if you want the function to return a new list. Because, according to my tests, something like this is at least twenty times faster than your implementation that adds two lists:
def shiftInPlace(l, n):
n = n % len(l)
head = l[:n]
l[:n] = []
l.extend(head)
return l
In fact, even adding a l = l[:] to the top of that to operate on a copy of the list passed in is still twice as fast.
Various implementations with some timing at http://gist.github.com/288272
For an immutable implementation, you could use something like this:
def shift(seq, n):
shifted_seq = []
for i in range(len(seq)):
shifted_seq.append(seq[(i-n) % len(seq)])
return shifted_seq
print shift([1, 2, 3, 4], 1)
Possibly a ringbuffer is more suitable. It is not a list, although it is likely that it can behave enough like a list for your purposes.
The problem is that the efficiency of a shift on a list is O(n), which becomes significant for large enough lists.
Shifting in a ringbuffer is simply updating the head location which is O(1)
If efficiency is your goal, (cycles? memory?) you may be better off looking at the array module: http://docs.python.org/library/array.html
Arrays do not have the overhead of lists.
As far as pure lists go though, what you have is about as good as you can hope to do.
I think you are looking for this:
a.insert(0, x)
Another alternative:
def move(arr, n):
return [arr[(idx-n) % len(arr)] for idx,_ in enumerate(arr)]
def solution(A, K):
if len(A) == 0:
return A
K = K % len(A)
return A[-K:] + A[:-K]
# use case
A = [1, 2, 3, 4, 5, 6]
K = 3
print(solution(A, K))
For example, given
A = [3, 8, 9, 7, 6]
K = 3
the function should return [9, 7, 6, 3, 8]. Three rotations were made:
[3, 8, 9, 7, 6] -> [6, 3, 8, 9, 7]
[6, 3, 8, 9, 7] -> [7, 6, 3, 8, 9]
[7, 6, 3, 8, 9] -> [9, 7, 6, 3, 8]
For another example, given
A = [0, 0, 0]
K = 1
the function should return [0, 0, 0]
Given
A = [1, 2, 3, 4]
K = 4
the function should return [1, 2, 3, 4]
I take this cost model as a reference:
http://scripts.mit.edu/~6.006/fall07/wiki/index.php?title=Python_Cost_Model
Your method of slicing the list and concatenating two sub-lists are linear-time operations. I would suggest using pop, which is a constant-time operation, e.g.:
def shift(list, n):
for i in range(n)
temp = list.pop()
list.insert(0, temp)
I don't know if this is 'efficient', but it also works:
x = [1,2,3,4]
x.insert(0,x.pop())
EDIT: Hello again, I just found a big problem with this solution!
Consider the following code:
class MyClass():
def __init__(self):
self.classlist = []
def shift_classlist(self): # right-shift-operation
self.classlist.insert(0, self.classlist.pop())
if __name__ == '__main__':
otherlist = [1,2,3]
x = MyClass()
# this is where kind of a magic link is created...
x.classlist = otherlist
for ii in xrange(2): # just to do it 2 times
print '\n\n\nbefore shift:'
print ' x.classlist =', x.classlist
print ' otherlist =', otherlist
x.shift_classlist()
print 'after shift:'
print ' x.classlist =', x.classlist
print ' otherlist =', otherlist, '<-- SHOULD NOT HAVE BIN CHANGED!'
The shift_classlist() method executes the same code as my x.insert(0,x.pop())-solution, otherlist is a list indipendent from the class. After passing the content of otherlist to the MyClass.classlist list, calling the shift_classlist() also changes the otherlist list:
CONSOLE OUTPUT:
before shift:
x.classlist = [1, 2, 3]
otherlist = [1, 2, 3]
after shift:
x.classlist = [3, 1, 2]
otherlist = [3, 1, 2] <-- SHOULD NOT HAVE BIN CHANGED!
before shift:
x.classlist = [3, 1, 2]
otherlist = [3, 1, 2]
after shift:
x.classlist = [2, 3, 1]
otherlist = [2, 3, 1] <-- SHOULD NOT HAVE BIN CHANGED!
I use Python 2.7. I don't know if thats a bug, but I think it's more likely that I missunderstood something here.
Does anyone of you know why this happens?
The following method is O(n) in place with constant auxiliary memory:
def rotate(arr, shift):
pivot = shift % len(arr)
dst = 0
src = pivot
while (dst != src):
arr[dst], arr[src] = arr[src], arr[dst]
dst += 1
src += 1
if src == len(arr):
src = pivot
elif dst == pivot:
pivot = src
Note that in python, this approach is horribly inefficient compared to others as it can't take advantage of native implementations of any of the pieces.
