How to get the caller's method name in the called method? - python

Python: How to get the caller's method name in the called method?
Assume I have 2 methods:
def method1(self):
...
a = A.method2()
def method2(self):
...
If I don't want to do any change for method1, how to get the name of the caller (in this example, the name is method1) in method2?

inspect.getframeinfo and other related functions in inspect can help:
>>> import inspect
>>> def f1(): f2()
...
>>> def f2():
... curframe = inspect.currentframe()
... calframe = inspect.getouterframes(curframe, 2)
... print('caller name:', calframe[1][3])
...
>>> f1()
caller name: f1
this introspection is intended to help debugging and development; it's not advisable to rely on it for production-functionality purposes.

Shorter version:
import inspect
def f1(): f2()
def f2():
print 'caller name:', inspect.stack()[1][3]
f1()
(with thanks to #Alex, and Stefaan Lippen)

This seems to work just fine:
import sys
print sys._getframe().f_back.f_code.co_name

I would use inspect.currentframe().f_back.f_code.co_name. Its use hasn't been covered in any of the prior answers which are mainly of one of three types:
Some prior answers use inspect.stack but it's known to be too slow.
Some prior answers use sys._getframe which is an internal private function given its leading underscore, and so its use is implicitly discouraged.
One prior answer uses inspect.getouterframes(inspect.currentframe(), 2)[1][3] but it's entirely unclear what [1][3] is accessing.
import inspect
from types import FrameType
from typing import cast
def demo_the_caller_name() -> str:
"""Return the calling function's name."""
# Ref: https://stackoverflow.com/a/57712700/
return cast(FrameType, cast(FrameType, inspect.currentframe()).f_back).f_code.co_name
if __name__ == '__main__':
def _test_caller_name() -> None:
assert demo_the_caller_name() == '_test_caller_name'
_test_caller_name()
Note that cast(FrameType, frame) is used to satisfy mypy.
Acknowlegement: comment by 1313e for an answer.

I've come up with a slightly longer version that tries to build a full method name including module and class.
https://gist.github.com/2151727 (rev 9cccbf)
# Public Domain, i.e. feel free to copy/paste
# Considered a hack in Python 2
import inspect
def caller_name(skip=2):
"""Get a name of a caller in the format module.class.method
`skip` specifies how many levels of stack to skip while getting caller
name. skip=1 means "who calls me", skip=2 "who calls my caller" etc.
An empty string is returned if skipped levels exceed stack height
"""
stack = inspect.stack()
start = 0 + skip
if len(stack) < start + 1:
return ''
parentframe = stack[start][0]
name = []
module = inspect.getmodule(parentframe)
# `modname` can be None when frame is executed directly in console
# TODO(techtonik): consider using __main__
if module:
name.append(module.__name__)
# detect classname
if 'self' in parentframe.f_locals:
# I don't know any way to detect call from the object method
# XXX: there seems to be no way to detect static method call - it will
# be just a function call
name.append(parentframe.f_locals['self'].__class__.__name__)
codename = parentframe.f_code.co_name
if codename != '<module>': # top level usually
name.append( codename ) # function or a method
## Avoid circular refs and frame leaks
# https://docs.python.org/2.7/library/inspect.html#the-interpreter-stack
del parentframe, stack
return ".".join(name)

Bit of an amalgamation of the stuff above. But here's my crack at it.
def print_caller_name(stack_size=3):
def wrapper(fn):
def inner(*args, **kwargs):
import inspect
stack = inspect.stack()
modules = [(index, inspect.getmodule(stack[index][0]))
for index in reversed(range(1, stack_size))]
module_name_lengths = [len(module.__name__)
for _, module in modules]
s = '{index:>5} : {module:^%i} : {name}' % (max(module_name_lengths) + 4)
callers = ['',
s.format(index='level', module='module', name='name'),
'-' * 50]
for index, module in modules:
callers.append(s.format(index=index,
module=module.__name__,
name=stack[index][3]))
callers.append(s.format(index=0,
module=fn.__module__,
name=fn.__name__))
callers.append('')
print('\n'.join(callers))
fn(*args, **kwargs)
return inner
return wrapper
Use:
#print_caller_name(4)
def foo():
return 'foobar'
def bar():
return foo()
def baz():
return bar()
def fizz():
return baz()
fizz()
output is
level : module : name
--------------------------------------------------
3 : None : fizz
2 : None : baz
1 : None : bar
0 : __main__ : foo

You can use decorators, and do not have to use stacktrace
If you want to decorate a method inside a class
import functools
# outside ur class
def printOuterFunctionName(func):
#functools.wraps(func)
def wrapper(self):
print(f'Function Name is: {func.__name__}')
func(self)
return wrapper
class A:
#printOuterFunctionName
def foo():
pass
you may remove functools, self if it is procedural

An alternative to sys._getframe() is used by Python's Logging library to find caller information. Here's the idea:
raise an Exception
immediately catch it in an Except clause
use sys.exc_info to get Traceback frame (tb_frame).
from tb_frame get last caller's frame using f_back.
from last caller's frame get the code object that was being executed in that frame.
In our sample code it would be method1 (not method2) being executed.
From code object obtained, get the object's name -- this is caller method's name in our sample.
Here's the sample code to solve example in the question:
def method1():
method2()
def method2():
try:
raise Exception
except Exception:
frame = sys.exc_info()[2].tb_frame.f_back
print("method2 invoked by: ", frame.f_code.co_name)
# Invoking method1
method1()
Output:
method2 invoked by: method1
Frame has all sorts of details, including line number, file name, argument counts, argument type and so on. The solution works across classes and modules too.

