Related
This question already has answers here:
Elegant way to unpack limited dict values into local variables in Python
(5 answers)
Closed 9 months ago.
Is there a Pythonic way to assign the values of a dictionary to its keys, in order to convert the dictionary entries into variables?
I tried this out:
>>> d = {'a':1, 'b':2}
>>> for key,val in d.items():
exec('exec(key)=val')
exec(key)=val
^
SyntaxError: invalid syntax
I am certain that the key-value pairs are correct because they were previously defined as variables by me before. I then stored these variables in a dictionary (as key-value pairs) and would like to reuse them in a different function. I could just define them all over again in the new function, but because I may have a dictionary with about 20 entries, I thought there may be a more efficient way of doing this.
You can do it in a single line with:
>>> d = {'a': 1, 'b': 2}
>>> locals().update(d)
>>> a
1
However, you should be careful with how Python may optimize locals/globals access when using this trick.
Note
I think editing locals() like that is generally a bad idea. If you think globals() is a better alternative, think it twice! :-D
Instead, I would rather always use a namespace.
With Python 3 you can:
>>> from types import SimpleNamespace
>>> d = {'a': 1, 'b': 2}
>>> n = SimpleNamespace(**d)
>>> n.a
1
If you are stuck with Python 2 or if you need to use some features missing in types.SimpleNamespace, you can also:
>>> from argparse import Namespace
>>> d = {'a': 1, 'b': 2}
>>> n = Namespace(**d)
>>> n.a
1
If you are not expecting to modify your data, you may as well consider using collections.namedtuple, also available in Python 3.
This was what I was looking for:
>>> d = {'a':1, 'b':2}
>>> for key,val in d.items():
exec(key + '=val')
You already have a perfectly good dictionary. Just use that. If you know what the keys are going to be, and you're absolutely sure this is a reasonable idea, you can do something like
a, b = d['a'], d['b']
but most of the time, you should just use the dictionary. (If using the dictionary is awkward, you are probably not organizing your data well; ask for help reorganizing it.)
you can use operator.itemgetter
>>> from operator import itemgetter
>>> d = {'a':1, 'b':2}
>>> a, b = itemgetter('a', 'b')(d)
>>> a
1
>>> b
2
Consider the "Bunch" solution in Python: load variables in a dict into namespace. Your variables end up as part of a new object, not locals, but you can treat them as variables instead of dict entries.
class Bunch(object):
def __init__(self, adict):
self.__dict__.update(adict)
d = {'a':1, 'b':2}
vars = Bunch(d)
print vars.a, vars.b
Python has great support for list unpacking, but not dict or object unpacking. The most unsurprising and Pythonic approach seems to be accessing each item by hand to build an intermediate tuple as described in this answer:
a, b = d['a'], d['b']
However, if you have a lot of properties, or variable names are long, it can get nasty to do:
great, wow, awesome = dictionary['great'], dictionary['wow'], dictionary['awesome']
For context, the JavaScript equivalent of the above (destructuring) is:
const {great, wow, awesome} = dictionary;
Here's an option that is a bit more dynamic:
>>> dictionary = dict(great=0, wow=1, awesome=2)
>>> great, wow, awesome = (dictionary[k] for k in ("great", "wow", "awesome"))
>>> great
0
>>> awesome
2
This is still verbose; you could write a function to abstract things a bit, but unfortunately you still have to type everything twice:
>>> def unpack(dct, *keys):
... return (dct[k] for k in keys)
...
>>> dictionary = dict(great=0, wow=1, awesome=2)
>>> great, wow, awesome = unpack(dictionary, "great", "wow", "awesome")
You can generalize this to work on objects too:
>>> def unpack(x, *keys):
... if isinstance(x, dict):
... return (x[k] for k in keys)
... return (getattr(x, k) for k in keys)
...
>>> from collections import namedtuple
>>> Foo = namedtuple("Foo", "a b c d e")
>>> foo = Foo(a=0, b=1, c=2, d=3, e=4)
>>> c, b, d, a = unpack(foo, "c", "b", "d", "a")
>>> d
3
After all is said and done, unpacking by hand on multiple lines is probably best for real production code that you need to be safe and comprehensible:
>>> great = dictionary["great"]
>>> wow = dictionary["wow"]
>>> awesome = dictionary["awesome"]
Use pandas:
import pandas as pd
var=pd.Series({'a':1, 'b':2})
#update both keys and variables
var.a=3
print(var.a,var['a'])
How do I add a key to an existing dictionary? It doesn't have an .add() method.
