This question already has answers here:
What does ** (double star/asterisk) and * (star/asterisk) do for parameters?
(25 answers)
Closed 9 years ago.
So I have difficulty with the concept of *args and **kwargs.
So far I have learned that:
*args = list of arguments - as positional arguments
**kwargs = dictionary - whose keys become separate keyword arguments and the values become values of these arguments.
I don't understand what programming task this would be helpful for.
Maybe:
I think to enter lists and dictionaries as arguments of a function AND at the same time as a wildcard, so I can pass ANY argument?
Is there a simple example to explain how *args and **kwargs are used?
Also the tutorial I found used just the "*" and a variable name.
Are *args and **kwargs just placeholders or do you use exactly *args and **kwargs in the code?
The syntax is the * and **. The names *args and **kwargs are only by convention but there's no hard requirement to use them.
You would use *args when you're not sure how many arguments might be passed to your function, i.e. it allows you pass an arbitrary number of arguments to your function. For example:
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print( '{0}. {1}'.format(count, thing))
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage
Similarly, **kwargs allows you to handle named arguments that you have not defined in advance:
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print( '{0} = {1}'.format(name, value))
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit
You can use these along with named arguments too. The explicit arguments get values first and then everything else is passed to *args and **kwargs. The named arguments come first in the list. For example:
def table_things(titlestring, **kwargs)
You can also use both in the same function definition but *args must occur before **kwargs.
You can also use the * and ** syntax when calling a function. For example:
>>> def print_three_things(a, b, c):
... print( 'a = {0}, b = {1}, c = {2}'.format(a,b,c))
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)
a = aardvark, b = baboon, c = cat
As you can see in this case it takes the list (or tuple) of items and unpacks it. By this it matches them to the arguments in the function. Of course, you could have a * both in the function definition and in the function call.
One place where the use of *args and **kwargs is quite useful is for subclassing.
class Foo(object):
def __init__(self, value1, value2):
# do something with the values
print value1, value2
class MyFoo(Foo):
def __init__(self, *args, **kwargs):
# do something else, don't care about the args
print 'myfoo'
super(MyFoo, self).__init__(*args, **kwargs)
This way you can extend the behaviour of the Foo class, without having to know too much about Foo. This can be quite convenient if you are programming to an API which might change. MyFoo just passes all arguments to the Foo class.
Here's an example that uses 3 different types of parameters.
def func(required_arg, *args, **kwargs):
# required_arg is a positional-only parameter.
print required_arg
# args is a tuple of positional arguments,
# because the parameter name has * prepended.
if args: # If args is not empty.
print args
# kwargs is a dictionary of keyword arguments,
# because the parameter name has ** prepended.
if kwargs: # If kwargs is not empty.
print kwargs
>>> func()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: func() takes at least 1 argument (0 given)
>>> func("required argument")
required argument
>>> func("required argument", 1, 2, '3')
required argument
(1, 2, '3')
>>> func("required argument", 1, 2, '3', keyword1=4, keyword2="foo")
required argument
(1, 2, '3')
{'keyword2': 'foo', 'keyword1': 4}
Here's one of my favorite places to use the ** syntax as in Dave Webb's final example:
mynum = 1000
mystr = 'Hello World!'
print("{mystr} New-style formatting is {mynum}x more fun!".format(**locals()))
I'm not sure if it's terribly fast when compared to just using the names themselves, but it's a lot easier to type!
One case where *args and **kwargs are useful is when writing wrapper functions (such as decorators) that need to be able accept arbitrary arguments to pass through to the function being wrapped. For example, a simple decorator that prints the arguments and return value of the function being wrapped:
def mydecorator( f ):
#functools.wraps( f )
def wrapper( *args, **kwargs ):
print "Calling f", args, kwargs
v = f( *args, **kwargs )
print "f returned", v
return v
return wrapper
*args and **kwargs are special-magic features of Python.
Think of a function that could have an unknown number of arguments. For example, for whatever reasons, you want to have function that sums an unknown number of numbers (and you don't want to use the built-in sum function). So you write this function:
def sumFunction(*args):
result = 0
for x in args:
result += x
return result
and use it like: sumFunction(3,4,6,3,6,8,9).