Code:
#!/usr/bin/env python
import inspect
called=lambda: inspect.stack()[1][3]
def caller1():
print "inside: ",called()
def caller2():
print "inside: ",called()
if __name__=='__main__':
caller1()
caller2()
Output:
shahid#shahid-VirtualBox:~/Documents$ python test_func.py
inside: caller1
inside: caller2
shahid#shahid-VirtualBox:~/Documents$

I found a way if you're going across classes and want the class the method belongs to AND the method. It takes a bit of extraction work but it makes its point. This works in Python 2.7.13.
import inspect, os
class ClassOne:
def method1(self):
classtwoObj.method2()
class ClassTwo:
def method2(self):
curframe = inspect.currentframe()
calframe = inspect.getouterframes(curframe, 4)
print '\nI was called from', calframe[1][3], \
'in', calframe[1][4][0][6: -2]
# create objects to access class methods
classoneObj = ClassOne()
classtwoObj = ClassTwo()
# start the program
os.system('cls')
classoneObj.method1()

Hey mate I once made 3 methods without plugins for my app and maybe that can help you, It worked for me so maybe gonna work for you too.
def method_1(a=""):
if a == "method_2":
print("method_2")
if a == "method_3":
print("method_3")
def method_2():
method_1("method_2")
def method_3():
method_1("method_3")
method_2()

Related

Prametarising python function methods [duplicate]