You create a new key/value pair on a dictionary by assigning a value to that key
d = {'key': 'value'}
print(d) # {'key': 'value'}
d['mynewkey'] = 'mynewvalue'
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
If the key doesn't exist, it's added and points to that value. If it exists, the current value it points to is overwritten.
I feel like consolidating info about Python dictionaries:
Creating an empty dictionary
data = {}
# OR
data = dict()
Creating a dictionary with initial values
data = {'a': 1, 'b': 2, 'c': 3}
# OR
data = dict(a=1, b=2, c=3)
# OR
data = {k: v for k, v in (('a', 1), ('b',2), ('c',3))}
Inserting/Updating a single value
data['a'] = 1 # Updates if 'a' exists, else adds 'a'
# OR
data.update({'a': 1})
# OR
data.update(dict(a=1))
# OR
data.update(a=1)
Inserting/Updating multiple values
data.update({'c':3,'d':4}) # Updates 'c' and adds 'd'
Python 3.9+:
The update operator |= now works for dictionaries:
data |= {'c':3,'d':4}
Creating a merged dictionary without modifying originals
data3 = {}
data3.update(data) # Modifies data3, not data
data3.update(data2) # Modifies data3, not data2
Python 3.5+:
This uses a new feature called dictionary unpacking.
data = {**data1, **data2, **data3}
Python 3.9+:
The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
Deleting items in dictionary
del data[key] # Removes specific element in a dictionary
data.pop(key) # Removes the key & returns the value
data.clear() # Clears entire dictionary
Check if a key is already in dictionary
key in data
Iterate through pairs in a dictionary
for key in data: # Iterates just through the keys, ignoring the values
for key, value in d.items(): # Iterates through the pairs
for key in d.keys(): # Iterates just through key, ignoring the values
for value in d.values(): # Iterates just through value, ignoring the keys
Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
To add multiple keys simultaneously, use dict.update():
>>> x = {1:2}
>>> print(x)
{1: 2}
>>> d = {3:4, 5:6, 7:8}
>>> x.update(d)
>>> print(x)
{1: 2, 3: 4, 5: 6, 7: 8}
For adding a single key, the accepted answer has less computational overhead.
"Is it possible to add a key to a Python dictionary after it has been created? It doesn't seem to have an .add() method."
Yes it is possible, and it does have a method that implements this, but you don't want to use it directly.
To demonstrate how and how not to use it, let's create an empty dict with the dict literal, {}:
my_dict = {}
Best Practice 1: Subscript notation
To update this dict with a single new key and value, you can use the subscript notation (see Mappings here) that provides for item assignment:
my_dict['new key'] = 'new value'
my_dict is now:
{'new key': 'new value'}
Best Practice 2: The update method - 2 ways
We can also update the dict with multiple values efficiently as well using the update method. We may be unnecessarily creating an extra dict here, so we hope our dict has already been created and came from or was used for another purpose:
my_dict.update({'key 2': 'value 2', 'key 3': 'value 3'})
my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value'}
Another efficient way of doing this with the update method is with keyword arguments, but since they have to be legitimate python words, you can't have spaces or special symbols or start the name with a number, but many consider this a more readable way to create keys for a dict, and here we certainly avoid creating an extra unnecessary dict:
my_dict.update(foo='bar', foo2='baz')
and my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value',
'foo': 'bar', 'foo2': 'baz'}
So now we have covered three Pythonic ways of updating a dict.
Magic method, __setitem__, and why it should be avoided
There's another way of updating a dict that you shouldn't use, which uses the __setitem__ method. Here's an example of how one might use the __setitem__ method to add a key-value pair to a dict, and a demonstration of the poor performance of using it:
>>> d = {}
>>> d.__setitem__('foo', 'bar')
>>> d
{'foo': 'bar'}
>>> def f():
... d = {}
... for i in xrange(100):
... d['foo'] = i
...