**kwargs has a diffrent function. With **kwargs you can give arbitrary keyword arguments to a function and you can access them as a dictonary.
def someFunction(**kwargs):
if 'text' in kwargs:
print kwargs['text']
Calling someFunction(text="foo") will print foo.
Just imagine you have a function but you don't want to restrict the number of parameter it takes.
Example:
>>> import operator
>>> def multiply(*args):
... return reduce(operator.mul, args)
Then you use this function like:
>>> multiply(1,2,3)
6
or
>>> numbers = [1,2,3]
>>> multiply(*numbers)
6
The names *args and **kwargs or **kw are purely by convention. It makes it easier for us to read each other's code
One place it is handy is when using the struct module
struct.unpack() returns a tuple whereas struct.pack() uses a variable number of arguments. When manipulating data it is convenient to be able to pass a tuple to struck.pack() eg.
tuple_of_data = struct.unpack(format_str, data)
# ... manipulate the data
new_data = struct.pack(format_str, *tuple_of_data)
without this ability you would be forced to write
new_data = struct.pack(format_str, tuple_of_data[0], tuple_of_data[1], tuple_of_data[2],...)
which also means the if the format_str changes and the size of the tuple changes, I'll have to go back and edit that really long line
Note that *args/**kwargs is part of function-calling syntax, and not really an operator. This has a particular side effect that I ran into, which is that you can't use *args expansion with the print statement, since print is not a function.
This seems reasonable:
def myprint(*args):
print *args
Unfortunately it doesn't compile (syntax error).
This compiles:
def myprint(*args):
print args
But prints the arguments as a tuple, which isn't what we want.
This is the solution I settled on:
def myprint(*args):
for arg in args:
print arg,
print
These parameters are typically used for proxy functions, so the proxy can pass any input parameter to the target function.
def foo(bar=2, baz=5):
print bar, baz
def proxy(x, *args, **kwargs): # reqire parameter x and accept any number of additional arguments
print x
foo(*args, **kwargs) # applies the "non-x" parameter to foo
proxy(23, 5, baz='foo') # calls foo with bar=5 and baz=foo
proxy(6)# calls foo with its default arguments
proxy(7, bar='asdas') # calls foo with bar='asdas' and leave baz default argument
But since these parameters hide the actual parameter names, it is better to avoid them.
You can have a look at python docs (docs.python.org in the FAQ), but more specifically for a good explanation the mysterious miss args and mister kwargs (courtesy of archive.org) (the original, dead link is here).
In a nutshell, both are used when optional parameters to a function or method are used.
As Dave says, *args is used when you don't know how many arguments may be passed, and **kwargs when you want to handle parameters specified by name and value as in:
myfunction(myarg=1)
Related
I've defined a function as follows:
def func_tion(*args, **kwargs):
print("hola")
func_tion()
O/P:
hola
Why does this not show any error?
Are *args and **kwargs optional?
The syntax is the * and **. The names *args and **kwargs are only by convention but there's no hard requirement to use them.
You would use *args when you're not sure how many arguments might be passed to your function, i.e. it allows you pass an arbitrary number of arguments to your function. For example:
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print( '{0}. {1}'.format(count, thing))
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage
Similarly, **kwargs allows you to handle named arguments that you have not defined in advance:
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print( '{0} = {1}'.format(name, value))
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit
You can use these along with named arguments too. The explicit arguments get values first and then everything else is passed to *args and **kwargs. The named arguments come first in the list. For example:
def table_things(titlestring, **kwargs)
You can also use both in the same function definition but *args must occur before **kwargs.
You can also use the * and ** syntax when calling a function. For example:
>>> def print_three_things(a, b, c):
... print( 'a = {0}, b = {1}, c = {2}'.format(a,b,c))
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)
a = aardvark, b = baboon, c = cat
As you can see in this case it takes the list (or tuple) of items and unpacks it. By this it matches them to the arguments in the function. Of course, you could have a * both in the function definition and in the function call.
From the documentation(emphasis mine):
If the form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the empty tuple. If the form “**identifier” is present, it is initialized to a new ordered mapping receiving any excess keyword arguments, defaulting to a new empty mapping of the same type.
"Any excess" can include "no excess", meaning neither form imposes a required argument.
What does a bare asterisk in the parameters of a function do?