How do I call a function, using a string with the function's name? For example:
import foo
func_name = "bar"
call(foo, func_name) # calls foo.bar()
Given a module foo with method bar:
import foo
bar = getattr(foo, 'bar')
result = bar()
getattr can similarly be used on class instance bound methods, module-level methods, class methods... the list goes on.
Using locals(), which returns a dictionary with the current local symbol table:
locals()["myfunction"]()
Using globals(), which returns a dictionary with the global symbol table:
globals()["myfunction"]()
Based on Patrick's solution, to get the module dynamically as well, import it using:
module = __import__('foo')
func = getattr(module, 'bar')
func()
Just a simple contribution. If the class that we need to instance is in the same file, we can use something like this:
# Get class from globals and create an instance
m = globals()['our_class']()
# Get the function (from the instance) that we need to call
func = getattr(m, 'function_name')
# Call it
func()
For example:
class A:
def __init__(self):
pass
def sampleFunc(self, arg):
print('you called sampleFunc({})'.format(arg))
m = globals()['A']()
func = getattr(m, 'sampleFunc')
func('sample arg')
# Sample, all on one line
getattr(globals()['A'](), 'sampleFunc')('sample arg')
And, if not a class:
def sampleFunc(arg):
print('you called sampleFunc({})'.format(arg))
globals()['sampleFunc']('sample arg')
Given a string, with a complete python path to a function, this is how I went about getting the result of said function:
import importlib
function_string = 'mypackage.mymodule.myfunc'
mod_name, func_name = function_string.rsplit('.',1)
mod = importlib.import_module(mod_name)
func = getattr(mod, func_name)
result = func()
The best answer according to the Python programming FAQ would be:
functions = {'myfoo': foo.bar}
mystring = 'myfoo'
if mystring in functions:
functions[mystring]()
The primary advantage of this technique is that the strings do not need to match the names of the functions. This is also the primary technique used to emulate a case construct
The answer (I hope) no one ever wanted
Eval like behavior
getattr(locals().get("foo") or globals().get("foo"), "bar")()
Why not add auto-importing
getattr(
locals().get("foo") or
globals().get("foo") or
__import__("foo"),
"bar")()
In case we have extra dictionaries we want to check
getattr(next((x for x in (f("foo") for f in
[locals().get, globals().get,
self.__dict__.get, __import__])
if x)),
"bar")()
We need to go deeper
getattr(next((x for x in (f("foo") for f in
([locals().get, globals().get, self.__dict__.get] +
[d.get for d in (list(dd.values()) for dd in
[locals(),globals(),self.__dict__]
if isinstance(dd,dict))
if isinstance(d,dict)] +
[__import__]))
if x)),
"bar")()
For what it's worth, if you needed to pass the function (or class) name and app name as a string, then you could do this:
myFnName = "MyFn"
myAppName = "MyApp"
app = sys.modules[myAppName]
fn = getattr(app,myFnName)
Try this. While this still uses eval, it only uses it to summon the function from the current context. Then, you have the real function to use as you wish.
The main benefit for me from this is that you will get any eval-related errors at the point of summoning the function. Then you will get only the function-related errors when you call.
def say_hello(name):
print 'Hello {}!'.format(name)
# get the function by name
method_name = 'say_hello'
method = eval(method_name)
# call it like a regular function later
args = ['friend']
kwargs = {}
method(*args, **kwargs)
As this question How to dynamically call methods within a class using method-name assignment to a variable [duplicate] marked as a duplicate as this one, I am posting a related answer here:
The scenario is, a method in a class want to call another method on the same class dynamically, I have added some details to original example which offers some wider scenario and clarity:
class MyClass:
def __init__(self, i):
self.i = i
def get(self):
func = getattr(MyClass, 'function{}'.format(self.i))
func(self, 12) # This one will work
# self.func(12) # But this does NOT work.
def function1(self, p1):
print('function1: {}'.format(p1))
# do other stuff
def function2(self, p1):
print('function2: {}'.format(p1))
# do other stuff
if __name__ == "__main__":
class1 = MyClass(1)
class1.get()
class2 = MyClass(2)
class2.get()
Output (Python 3.7.x)
function1: 12
function2: 12
none of what was suggested helped me. I did discover this though.
<object>.__getattribute__(<string name>)(<params>)
I am using python 2.66
Hope this helps
Although getattr() is elegant (and about 7x faster) method, you can get return value from the function (local, class method, module) with eval as elegant as x = eval('foo.bar')(). And when you implement some error handling then quite securely (the same principle can be used for getattr). Example with module import and class:
# import module, call module function, pass parameters and print retured value with eval():
import random
bar = 'random.randint'
randint = eval(bar)(0,100)
print(randint) # will print random int from <0;100)
# also class method returning (or not) value(s) can be used with eval:
class Say:
def say(something='nothing'):
return something
bar = 'Say.say'
print(eval(bar)('nice to meet you too')) # will print 'nice to meet you'
When module or class does not exist (typo or anything better) then NameError is raised. When function does not exist, then AttributeError is raised. This can be used to handle errors:
# try/except block can be used to catch both errors
try:
eval('Say.talk')() # raises AttributeError because function does not exist
eval('Says.say')() # raises NameError because the class does not exist
# or the same with getattr:
getattr(Say, 'talk')() # raises AttributeError
getattr(Says, 'say')() # raises NameError
except AttributeError:
# do domething or just...
print('Function does not exist')
except NameError:
# do domething or just...
print('Module does not exist')
In python3, you can use the __getattribute__ method. See following example with a list method name string:
func_name = 'reverse'
l = [1, 2, 3, 4]
print(l)
>> [1, 2, 3, 4]
l.__getattribute__(func_name)()
print(l)
>> [4, 3, 2, 1]
Nobody mentioned operator.attrgetter yet:
>>> from operator import attrgetter
>>> l = [1, 2, 3]
>>> attrgetter('reverse')(l)()
>>> l
[3, 2, 1]
>>>
getattr calls method by name from an object.
But this object should be parent of calling class.
The parent class can be got by super(self.__class__, self)
class Base:
def call_base(func):
"""This does not work"""
def new_func(self, *args, **kwargs):
name = func.__name__
getattr(super(self.__class__, self), name)(*args, **kwargs)
return new_func
def f(self, *args):
print(f"BASE method invoked.")
def g(self, *args):
print(f"BASE method invoked.")
class Inherit(Base):
#Base.call_base
def f(self, *args):
"""function body will be ignored by the decorator."""
pass
#Base.call_base
def g(self, *args):
"""function body will be ignored by the decorator."""
pass
Inherit().f() # The goal is to print "BASE method invoked."
i'm facing the similar problem before, which is to convert a string to a function. but i can't use eval() or ast.literal_eval(), because i don't want to execute this code immediately.
e.g. i have a string "foo.bar", and i want to assign it to x as a function name instead of a string, which means i can call the function by x() ON DEMAND.
here's my code:
str_to_convert = "foo.bar"
exec(f"x = {str_to_convert}")
x()
as for your question, you only need to add your module name foo and . before {} as follows:
str_to_convert = "bar"
exec(f"x = foo.{str_to_convert}")
x()
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
You means get the pointer to an inner function from a module
import foo
method = foo.bar
executed = method(parameter)
This is not a better pythonic way indeed is possible for punctual cases
This is a simple answer, this will allow you to clear the screen for example. There are two examples below, with eval and exec, that will print 0 at the top after cleaning (if you're using Windows, change clear to cls, Linux and Mac users leave as is for example) or just execute it, respectively.
eval("os.system(\"clear\")")
exec("os.system(\"clear\")")

python API using function defined as 'lambda' conflicting with intrinsic python function [duplicate]