I have similar thing. For example, to shift by two...
def Shift(*args):
return args[len(args)-2:]+args[:len(args)-2]
I think you've got the most efficient way
def shift(l,n):
n = n % len(l)
return l[-U:] + l[:-U]
Jon Bentley in Programming Pearls (Column 2) describes an elegant and efficient algorithm for rotating an n-element vector x left by i positions:
Let's view the problem as transforming the array ab into the array
ba, but let's also assume that we have a function that reverses the
elements in a specified portion of the array. Starting with ab, we
reverse a to get arb, reverse b to get
arbr, and then reverse the whole
thing to get (arbr)r,
which is exactly ba. This results in the following code for
rotation:
reverse(0, i-1)
reverse(i, n-1)
reverse(0, n-1)
This can be translated to Python as follows:
def rotate(x, i):
i %= len(x)
x[:i] = reversed(x[:i])
x[i:] = reversed(x[i:])
x[:] = reversed(x)
return x
Demo:
>>> def rotate(x, i):
... i %= len(x)
... x[:i] = reversed(x[:i])
... x[i:] = reversed(x[i:])
... x[:] = reversed(x)
... return x
...
>>> rotate(list('abcdefgh'), 1)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
>>> rotate(list('abcdefgh'), 3)
['d', 'e', 'f', 'g', 'h', 'a', 'b', 'c']
>>> rotate(list('abcdefgh'), 8)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> rotate(list('abcdefgh'), 9)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
I was looking for in place solution to this problem. This solves the purpose in O(k).
def solution(self, list, k):
r=len(list)-1
i = 0
while i<k:
temp = list[0]
list[0:r] = list[1:r+1]
list[r] = temp
i+=1
return list
What is the use case? Often, we don't actually need a fully shifted array --we just need to access a handful of elements in the shifted array.
Getting Python slices is runtime O(k) where k is the slice, so a sliced rotation is runtime N. The deque rotation command is also O(k). Can we do better?
Consider an array that is extremely large (let's say, so large it would be computationally slow to slice it). An alternative solution would be to leave the original array alone and simply calculate the index of the item that would have existed in our desired index after a shift of some kind.
Accessing a shifted element thus becomes O(1).
def get_shifted_element(original_list, shift_to_left, index_in_shifted):
# back calculate the original index by reversing the left shift
idx_original = (index_in_shifted + shift_to_left) % len(original_list)
return original_list[idx_original]
my_list = [1, 2, 3, 4, 5]
print get_shifted_element(my_list, 1, 2) ----> outputs 4
print get_shifted_element(my_list, -2, 3) -----> outputs 2
Following function copies sent list to a templist, so that pop function does not affect the original list:
def shift(lst, n, toreverse=False):
templist = []
for i in lst: templist.append(i)
if toreverse:
for i in range(n): templist = [templist.pop()]+templist
else:
for i in range(n): templist = templist+[templist.pop(0)]
return templist
Testing:
lst = [1,2,3,4,5]
print("lst=", lst)
print("shift by 1:", shift(lst,1))
print("lst=", lst)
print("shift by 7:", shift(lst,7))
print("lst=", lst)
print("shift by 1 reverse:", shift(lst,1, True))
print("lst=", lst)
print("shift by 7 reverse:", shift(lst,7, True))
print("lst=", lst)
Output:
lst= [1, 2, 3, 4, 5]
shift by 1: [2, 3, 4, 5, 1]
lst= [1, 2, 3, 4, 5]
shift by 7: [3, 4, 5, 1, 2]
lst= [1, 2, 3, 4, 5]
shift by 1 reverse: [5, 1, 2, 3, 4]
lst= [1, 2, 3, 4, 5]
shift by 7 reverse: [4, 5, 1, 2, 3]
lst= [1, 2, 3, 4, 5]
For a list X = ['a', 'b', 'c', 'd', 'e', 'f'] and a desired shift value of shift less than list length, we can define the function list_shift() as below
def list_shift(my_list, shift):
assert shift < len(my_list)
return my_list[shift:] + my_list[:shift]
Examples,
list_shift(X,1) returns ['b', 'c', 'd', 'e', 'f', 'a']
list_shift(X,3) returns ['d', 'e', 'f', 'a', 'b', 'c']
I'm "old school" I define efficiency in lowest latency, processor time and memory usage, our nemesis are the bloated libraries. So there is exactly one right way:
def rotatel(nums):
back = nums.pop(0)
nums.append(back)
return nums
Below is an efficient algorithm that doesn't require the use of any additional data structure:
def rotate(nums: List[int], k: int):
k = k%len(nums)
l, r = 0, len(nums)-1
while (l<r):
nums[l], nums[r]= nums[r], nums[l]
l,r=l+1,r-1
l,r = 0, k-1
while (l<r):
nums[l], nums[r]=nums[r], nums[l]
l,r=l+1,r-1
l,r=k,len(nums)-1
while (l<r):
nums[l], nums[r]=nums[r], nums[l]
l,r=l+1,r-1
So heres my code:
item = [0,1,2,3,4,5,6,7,8,9]
z = [] # list of integers
for item in z:
if item not in z:
print item
z contains a list of integers. I want to compare item to z and print out the numbers that are not in z when compared to item.