When I looked at the pickle module, I see this:
pickle.dump(obj, file, protocol=None, *, fix_imports=True)
I know about a single and double asterisks preceding parameters (for variable number of parameters), but this precedes nothing. And I'm pretty sure this has nothing to do with pickle. That's probably just an example of this happening. I only learned its name when I sent this to the interpreter:
>>> def func(*):
... pass
...
File "<stdin>", line 1
SyntaxError: named arguments must follow bare *
If it matters, I'm on python 3.3.0.
Bare * is used to force the caller to use named arguments - so you cannot define a function with * as an argument when you have no following keyword arguments.
See this answer or Python 3 documentation for more details.
While the original answer answers the question completely, just adding a bit of related information. The behaviour for the single asterisk derives from PEP-3102. Quoting the related section:
The second syntactical change is to allow the argument name to
be omitted for a varargs argument. The meaning of this is to
allow for keyword-only arguments for functions that would not
otherwise take a varargs argument:
def compare(a, b, *, key=None):
...
In simple english, it means that to pass the value for key, you will need to explicitly pass it as key="value".
def func(*, a, b):
print(a)
print(b)
func("gg") # TypeError: func() takes 0 positional arguments but 1 was given
func(a="gg") # TypeError: func() missing 1 required keyword-only argument: 'b'
func(a="aa", b="bb", c="cc") # TypeError: func() got an unexpected keyword argument 'c'
func(a="aa", b="bb", "cc") # SyntaxError: positional argument follows keyword argument
func(a="aa", b="bb") # aa, bb
the above example with **kwargs
def func(*, a, b, **kwargs):
print(a)
print(b)
print(kwargs)
func(a="aa",b="bb", c="cc") # aa, bb, {'c': 'cc'}
Semantically, it means the arguments following it are keyword-only, so you will get an error if you try to provide an argument without specifying its name. For example:
>>> def f(a, *, b):
... return a + b
...
>>> f(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f() takes 1 positional argument but 2 were given
>>> f(1, b=2)
3
Pragmatically, it means you have to call the function with a keyword argument. It's usually done when it would be hard to understand the purpose of the argument without the hint given by the argument's name.
Compare e.g. sorted(nums, reverse=True) vs. if you wrote sorted(nums, True). The latter would be much less readable, so the Python developers chose to make you to write it the former way.
Suppose you have function:
def sum(a,key=5):
return a + key
You can call this function in 2 ways:
sum(1,2) or sum(1,key=2)
Suppose you want function sum to be called only using keyword arguments.
You add * to the function parameter list to mark the end of positional arguments.
So function defined as:
def sum(a,*,key=5):
return a + key
may be called only using sum(1,key=2)
I've found the following link to be very helpful explaining *, *args and **kwargs:
https://pythontips.com/2013/08/04/args-and-kwargs-in-python-explained/
Essentially, in addition to the answers above, I've learned from the site above (credit: https://pythontips.com/author/yasoob008/) the following:
With the demonstration function defined first below, there are two examples, one with *args and one with **kwargs
def test_args_kwargs(arg1, arg2, arg3):
print "arg1:", arg1
print "arg2:", arg2
print "arg3:", arg3
# first with *args
>>> args = ("two", 3,5)
>>> test_args_kwargs(*args)
arg1: two
arg2: 3
arg3: 5
# now with **kwargs:
>>> kwargs = {"arg3": 3, "arg2": "two","arg1":5}
>>> test_args_kwargs(**kwargs)
arg1: 5
arg2: two
arg3: 3
So *args allows you to dynamically build a list of arguments that will be taken in the order in which they are fed, whereas **kwargs can enable the passing of NAMED arguments, and can be processed by NAME accordingly (irrespective of the order in which they are fed).
The site continues, noting that the correct ordering of arguments should be:
some_func(fargs,*args,**kwargs)
What does a bare asterisk in the parameters of a function do?
When I looked at the pickle module, I see this:
pickle.dump(obj, file, protocol=None, *, fix_imports=True)
I know about a single and double asterisks preceding parameters (for variable number of parameters), but this precedes nothing. And I'm pretty sure this has nothing to do with pickle. That's probably just an example of this happening. I only learned its name when I sent this to the interpreter:
>>> def func(*):
... pass
...
File "<stdin>", line 1
SyntaxError: named arguments must follow bare *
If it matters, I'm on python 3.3.0.