>>> def g():
... d = {}
... for i in xrange(100):
... d.__setitem__('foo', i)
...
>>> import timeit
>>> number = 100
>>> min(timeit.repeat(f, number=number))
0.0020880699157714844
>>> min(timeit.repeat(g, number=number))
0.005071878433227539
So we see that using the subscript notation is actually much faster than using __setitem__. Doing the Pythonic thing, that is, using the language in the way it was intended to be used, usually is both more readable and computationally efficient.
dictionary[key] = value
If you want to add a dictionary within a dictionary you can do it this way.
Example: Add a new entry to your dictionary & sub dictionary
dictionary = {}
dictionary["new key"] = "some new entry" # add new dictionary entry
dictionary["dictionary_within_a_dictionary"] = {} # this is required by python
dictionary["dictionary_within_a_dictionary"]["sub_dict"] = {"other" : "dictionary"}
print (dictionary)
Output:
{'new key': 'some new entry', 'dictionary_within_a_dictionary': {'sub_dict': {'other': 'dictionarly'}}}
NOTE: Python requires that you first add a sub
dictionary["dictionary_within_a_dictionary"] = {}
before adding entries.
The conventional syntax is d[key] = value, but if your keyboard is missing the square bracket keys you could also do:
d.__setitem__(key, value)
In fact, defining __getitem__ and __setitem__ methods is how you can make your own class support the square bracket syntax. See Dive Into Python, Classes That Act Like Dictionaries.
You can create one:
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
self[key] = value
## example
myd = myDict()
myd.add('apples',6)
myd.add('bananas',3)
print(myd)
Gives:
>>>
{'apples': 6, 'bananas': 3}
This popular question addresses functional methods of merging dictionaries a and b.
Here are some of the more straightforward methods (tested in Python 3)...
c = dict( a, **b ) ## see also https://stackoverflow.com/q/2255878
c = dict( list(a.items()) + list(b.items()) )
c = dict( i for d in [a,b] for i in d.items() )
Note: The first method above only works if the keys in b are strings.
To add or modify a single element, the b dictionary would contain only that one element...
c = dict( a, **{'d':'dog'} ) ## returns a dictionary based on 'a'
This is equivalent to...
def functional_dict_add( dictionary, key, value ):
temp = dictionary.copy()
temp[key] = value
return temp
c = functional_dict_add( a, 'd', 'dog' )
Let's pretend you want to live in the immutable world and do not want to modify the original but want to create a new dict that is the result of adding a new key to the original.
In Python 3.5+ you can do:
params = {'a': 1, 'b': 2}
new_params = {**params, **{'c': 3}}
The Python 2 equivalent is:
params = {'a': 1, 'b': 2}
new_params = dict(params, **{'c': 3})
After either of these:
params is still equal to {'a': 1, 'b': 2}
and
new_params is equal to {'a': 1, 'b': 2, 'c': 3}
There will be times when you don't want to modify the original (you only want the result of adding to the original). I find this a refreshing alternative to the following:
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params['c'] = 3
or
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params.update({'c': 3})
Reference: What does `**` mean in the expression `dict(d1, **d2)`?
There is also the strangely named, oddly behaved, and yet still handy dict.setdefault().
This
value = my_dict.setdefault(key, default)
basically just does this:
try:
value = my_dict[key]
except KeyError: # key not found
value = my_dict[key] = default
E.g.,
>>> mydict = {'a':1, 'b':2, 'c':3}
>>> mydict.setdefault('d', 4)
4 # returns new value at mydict['d']
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # a new key/value pair was indeed added
# but see what happens when trying it on an existing key...
>>> mydict.setdefault('a', 111)
1 # old value was returned
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # existing key was ignored
This question has already been answered ad nauseam, but since my
comment
gained a lot of traction, here it is as an answer:
Adding new keys without updating the existing dict
If you are here trying to figure out how to add a key and return a new dictionary (without modifying the existing one), you can do this using the techniques below
Python >= 3.5
new_dict = {**mydict, 'new_key': new_val}
Python < 3.5
new_dict = dict(mydict, new_key=new_val)
Note that with this approach, your key will need to follow the rules of valid identifier names in Python.