How do I call a function, using a string with the function's name? For example:
import foo
func_name = "bar"
call(foo, func_name) # calls foo.bar()
Given a module foo with method bar:
import foo
bar = getattr(foo, 'bar')
result = bar()
getattr can similarly be used on class instance bound methods, module-level methods, class methods... the list goes on.
Using locals(), which returns a dictionary with the current local symbol table:
locals()["myfunction"]()
Using globals(), which returns a dictionary with the global symbol table:
globals()["myfunction"]()
Based on Patrick's solution, to get the module dynamically as well, import it using:
module = __import__('foo')
func = getattr(module, 'bar')
func()
Just a simple contribution. If the class that we need to instance is in the same file, we can use something like this:
# Get class from globals and create an instance
m = globals()['our_class']()
# Get the function (from the instance) that we need to call
func = getattr(m, 'function_name')
# Call it
func()
For example:
class A:
def __init__(self):
pass
def sampleFunc(self, arg):
print('you called sampleFunc({})'.format(arg))
m = globals()['A']()
func = getattr(m, 'sampleFunc')
func('sample arg')
# Sample, all on one line
getattr(globals()['A'](), 'sampleFunc')('sample arg')
And, if not a class:
def sampleFunc(arg):
print('you called sampleFunc({})'.format(arg))
globals()['sampleFunc']('sample arg')
Given a string, with a complete python path to a function, this is how I went about getting the result of said function:
import importlib
function_string = 'mypackage.mymodule.myfunc'
mod_name, func_name = function_string.rsplit('.',1)
mod = importlib.import_module(mod_name)
func = getattr(mod, func_name)
result = func()
The best answer according to the Python programming FAQ would be:
functions = {'myfoo': foo.bar}
mystring = 'myfoo'
if mystring in functions:
functions[mystring]()
The primary advantage of this technique is that the strings do not need to match the names of the functions. This is also the primary technique used to emulate a case construct
The answer (I hope) no one ever wanted
Eval like behavior
getattr(locals().get("foo") or globals().get("foo"), "bar")()
Why not add auto-importing
getattr(
locals().get("foo") or
globals().get("foo") or
__import__("foo"),
"bar")()
In case we have extra dictionaries we want to check
getattr(next((x for x in (f("foo") for f in
[locals().get, globals().get,
self.__dict__.get, __import__])
if x)),
"bar")()
We need to go deeper
getattr(next((x for x in (f("foo") for f in
([locals().get, globals().get, self.__dict__.get] +
[d.get for d in (list(dd.values()) for dd in
[locals(),globals(),self.__dict__]
if isinstance(dd,dict))
if isinstance(d,dict)] +
[__import__]))
if x)),
"bar")()
For what it's worth, if you needed to pass the function (or class) name and app name as a string, then you could do this:
myFnName = "MyFn"
myAppName = "MyApp"
app = sys.modules[myAppName]
fn = getattr(app,myFnName)
Try this. While this still uses eval, it only uses it to summon the function from the current context. Then, you have the real function to use as you wish.
The main benefit for me from this is that you will get any eval-related errors at the point of summoning the function. Then you will get only the function-related errors when you call.
def say_hello(name):
print 'Hello {}!'.format(name)
# get the function by name
method_name = 'say_hello'
method = eval(method_name)
# call it like a regular function later
args = ['friend']
kwargs = {}
method(*args, **kwargs)
As this question How to dynamically call methods within a class using method-name assignment to a variable [duplicate] marked as a duplicate as this one, I am posting a related answer here:
The scenario is, a method in a class want to call another method on the same class dynamically, I have added some details to original example which offers some wider scenario and clarity:
class MyClass:
def __init__(self, i):
self.i = i
def get(self):
func = getattr(MyClass, 'function{}'.format(self.i))
func(self, 12) # This one will work
# self.func(12) # But this does NOT work.
def function1(self, p1):
print('function1: {}'.format(p1))
# do other stuff
def function2(self, p1):
print('function2: {}'.format(p1))
# do other stuff
if __name__ == "__main__":
class1 = MyClass(1)
class1.get()
class2 = MyClass(2)
class2.get()
Output (Python 3.7.x)
function1: 12
function2: 12
none of what was suggested helped me. I did discover this though.
<object>.__getattribute__(<string name>)(<params>)
I am using python 2.66
Hope this helps
Although getattr() is elegant (and about 7x faster) method, you can get return value from the function (local, class method, module) with eval as elegant as x = eval('foo.bar')(). And when you implement some error handling then quite securely (the same principle can be used for getattr). Example with module import and class:
# import module, call module function, pass parameters and print retured value with eval():
import random
bar = 'random.randint'
randint = eval(bar)(0,100)
print(randint) # will print random int from <0;100)
# also class method returning (or not) value(s) can be used with eval:
class Say:
def say(something='nothing'):
return something
bar = 'Say.say'
print(eval(bar)('nice to meet you too')) # will print 'nice to meet you'
When module or class does not exist (typo or anything better) then NameError is raised. When function does not exist, then AttributeError is raised. This can be used to handle errors:
# try/except block can be used to catch both errors
try:
eval('Say.talk')() # raises AttributeError because function does not exist
eval('Says.say')() # raises NameError because the class does not exist
# or the same with getattr:
getattr(Say, 'talk')() # raises AttributeError
getattr(Says, 'say')() # raises NameError
except AttributeError:
# do domething or just...
print('Function does not exist')
except NameError:
# do domething or just...
print('Module does not exist')
In python3, you can use the __getattribute__ method. See following example with a list method name string:
func_name = 'reverse'
l = [1, 2, 3, 4]
print(l)
>> [1, 2, 3, 4]
l.__getattribute__(func_name)()
print(l)
>> [4, 3, 2, 1]
Nobody mentioned operator.attrgetter yet:
>>> from operator import attrgetter
>>> l = [1, 2, 3]
>>> attrgetter('reverse')(l)()
>>> l
[3, 2, 1]
>>>
getattr calls method by name from an object.
But this object should be parent of calling class.
The parent class can be got by super(self.__class__, self)
class Base:
def call_base(func):
"""This does not work"""
def new_func(self, *args, **kwargs):
name = func.__name__
getattr(super(self.__class__, self), name)(*args, **kwargs)
return new_func
def f(self, *args):
print(f"BASE method invoked.")
def g(self, *args):
print(f"BASE method invoked.")
class Inherit(Base):
#Base.call_base
def f(self, *args):
"""function body will be ignored by the decorator."""
pass
#Base.call_base
def g(self, *args):
"""function body will be ignored by the decorator."""
pass
Inherit().f() # The goal is to print "BASE method invoked."
i'm facing the similar problem before, which is to convert a string to a function. but i can't use eval() or ast.literal_eval(), because i don't want to execute this code immediately.
e.g. i have a string "foo.bar", and i want to assign it to x as a function name instead of a string, which means i can call the function by x() ON DEMAND.
here's my code:
str_to_convert = "foo.bar"
exec(f"x = {str_to_convert}")
x()
as for your question, you only need to add your module name foo and . before {} as follows:
str_to_convert = "bar"
exec(f"x = foo.{str_to_convert}")
x()
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
You means get the pointer to an inner function from a module
import foo
method = foo.bar
executed = method(parameter)
This is not a better pythonic way indeed is possible for punctual cases
This is a simple answer, this will allow you to clear the screen for example. There are two examples below, with eval and exec, that will print 0 at the top after cleaning (if you're using Windows, change clear to cls, Linux and Mac users leave as is for example) or just execute it, respectively.
eval("os.system(\"clear\")")
exec("os.system(\"clear\")")