Bare * is used to force the caller to use named arguments - so you cannot define a function with * as an argument when you have no following keyword arguments.
See this answer or Python 3 documentation for more details.
While the original answer answers the question completely, just adding a bit of related information. The behaviour for the single asterisk derives from PEP-3102. Quoting the related section:
The second syntactical change is to allow the argument name to
be omitted for a varargs argument. The meaning of this is to
allow for keyword-only arguments for functions that would not
otherwise take a varargs argument:
def compare(a, b, *, key=None):
...
In simple english, it means that to pass the value for key, you will need to explicitly pass it as key="value".
def func(*, a, b):
print(a)
print(b)
func("gg") # TypeError: func() takes 0 positional arguments but 1 was given
func(a="gg") # TypeError: func() missing 1 required keyword-only argument: 'b'
func(a="aa", b="bb", c="cc") # TypeError: func() got an unexpected keyword argument 'c'
func(a="aa", b="bb", "cc") # SyntaxError: positional argument follows keyword argument
func(a="aa", b="bb") # aa, bb
the above example with **kwargs
def func(*, a, b, **kwargs):
print(a)
print(b)
print(kwargs)
func(a="aa",b="bb", c="cc") # aa, bb, {'c': 'cc'}
Semantically, it means the arguments following it are keyword-only, so you will get an error if you try to provide an argument without specifying its name. For example:
>>> def f(a, *, b):
... return a + b
...
>>> f(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f() takes 1 positional argument but 2 were given
>>> f(1, b=2)
3
Pragmatically, it means you have to call the function with a keyword argument. It's usually done when it would be hard to understand the purpose of the argument without the hint given by the argument's name.
Compare e.g. sorted(nums, reverse=True) vs. if you wrote sorted(nums, True). The latter would be much less readable, so the Python developers chose to make you to write it the former way.
Suppose you have function:
def sum(a,key=5):
return a + key
You can call this function in 2 ways:
sum(1,2) or sum(1,key=2)
Suppose you want function sum to be called only using keyword arguments.
You add * to the function parameter list to mark the end of positional arguments.
So function defined as:
def sum(a,*,key=5):
return a + key
may be called only using sum(1,key=2)
I've found the following link to be very helpful explaining *, *args and **kwargs:
https://pythontips.com/2013/08/04/args-and-kwargs-in-python-explained/
Essentially, in addition to the answers above, I've learned from the site above (credit: https://pythontips.com/author/yasoob008/) the following:
With the demonstration function defined first below, there are two examples, one with *args and one with **kwargs
def test_args_kwargs(arg1, arg2, arg3):
print "arg1:", arg1
print "arg2:", arg2
print "arg3:", arg3
# first with *args
>>> args = ("two", 3,5)
>>> test_args_kwargs(*args)
arg1: two
arg2: 3
arg3: 5
# now with **kwargs:
>>> kwargs = {"arg3": 3, "arg2": "two","arg1":5}
>>> test_args_kwargs(**kwargs)
arg1: 5
arg2: two
arg3: 3
So *args allows you to dynamically build a list of arguments that will be taken in the order in which they are fed, whereas **kwargs can enable the passing of NAMED arguments, and can be processed by NAME accordingly (irrespective of the order in which they are fed).
The site continues, noting that the correct ordering of arguments should be:
some_func(fargs,*args,**kwargs)
This question already has answers here:
What does ** (double star/asterisk) and * (star/asterisk) do for parameters?
(25 answers)
Closed 9 years ago.
So I have difficulty with the concept of *args and **kwargs.
So far I have learned that:
*args = list of arguments - as positional arguments
**kwargs = dictionary - whose keys become separate keyword arguments and the values become values of these arguments.
I don't understand what programming task this would be helpful for.
Maybe:
I think to enter lists and dictionaries as arguments of a function AND at the same time as a wildcard, so I can pass ANY argument?
Is there a simple example to explain how *args and **kwargs are used?
Also the tutorial I found used just the "*" and a variable name.
Are *args and **kwargs just placeholders or do you use exactly *args and **kwargs in the code?
The syntax is the * and **. The names *args and **kwargs are only by convention but there's no hard requirement to use them.