If you're not joining two dictionaries, but adding new key-value pairs to a dictionary, then using the subscript notation seems like the best way.
import timeit
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary.update({"aaa": 123123, "asd": 233})')
>> 0.49582505226135254
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary["aaa"] = 123123; dictionary["asd"] = 233;')
>> 0.20782899856567383
However, if you'd like to add, for example, thousands of new key-value pairs, you should consider using the update() method.
Here's another way that I didn't see here:
>>> foo = dict(a=1,b=2)
>>> foo
{'a': 1, 'b': 2}
>>> goo = dict(c=3,**foo)
>>> goo
{'c': 3, 'a': 1, 'b': 2}
You can use the dictionary constructor and implicit expansion to reconstruct a dictionary. Moreover, interestingly, this method can be used to control the positional order during dictionary construction (post Python 3.6). In fact, insertion order is guaranteed for Python 3.7 and above!
>>> foo = dict(a=1,b=2,c=3,d=4)
>>> new_dict = {k: v for k, v in list(foo.items())[:2]}
>>> new_dict
{'a': 1, 'b': 2}
>>> new_dict.update(newvalue=99)
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99}
>>> new_dict.update({k: v for k, v in list(foo.items())[2:]})
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99, 'c': 3, 'd': 4}
>>>
The above is using dictionary comprehension.
First to check whether the key already exists:
a={1:2,3:4}
a.get(1)
2
a.get(5)
None
Then you can add the new key and value.
Add a dictionary (key,value) class.
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
#self[key] = value # add new key and value overwriting any exiting same key
if self.get(key)!=None:
print('key', key, 'already used') # report if key already used
self.setdefault(key, value) # if key exit do nothing
## example
myd = myDict()
name = "fred"
myd.add('apples',6)
print('\n', myd)
myd.add('bananas',3)
print('\n', myd)
myd.add('jack', 7)
print('\n', myd)
myd.add(name, myd)
print('\n', myd)
myd.add('apples', 23)
print('\n', myd)
myd.add(name, 2)
print(myd)
I think it would also be useful to point out Python's collections module that consists of many useful dictionary subclasses and wrappers that simplify the addition and modification of data types in a dictionary, specifically defaultdict:
dict subclass that calls a factory function to supply missing values
This is particularly useful if you are working with dictionaries that always consist of the same data types or structures, for example a dictionary of lists.
>>> from collections import defaultdict
>>> example = defaultdict(int)
>>> example['key'] += 1
>>> example['key']
defaultdict(<class 'int'>, {'key': 1})
If the key does not yet exist, defaultdict assigns the value given (in our case 10) as the initial value to the dictionary (often used inside loops). This operation therefore does two things: it adds a new key to a dictionary (as per question), and assigns the value if the key doesn't yet exist. With the standard dictionary, this would have raised an error as the += operation is trying to access a value that doesn't yet exist:
>>> example = dict()
>>> example['key'] += 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'key'
Without the use of defaultdict, the amount of code to add a new element would be much greater and perhaps looks something like:
# This type of code would often be inside a loop
if 'key' not in example:
example['key'] = 0 # add key and initial value to dict; could also be a list
example['key'] += 1 # this is implementing a counter
defaultdict can also be used with complex data types such as list and set:
>>> example = defaultdict(list)
>>> example['key'].append(1)
>>> example
defaultdict(<class 'list'>, {'key': [1]})
Adding an element automatically initialises the list.
Adding keys to dictionary without using add
# Inserting/Updating single value
# subscript notation method
d['mynewkey'] = 'mynewvalue' # Updates if 'a' exists, else adds 'a'
# OR
d.update({'mynewkey': 'mynewvalue'})
# OR
d.update(dict('mynewkey'='mynewvalue'))
# OR
d.update('mynewkey'='mynewvalue')
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
# To add/update multiple keys simultaneously, use d.update():
x = {3:4, 5:6, 7:8}
d.update(x)
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue', 3: 4, 5: 6, 7: 8}
# update operator |= now works for dictionaries:
d |= {'c':3,'d':4}
# Assigning new key value pair using dictionary unpacking.
data1 = {4:6, 9:10, 17:20}
data2 = {20:30, 32:48, 90:100}
data3 = { 38:"value", 99:"notvalid"}
d = {**data1, **data2, **data3}
# The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
# Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
dico["new key"] = "value"
I am not sure this is a bug of the shelve object,
but it is still quite odd behavior.