How to get builtin_function_or_method objects copied in ram without wrapping? [duplicate]

I would like to make a deepcopy of a function in Python. The copy module is not helpful, according to the documentation, which says:
This module does not copy types like module, method, stack trace, stack frame, file,
socket, window, array, or any similar types. It does “copy” functions and classes (shallow
and deeply), by returning the original object unchanged; this is compatible with the way
these are treated by the pickle module.
My goal is to have two functions with the same implementation but with different docstrings.
def A():
"""A"""
pass
B = make_a_deepcopy_of(A)
B.__doc__ = """B"""
So how can this be done?
The FunctionType constructor is used to make a deep copy of a function.
import types
def copy_func(f, name=None):
return types.FunctionType(f.func_code, f.func_globals, name or f.func_name,
f.func_defaults, f.func_closure)
def A():
"""A"""
pass
B = copy_func(A, "B")
B.__doc__ = """B"""
My goal is to have two functions with the same implementation but with different docstrings.
Most users will do this, say the original function is in old_module.py:
def implementation(arg1, arg2):
"""this is a killer function"""
and in new_module.py
from old_module import implementation as _implementation
def implementation(arg1, arg2):
"""a different docstring"""
return _implementation(arg1, arg2)
This is the most straightforward way to reuse functionality. It is easy to read and understand the intent.
Nevertheless, perhaps you have a good reason for your main question:
How can I make a deepcopy of a function in Python?
To keep this compatible with Python 2 and 3, I recommend using the function's special __dunder__ attributes. For example:
import types
def copy_func(f, name=None):
'''
return a function with same code, globals, defaults, closure, and
name (or provide a new name)
'''
fn = types.FunctionType(f.__code__, f.__globals__, name or f.__name__,
f.__defaults__, f.__closure__)
# in case f was given attrs (note this dict is a shallow copy):
fn.__dict__.update(f.__dict__)
return fn
And here's an example usage:
def main():
from logging import getLogger as _getLogger # pyflakes:ignore, must copy
getLogger = copy_func(_getLogger)
getLogger.__doc__ += '\n This function is from the Std Lib logging module.\n '
assert getLogger.__doc__ is not _getLogger.__doc__
assert getLogger.__doc__ != _getLogger.__doc__
A commenter says:
This can’t work for built‑in functions
Well I wouldn't do this for a built-in function. I have very little reason to do this for functions written in pure Python, and my suspicion is that if you are doing this, you're probably doing something very wrong (though I could be wrong here).
If you want a function that does what a builtin function does, and reuses the implementation, like a copy would, then you should wrap the function with another function, e.g.:
_sum = sum
def sum(iterable, start=0):
"""sum function that works like the regular sum function, but noisy"""
print('calling the sum function')
return _sum(iterable, start)
from functools import partial
def a():
"""Returns 1"""
return 1
b = partial(a)
b.__doc__ = """Returns 1, OR DOES IT!"""
print help(a)
print help(b)
Wrap it as a partial?
def A():
"""A"""
pass
def B():
"""B"""
return A()
The others answers do not allow for serialization with pickle. Here a code that I am using to clone a function and allow for serialization for python3:
import pickle
import dill
import types
def foo():
print ('a')
oldCode=foo.__code__
name='IAmFooCopied'
newCode= types.CodeType(
oldCode.co_argcount, # integer
oldCode.co_kwonlyargcount, # integer
oldCode.co_nlocals, # integer
oldCode.co_stacksize, # integer
oldCode.co_flags, # integer
oldCode.co_code, # bytes
oldCode.co_consts, # tuple
oldCode.co_names, # tuple
oldCode.co_varnames, # tuple
oldCode.co_filename, # string
name, # string
oldCode.co_firstlineno, # integer
oldCode.co_lnotab, # bytes
oldCode.co_freevars, # tuple
oldCode.co_cellvars # tuple
)
IAmFooCopied=types.FunctionType(newCode, foo.__globals__, name,foo.__defaults__ , foo.__closure__)
IAmFooCopied.__qualname__= name
print ( 'printing foo and the copy', IAmFooCopied, foo )
print ( 'dill output: ', dill.dumps(IAmFooCopied ))
print ( 'pickle Output: ', pickle.dumps (IAmFooCopied) )
Output:
printing foo and the copy <function IAmFooCopied at 0x7f8a6a8159d8> <function foo at 0x7f8a6b5f5268>
dill output: b'\x80\x03cdill._dill\n_create_function\nq\x00(cdill._dill\n_load_type\nq\x01X\x08\x00\x00\x00CodeTypeq\x02\x85q\x03Rq\x04(K\x00K\x00K\x00K\x02KCC\x0ct\x00d\x01\x83\x01\x01\x00d\x00S\x00q\x05NX\x01\x00\x00\x00aq\x06\x86q\x07X\x05\x00\x00\x00printq\x08\x85q\t)X\x10\x00\x00\x00testCloneFunc.pyq\nX\x0c\x00\x00\x00IAmFooCopiedq\x0bK\x05C\x02\x00\x01q\x0c))tq\rRq\x0ec__builtin__\n__main__\nh\x0bNN}q\x0ftq\x10Rq\x11.'
pickle Output: b'\x80\x03c__main__\nIAmFooCopied\nq\x00.'
You may encounter problem with the qualname attribute if you try this snippet with class methods (I think pickle should fail to find your function). I never tried it, however it should be easily fixable. Just check the doc about qualname
It's quite easy to do using lambda and rest parameters:
def my_copy(f):
# Create a lambda that mimics f
g = lambda *args: f(*args)
# Add any properties of f
t = list(filter(lambda prop: not ("__" in prop),dir(f)))
i = 0
while i < len(t):
setattr(g,t[i],getattr(f,t[i]))
i += 1
return g
# Test
def sqr(x): return x*x
sqr.foo = 500
sqr_copy = my_copy(sqr)
print(sqr_copy(5)) # -> 25
print(sqr_copy(6)) # -> 36
print(sqr_copy.foo) # -> 500
print(sqr_copy == sqr) # -> False
Try it online!
put it in a function:
def makefunc( docstring ):
def f():
pass
f.__doc__ = docstring
return f
f = makefunc('I am f')
g = makefunc("I am f too")
Adjusted for python3
import types
def copy_func(f, name=None):
return types.FunctionType(f.__code__, f.__globals__, name or f.__name__,
f.__defaults__, f.__closure__)
def func1(x):
return 2*x
func2=copy_func(func1)
print(func2(7))
I've implemented a general-purpose function copy in haggis, a library which I wrote and maintain (available with pip but probably not conda). haggis.objects.copy_func makes a copy on which you can not only reassign the __doc__ attribute, but also modify the module and __globals__ attributes effectively.
from haggis.objects import copy_func
def a(*args, **kwargs):
"""A docstring"""
a2 = copy_func(a)
a2.__doc__ = """Another docstring"""
>>> a == a2
False
>>> a.__code__ == a2.__code__
True
>>> a.__doc__
'A docstring'
>>> a2.__doc__
'Another docstring'