You would use *args when you're not sure how many arguments might be passed to your function, i.e. it allows you pass an arbitrary number of arguments to your function. For example:
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print( '{0}. {1}'.format(count, thing))
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage
Similarly, **kwargs allows you to handle named arguments that you have not defined in advance:
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print( '{0} = {1}'.format(name, value))
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit
You can use these along with named arguments too. The explicit arguments get values first and then everything else is passed to *args and **kwargs. The named arguments come first in the list. For example:
def table_things(titlestring, **kwargs)
You can also use both in the same function definition but *args must occur before **kwargs.
You can also use the * and ** syntax when calling a function. For example:
>>> def print_three_things(a, b, c):
... print( 'a = {0}, b = {1}, c = {2}'.format(a,b,c))
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)
a = aardvark, b = baboon, c = cat
As you can see in this case it takes the list (or tuple) of items and unpacks it. By this it matches them to the arguments in the function. Of course, you could have a * both in the function definition and in the function call.
One place where the use of *args and **kwargs is quite useful is for subclassing.
class Foo(object):
def __init__(self, value1, value2):
# do something with the values
print value1, value2
class MyFoo(Foo):
def __init__(self, *args, **kwargs):
# do something else, don't care about the args
print 'myfoo'
super(MyFoo, self).__init__(*args, **kwargs)
This way you can extend the behaviour of the Foo class, without having to know too much about Foo. This can be quite convenient if you are programming to an API which might change. MyFoo just passes all arguments to the Foo class.
Here's an example that uses 3 different types of parameters.
def func(required_arg, *args, **kwargs):
# required_arg is a positional-only parameter.
print required_arg
# args is a tuple of positional arguments,
# because the parameter name has * prepended.
if args: # If args is not empty.
print args
# kwargs is a dictionary of keyword arguments,
# because the parameter name has ** prepended.
if kwargs: # If kwargs is not empty.
print kwargs
>>> func()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: func() takes at least 1 argument (0 given)
>>> func("required argument")
required argument
>>> func("required argument", 1, 2, '3')
required argument
(1, 2, '3')
>>> func("required argument", 1, 2, '3', keyword1=4, keyword2="foo")
required argument
(1, 2, '3')
{'keyword2': 'foo', 'keyword1': 4}
Here's one of my favorite places to use the ** syntax as in Dave Webb's final example:
mynum = 1000
mystr = 'Hello World!'
print("{mystr} New-style formatting is {mynum}x more fun!".format(**locals()))
I'm not sure if it's terribly fast when compared to just using the names themselves, but it's a lot easier to type!
One case where *args and **kwargs are useful is when writing wrapper functions (such as decorators) that need to be able accept arbitrary arguments to pass through to the function being wrapped. For example, a simple decorator that prints the arguments and return value of the function being wrapped:
def mydecorator( f ):
#functools.wraps( f )
def wrapper( *args, **kwargs ):
print "Calling f", args, kwargs
v = f( *args, **kwargs )
print "f returned", v
return v
return wrapper
*args and **kwargs are special-magic features of Python.
Think of a function that could have an unknown number of arguments. For example, for whatever reasons, you want to have function that sums an unknown number of numbers (and you don't want to use the built-in sum function). So you write this function:
def sumFunction(*args):
result = 0
for x in args:
result += x
return result
and use it like: sumFunction(3,4,6,3,6,8,9).
**kwargs has a diffrent function. With **kwargs you can give arbitrary keyword arguments to a function and you can access them as a dictonary.
def someFunction(**kwargs):
if 'text' in kwargs:
print kwargs['text']
Calling someFunction(text="foo") will print foo.
Just imagine you have a function but you don't want to restrict the number of parameter it takes.
Example:
>>> import operator
>>> def multiply(*args):
... return reduce(operator.mul, args)
Then you use this function like:
>>> multiply(1,2,3)
6
or
>>> numbers = [1,2,3]
>>> multiply(*numbers)
6
The names *args and **kwargs or **kw are purely by convention. It makes it easier for us to read each other's code
One place it is handy is when using the struct module
struct.unpack() returns a tuple whereas struct.pack() uses a variable number of arguments. When manipulating data it is convenient to be able to pass a tuple to struck.pack() eg.
tuple_of_data = struct.unpack(format_str, data)
# ... manipulate the data
new_data = struct.pack(format_str, *tuple_of_data)
without this ability you would be forced to write
new_data = struct.pack(format_str, tuple_of_data[0], tuple_of_data[1], tuple_of_data[2],...)
which also means the if the format_str changes and the size of the tuple changes, I'll have to go back and edit that really long line
Note that *args/**kwargs is part of function-calling syntax, and not really an operator. This has a particular side effect that I ran into, which is that you can't use *args expansion with the print statement, since print is not a function.