I can print the elements that are in z when compared not item, but when I try and do the opposite using the code above nothing prints.
Any help?
Your code is not doing what I think you think it is doing. The line for item in z: will iterate through z, each time making item equal to one single element of z. The original item list is therefore overwritten before you've done anything with it.
I think you want something like this:
item = [0,1,2,3,4,5,6,7,8,9]
for element in item:
if element not in z:
print(element)
But you could easily do this like:
[x for x in item if x not in z]
or (if you don't mind losing duplicates of non-unique elements):
set(item) - set(z)
>> items = [1,2,3,4]
>> Z = [3,4,5,6]
>> print list(set(items)-set(Z))
[1, 2]
Using list comprehension:
print [x for x in item if x not in Z]
or using filter function :
filter(lambda x: x not in Z, item)
Using set in any form may create a bug if the list being checked contains non-unique elements, e.g.:
print item
Out[39]: [0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print Z
Out[40]: [3, 4, 5, 6]
set(item) - set(Z)
Out[41]: {0, 1, 2, 7, 8, 9}
vs list comprehension as above
print [x for x in item if x not in Z]
Out[38]: [0, 1, 1, 2, 7, 8, 9]
or filter function:
filter(lambda x: x not in Z, item)
Out[38]: [0, 1, 1, 2, 7, 8, 9]
list1 = [1,2,3,4]; list2 = [0,3,3,6]
print set(list2) - set(list1)
If you run a loop taking items from z, how do you expect them not to be in z? IMHO it would make more sense comparing items from a different list to z.
No, z is undefined. item contains a list of integers.
I think what you're trying to do is this:
#z defined elsewhere
item = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for i in item:
if i not in z: print i
As has been stated in other answers, you may want to try using sets.
>>> item = set([0,1,2,3,4,5,6,7,8,9])
>>> z = set([2,3,4])
>>> print item - z
set([0, 1, 5, 6, 7, 8, 9])
Your code is a no-op. By the definition of the loop, "item" has to be in Z. A "For ... in" loop in Python means "Loop though the list called 'z', each time you loop, give me the next item in the list, and call it 'item'"
http://docs.python.org/tutorial/controlflow.html#for-statements
I think your confusion arises from the fact that you're using the variable name "item" twice, to mean two different things.
You are reassigning item to the values in z as you iterate through z. So the first time in your for loop, item = 0, next item = 1, etc... You are never checking one list against the other.
To do it very explicitly:
>>> item = [0,1,2,3,4,5,6,7,8,9]
>>> z = [0,1,2,3,4,5,6,7]
>>>
>>> for elem in item:
... if elem not in z:
... print elem
...
8
9
In the case where item and z are sorted iterators, we can reduce the complexity from O(n^2) to O(n+m) by doing this
def iexclude(sorted_iterator, exclude_sorted_iterator):
next_val = next(exclude_sorted_iterator)
for item in sorted_iterator:
try:
while next_val < item:
next_val = next(exclude_sorted_iterator)
continue
if item == next_val:
continue
except StopIteration:
pass
yield item
If the two are iterators, we also have the opportunity to reduce the memory footprint not storing z (exclude_sorted_iterator) as a list.
If the lists are sorted and you know the elements of the checking list are in the base list - you can do a more optimal O(n) solution by using two pointers (where n will be the length of the base_list:
base_list = [0, 1, 2, 3, 4, 5, 6, 7, 8]
checking_list = [1, 3, 5]
expected_return = [0, 2, 4, 6, 7, 8]
j = 0
i = 0
elements_not_in_checking_list = []
while i < len(base_list):
if j < len(checking_list) and base_list[i] == checking_list[j]:
i += 1
j += 1
else:
elements_not_in_checking_list.append(base_list[i])
i += 1
Many of the solutions already posted here will not preserve the original ordering of the elements (because sets are unordered) or are inefficient (because linear search in a list is slower than a lookup in a set).
You can make a set of elements to remove upfront, and then use a list comprehension to retain only the elements which aren't in the set:
items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
z = [3, 4, 5, 6]
set_z = set(z)
result = [e for e in items if e not in set_z]
Then, result contains:
[0, 1, 2, 7, 8, 9]