Using a String in Place of a Class to Access a Method, Function, or Attribute Inside of It? [duplicate]

How do I call a function, using a string with the function's name? For example:
import foo
func_name = "bar"
call(foo, func_name) # calls foo.bar()
Given a module foo with method bar:
import foo
bar = getattr(foo, 'bar')
result = bar()
getattr can similarly be used on class instance bound methods, module-level methods, class methods... the list goes on.
Using locals(), which returns a dictionary with the current local symbol table:
locals()["myfunction"]()
Using globals(), which returns a dictionary with the global symbol table:
globals()["myfunction"]()
Based on Patrick's solution, to get the module dynamically as well, import it using:
module = __import__('foo')
func = getattr(module, 'bar')
func()
Just a simple contribution. If the class that we need to instance is in the same file, we can use something like this:
# Get class from globals and create an instance
m = globals()['our_class']()
# Get the function (from the instance) that we need to call
func = getattr(m, 'function_name')
# Call it
func()
For example:
class A:
def __init__(self):
pass
def sampleFunc(self, arg):
print('you called sampleFunc({})'.format(arg))
m = globals()['A']()
func = getattr(m, 'sampleFunc')
func('sample arg')
# Sample, all on one line
getattr(globals()['A'](), 'sampleFunc')('sample arg')
And, if not a class:
def sampleFunc(arg):
print('you called sampleFunc({})'.format(arg))
globals()['sampleFunc']('sample arg')
Given a string, with a complete python path to a function, this is how I went about getting the result of said function:
import importlib
function_string = 'mypackage.mymodule.myfunc'
mod_name, func_name = function_string.rsplit('.',1)
mod = importlib.import_module(mod_name)
func = getattr(mod, func_name)
result = func()
The best answer according to the Python programming FAQ would be:
functions = {'myfoo': foo.bar}
mystring = 'myfoo'
if mystring in functions:
functions[mystring]()
The primary advantage of this technique is that the strings do not need to match the names of the functions. This is also the primary technique used to emulate a case construct
The answer (I hope) no one ever wanted
Eval like behavior
getattr(locals().get("foo") or globals().get("foo"), "bar")()
Why not add auto-importing
getattr(
locals().get("foo") or
globals().get("foo") or
__import__("foo"),
"bar")()
In case we have extra dictionaries we want to check
getattr(next((x for x in (f("foo") for f in
[locals().get, globals().get,
self.__dict__.get, __import__])
if x)),
"bar")()
We need to go deeper
getattr(next((x for x in (f("foo") for f in
([locals().get, globals().get, self.__dict__.get] +
[d.get for d in (list(dd.values()) for dd in
[locals(),globals(),self.__dict__]
if isinstance(dd,dict))
if isinstance(d,dict)] +
[__import__]))
if x)),
"bar")()
For what it's worth, if you needed to pass the function (or class) name and app name as a string, then you could do this:
myFnName = "MyFn"
myAppName = "MyApp"
app = sys.modules[myAppName]
fn = getattr(app,myFnName)
Try this. While this still uses eval, it only uses it to summon the function from the current context. Then, you have the real function to use as you wish.
The main benefit for me from this is that you will get any eval-related errors at the point of summoning the function. Then you will get only the function-related errors when you call.
def say_hello(name):
print 'Hello {}!'.format(name)
# get the function by name
method_name = 'say_hello'
method = eval(method_name)
# call it like a regular function later
args = ['friend']
kwargs = {}
method(*args, **kwargs)
As this question How to dynamically call methods within a class using method-name assignment to a variable [duplicate] marked as a duplicate as this one, I am posting a related answer here:
The scenario is, a method in a class want to call another method on the same class dynamically, I have added some details to original example which offers some wider scenario and clarity:
class MyClass:
def __init__(self, i):
self.i = i
def get(self):
func = getattr(MyClass, 'function{}'.format(self.i))
func(self, 12) # This one will work
# self.func(12) # But this does NOT work.
def function1(self, p1):