This seems reasonable:
def myprint(*args):
print *args
Unfortunately it doesn't compile (syntax error).
This compiles:
def myprint(*args):
print args
But prints the arguments as a tuple, which isn't what we want.
This is the solution I settled on:
def myprint(*args):
for arg in args:
print arg,
print
These parameters are typically used for proxy functions, so the proxy can pass any input parameter to the target function.
def foo(bar=2, baz=5):
print bar, baz
def proxy(x, *args, **kwargs): # reqire parameter x and accept any number of additional arguments
print x
foo(*args, **kwargs) # applies the "non-x" parameter to foo
proxy(23, 5, baz='foo') # calls foo with bar=5 and baz=foo
proxy(6)# calls foo with its default arguments
proxy(7, bar='asdas') # calls foo with bar='asdas' and leave baz default argument
But since these parameters hide the actual parameter names, it is better to avoid them.
You can have a look at python docs (docs.python.org in the FAQ), but more specifically for a good explanation the mysterious miss args and mister kwargs (courtesy of archive.org) (the original, dead link is here).
In a nutshell, both are used when optional parameters to a function or method are used.
As Dave says, *args is used when you don't know how many arguments may be passed, and **kwargs when you want to handle parameters specified by name and value as in:
myfunction(myarg=1)
This question already has answers here:
What does ** (double star/asterisk) and * (star/asterisk) do for parameters?
(25 answers)
Closed 9 years ago.
So I have difficulty with the concept of *args and **kwargs.
So far I have learned that:
*args = list of arguments - as positional arguments
**kwargs = dictionary - whose keys become separate keyword arguments and the values become values of these arguments.
I don't understand what programming task this would be helpful for.
Maybe:
I think to enter lists and dictionaries as arguments of a function AND at the same time as a wildcard, so I can pass ANY argument?
Is there a simple example to explain how *args and **kwargs are used?
Also the tutorial I found used just the "*" and a variable name.
Are *args and **kwargs just placeholders or do you use exactly *args and **kwargs in the code?
The syntax is the * and **. The names *args and **kwargs are only by convention but there's no hard requirement to use them.
You would use *args when you're not sure how many arguments might be passed to your function, i.e. it allows you pass an arbitrary number of arguments to your function. For example:
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print( '{0}. {1}'.format(count, thing))
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage
Similarly, **kwargs allows you to handle named arguments that you have not defined in advance:
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print( '{0} = {1}'.format(name, value))
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit
You can use these along with named arguments too. The explicit arguments get values first and then everything else is passed to *args and **kwargs. The named arguments come first in the list. For example:
def table_things(titlestring, **kwargs)
You can also use both in the same function definition but *args must occur before **kwargs.
You can also use the * and ** syntax when calling a function. For example:
>>> def print_three_things(a, b, c):
... print( 'a = {0}, b = {1}, c = {2}'.format(a,b,c))
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)
a = aardvark, b = baboon, c = cat
As you can see in this case it takes the list (or tuple) of items and unpacks it. By this it matches them to the arguments in the function. Of course, you could have a * both in the function definition and in the function call.
One place where the use of *args and **kwargs is quite useful is for subclassing.
class Foo(object):
def __init__(self, value1, value2):
# do something with the values
print value1, value2
class MyFoo(Foo):
def __init__(self, *args, **kwargs):
# do something else, don't care about the args
print 'myfoo'
super(MyFoo, self).__init__(*args, **kwargs)
This way you can extend the behaviour of the Foo class, without having to know too much about Foo. This can be quite convenient if you are programming to an API which might change. MyFoo just passes all arguments to the Foo class.