print('function1: {}'.format(p1))
# do other stuff
def function2(self, p1):
print('function2: {}'.format(p1))
# do other stuff
if __name__ == "__main__":
class1 = MyClass(1)
class1.get()
class2 = MyClass(2)
class2.get()
Output (Python 3.7.x)
function1: 12
function2: 12
none of what was suggested helped me. I did discover this though.
<object>.__getattribute__(<string name>)(<params>)
I am using python 2.66
Hope this helps
Although getattr() is elegant (and about 7x faster) method, you can get return value from the function (local, class method, module) with eval as elegant as x = eval('foo.bar')(). And when you implement some error handling then quite securely (the same principle can be used for getattr). Example with module import and class:
# import module, call module function, pass parameters and print retured value with eval():
import random
bar = 'random.randint'
randint = eval(bar)(0,100)
print(randint) # will print random int from <0;100)
# also class method returning (or not) value(s) can be used with eval:
class Say:
def say(something='nothing'):
return something
bar = 'Say.say'
print(eval(bar)('nice to meet you too')) # will print 'nice to meet you'
When module or class does not exist (typo or anything better) then NameError is raised. When function does not exist, then AttributeError is raised. This can be used to handle errors:
# try/except block can be used to catch both errors
try:
eval('Say.talk')() # raises AttributeError because function does not exist
eval('Says.say')() # raises NameError because the class does not exist
# or the same with getattr:
getattr(Say, 'talk')() # raises AttributeError
getattr(Says, 'say')() # raises NameError
except AttributeError:
# do domething or just...
print('Function does not exist')
except NameError:
# do domething or just...
print('Module does not exist')
In python3, you can use the __getattribute__ method. See following example with a list method name string:
func_name = 'reverse'
l = [1, 2, 3, 4]
print(l)
>> [1, 2, 3, 4]
l.__getattribute__(func_name)()
print(l)
>> [4, 3, 2, 1]
Nobody mentioned operator.attrgetter yet:
>>> from operator import attrgetter
>>> l = [1, 2, 3]
>>> attrgetter('reverse')(l)()
>>> l
[3, 2, 1]
>>>
getattr calls method by name from an object.
But this object should be parent of calling class.
The parent class can be got by super(self.__class__, self)
class Base:
def call_base(func):
"""This does not work"""
def new_func(self, *args, **kwargs):
name = func.__name__
getattr(super(self.__class__, self), name)(*args, **kwargs)
return new_func
def f(self, *args):
print(f"BASE method invoked.")
def g(self, *args):
print(f"BASE method invoked.")
class Inherit(Base):
#Base.call_base
def f(self, *args):
"""function body will be ignored by the decorator."""
pass
#Base.call_base
def g(self, *args):
"""function body will be ignored by the decorator."""
pass
Inherit().f() # The goal is to print "BASE method invoked."
i'm facing the similar problem before, which is to convert a string to a function. but i can't use eval() or ast.literal_eval(), because i don't want to execute this code immediately.
e.g. i have a string "foo.bar", and i want to assign it to x as a function name instead of a string, which means i can call the function by x() ON DEMAND.
here's my code:
str_to_convert = "foo.bar"
exec(f"x = {str_to_convert}")
x()
as for your question, you only need to add your module name foo and . before {} as follows:
str_to_convert = "bar"
exec(f"x = foo.{str_to_convert}")
x()
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
WARNING!!! either eval() or exec() is a dangerous method, you should confirm the safety.
You means get the pointer to an inner function from a module
import foo
method = foo.bar
executed = method(parameter)
This is not a better pythonic way indeed is possible for punctual cases
This is a simple answer, this will allow you to clear the screen for example. There are two examples below, with eval and exec, that will print 0 at the top after cleaning (if you're using Windows, change clear to cls, Linux and Mac users leave as is for example) or just execute it, respectively.
eval("os.system(\"clear\")")
exec("os.system(\"clear\")")

Find Out If a Function has been Called

I am programming in Python, and I am wondering if i can test if a function has been called in my code
def example():
pass
example()
#Pseudocode:
if example.has_been_called:
print("foo bar")
How would I do this?
If it's OK for the function to know its own name, you can use a function attribute:
def example():
example.has_been_called = True
pass
example.has_been_called = False
example()
#Actual Code!:
if example.has_been_called:
print("foo bar")
You could also use a decorator to set the attribute:
import functools
def trackcalls(func):
#functools.wraps(func)
def wrapper(*args, **kwargs):
wrapper.has_been_called = True
return func(*args, **kwargs)
wrapper.has_been_called = False
return wrapper
#trackcalls
def example():
pass
example()
#Actual Code!:
if example.has_been_called:
print("foo bar")
A minimal example using unittest.mock.Mock from the standard library:
from unittest.mock import Mock
def example():
pass
example_mock = Mock(side_effect=example)
example_mock()
#Pseudocode:
if example_mock.called:
print("foo bar")
Console output after running the script:
foo bar
This approach is nice because it doesn't require you to modify the example function itself, which is useful if you want to perform this check in some unit-testing code, without modifying the source code itself (EG to store a has_been_called attribute, or wrap the function in a decorator).
Explanation
As described in the documentation for the unittest.mock.Mock class, the side_effect argument to the Mock() constructor specifies "a function to be called whenever the Mock is called".
The Mock.called attribute specifies "a boolean representing whether or not the mock object has been called".
The Mock class has other attributes you may find useful, EG:
call_count: An integer telling you how many times the mock object has been called
call_args: This is either None (if the mock hasn’t been called), or the arguments that the mock was last called with
call_args_list: This is a list of all the calls made to the mock object in sequence (so the length of the list is the number of times it has been called). Before any calls have been made it is an empty list
The Mock class also has convenient methods for making assert statements based on how many times a Mock object was called, and what arguments it was called with, EG:
assert_called_once_with(*args, **kwargs): Assert that the mock was called exactly once and that that call was with the specified arguments
We can use mock.Mock
from unittest import mock
def check_called(func):
return mock.Mock(side_effect=func)
#check_called
def summator(a, b):
print(a + b)
summator(1, 3)
summator.assert_called()
assert summator.called == True
assert summator.call_count > 0
summator.assert_called_with(1, 3)
summator.assert_called_with(1, 5) # error
# AssertionError: Expected call: mock(1, 5)
# Actual call: mock(1, 3)
Memoization functions have been around since the 1960s. In python you can use them as decorators on your example() function.
The standard memoization function looks something like this:
def memoize(func):
memo = {}
def wrapper(*args):
if not args in memo:
memo[args] = func(*args)
return memo[args]
return wrapper
and you decorate your function like this:
#memoize
def example():
pass
In python3.2, you can use the functools.lru_cache instead of the memoziation function.
import functools
#functools.lru_cache(maxsize=None)
def example():
pass
Here's a decorator that will watch all your functiona, using colorama, and return a nice output.
try:
import colorama
except ImportError:
class StdClass: pass
def passer(*args, **kwargs): pass
colorama = StdClass()
colorama.init = passer
colorama.Fore = StdClass()
colorama.Fore.RED = colorama.Fore.GREEN = ''
def check_for_use(show=False):
if show:
try:
check_for_use.functions
except AttributeError:
return
no_error = True
for function in check_for_use.functions.keys():
if check_for_use.functions[function][0] is False:
print(colorama.Fore.RED + 'The function {!r} hasn\'t been called. Defined in "{}" '.format(function, check_for_use.functions[function][1].__code__.co_filename))
no_error = False
if no_error:
print(colorama.Fore.GREEN + 'Great! All your checked function are being called!')
return check_for_use.functions
try:
check_for_use.functions
except AttributeError:
check_for_use.functions = {}
if colorama:
colorama.init(autoreset=True)
def add(function):
check_for_use.functions[function.__name__] = [False, function]
def func(*args, **kwargs):
check_for_use.functions[function.__name__] = [True, function]
function(*args, **kwargs)
return func
return add
#check_for_use()
def hello():
print('Hello world!')
#check_for_use()
def bonjour(nb):
print('Bonjour tout le monde!')
# hello(); bonjour(0)
hello()
check_for_use(True) # outputs the following
Output:
Hello world!
The function 'bonjour' hasn't been called. Defined in "path_to_file.py"
You can also create a variable and increment it in the function. Later you can check if it's 1 or >= 0.

Categories