Here's an example that uses 3 different types of parameters.
def func(required_arg, *args, **kwargs):
# required_arg is a positional-only parameter.
print required_arg
# args is a tuple of positional arguments,
# because the parameter name has * prepended.
if args: # If args is not empty.
print args
# kwargs is a dictionary of keyword arguments,
# because the parameter name has ** prepended.
if kwargs: # If kwargs is not empty.
print kwargs
>>> func()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: func() takes at least 1 argument (0 given)
>>> func("required argument")
required argument
>>> func("required argument", 1, 2, '3')
required argument
(1, 2, '3')
>>> func("required argument", 1, 2, '3', keyword1=4, keyword2="foo")
required argument
(1, 2, '3')
{'keyword2': 'foo', 'keyword1': 4}
Here's one of my favorite places to use the ** syntax as in Dave Webb's final example:
mynum = 1000
mystr = 'Hello World!'
print("{mystr} New-style formatting is {mynum}x more fun!".format(**locals()))
I'm not sure if it's terribly fast when compared to just using the names themselves, but it's a lot easier to type!
One case where *args and **kwargs are useful is when writing wrapper functions (such as decorators) that need to be able accept arbitrary arguments to pass through to the function being wrapped. For example, a simple decorator that prints the arguments and return value of the function being wrapped:
def mydecorator( f ):
#functools.wraps( f )
def wrapper( *args, **kwargs ):
print "Calling f", args, kwargs
v = f( *args, **kwargs )
print "f returned", v
return v
return wrapper
*args and **kwargs are special-magic features of Python.
Think of a function that could have an unknown number of arguments. For example, for whatever reasons, you want to have function that sums an unknown number of numbers (and you don't want to use the built-in sum function). So you write this function:
def sumFunction(*args):
result = 0
for x in args:
result += x
return result
and use it like: sumFunction(3,4,6,3,6,8,9).
**kwargs has a diffrent function. With **kwargs you can give arbitrary keyword arguments to a function and you can access them as a dictonary.
def someFunction(**kwargs):
if 'text' in kwargs:
print kwargs['text']
Calling someFunction(text="foo") will print foo.
Just imagine you have a function but you don't want to restrict the number of parameter it takes.
Example:
>>> import operator
>>> def multiply(*args):
... return reduce(operator.mul, args)
Then you use this function like:
>>> multiply(1,2,3)
6
or
>>> numbers = [1,2,3]
>>> multiply(*numbers)
6
The names *args and **kwargs or **kw are purely by convention. It makes it easier for us to read each other's code
One place it is handy is when using the struct module
struct.unpack() returns a tuple whereas struct.pack() uses a variable number of arguments. When manipulating data it is convenient to be able to pass a tuple to struck.pack() eg.
tuple_of_data = struct.unpack(format_str, data)
# ... manipulate the data
new_data = struct.pack(format_str, *tuple_of_data)
without this ability you would be forced to write
new_data = struct.pack(format_str, tuple_of_data[0], tuple_of_data[1], tuple_of_data[2],...)
which also means the if the format_str changes and the size of the tuple changes, I'll have to go back and edit that really long line
Note that *args/**kwargs is part of function-calling syntax, and not really an operator. This has a particular side effect that I ran into, which is that you can't use *args expansion with the print statement, since print is not a function.
This seems reasonable:
def myprint(*args):
print *args
Unfortunately it doesn't compile (syntax error).
This compiles:
def myprint(*args):
print args
But prints the arguments as a tuple, which isn't what we want.
This is the solution I settled on:
def myprint(*args):
for arg in args:
print arg,
print
These parameters are typically used for proxy functions, so the proxy can pass any input parameter to the target function.
def foo(bar=2, baz=5):
print bar, baz
def proxy(x, *args, **kwargs): # reqire parameter x and accept any number of additional arguments
print x
foo(*args, **kwargs) # applies the "non-x" parameter to foo
proxy(23, 5, baz='foo') # calls foo with bar=5 and baz=foo
proxy(6)# calls foo with its default arguments
proxy(7, bar='asdas') # calls foo with bar='asdas' and leave baz default argument
But since these parameters hide the actual parameter names, it is better to avoid them.
You can have a look at python docs (docs.python.org in the FAQ), but more specifically for a good explanation the mysterious miss args and mister kwargs (courtesy of archive.org) (the original, dead link is here).
In a nutshell, both are used when optional parameters to a function or method are used.
As Dave says, *args is used when you don't know how many arguments may be passed, and **kwargs when you want to handle parameters specified by name and value as in:
myfunction(myarg=1)