If you store a dictionnary object in a shelve object, it seems that you cannot modify easely the associated dictionnary.
Here is a python code to demonstrate:
>>> import shelve
>>> d=shelve.open('test')
>>> d['test'] = {'test1':'A' }
>>> print d['test']['test1']
A
>>> d['test']['test1'] = 'C'
>>> print d['test']['test1']
A # !!! odd
>>> d['test'] = {'test1':'A' }
>>> d1 = d['test']
>>> d1['test1'] = 'C'
>>> print d1
{'test1': 'C'}
>>> d['test']= d1
>>> print d['test']['test1']
C
>>> d['test'] = {'test1':'A' }
>>> d['test'] = {'test1':'C' }
>>> print d['test']['test1']
C
Is it normal behavior of the shelve object in python?
From the documentation,
d[key] = data # store data at key (overwrites old data if
# using an existing key)
data = d[key] # retrieve a COPY of the data at key (raise
# KeyError if no such key) -- NOTE that this
# access returns a *copy* of the entry!
So in your code, d['test']= d1 will modify the original data, but d['test']['test1'] = 'C' will modify the new copied object. Use d = shelve.open('test', writeback=True) to modify this default and check the documentation for more detail.
Hopefully a better explanation:
The Python shelve module is a Key/Value store.
This essentially means it acts like a Python dictionary
(which it does). However when you do:
from shelve import open
d = open("test.db")
d["a"] = {"b": 1}
You are storing the following:
key: "a"
value: {"b": 1}
WHen you then ask the "store" for the key a
you immediately get back the value {"b": 1}
which is now a new object reference (dict)
in memory.
So the following would not store or make any
changes to the value stored in the store:
d["a"]["b"] = 2
This will only make changes to the "in-memory"
dict {"b": 1} which you are referencing
implicitly.
To store a new value for {"b": 1} inside the key a
you must "explicitly" set a new key for a like so:
d["a"] = {"b": 2}
This question already has answers here:
Elegant way to unpack limited dict values into local variables in Python
(5 answers)
Closed 9 months ago.
Is there a Pythonic way to assign the values of a dictionary to its keys, in order to convert the dictionary entries into variables?
I tried this out:
>>> d = {'a':1, 'b':2}
>>> for key,val in d.items():
exec('exec(key)=val')
exec(key)=val
^
SyntaxError: invalid syntax
I am certain that the key-value pairs are correct because they were previously defined as variables by me before. I then stored these variables in a dictionary (as key-value pairs) and would like to reuse them in a different function. I could just define them all over again in the new function, but because I may have a dictionary with about 20 entries, I thought there may be a more efficient way of doing this.
You can do it in a single line with:
>>> d = {'a': 1, 'b': 2}
>>> locals().update(d)
>>> a
1
However, you should be careful with how Python may optimize locals/globals access when using this trick.
Note
I think editing locals() like that is generally a bad idea. If you think globals() is a better alternative, think it twice! :-D
Instead, I would rather always use a namespace.
With Python 3 you can:
>>> from types import SimpleNamespace
>>> d = {'a': 1, 'b': 2}
>>> n = SimpleNamespace(**d)
>>> n.a
1
If you are stuck with Python 2 or if you need to use some features missing in types.SimpleNamespace, you can also:
>>> from argparse import Namespace
>>> d = {'a': 1, 'b': 2}
>>> n = Namespace(**d)
>>> n.a
1
If you are not expecting to modify your data, you may as well consider using collections.namedtuple, also available in Python 3.
This was what I was looking for:
>>> d = {'a':1, 'b':2}
>>> for key,val in d.items():
exec(key + '=val')
You already have a perfectly good dictionary. Just use that. If you know what the keys are going to be, and you're absolutely sure this is a reasonable idea, you can do something like
a, b = d['a'], d['b']
but most of the time, you should just use the dictionary. (If using the dictionary is awkward, you are probably not organizing your data well; ask for help reorganizing it.)
you can use operator.itemgetter
>>> from operator import itemgetter
>>> d = {'a':1, 'b':2}
>>> a, b = itemgetter('a', 'b')(d)
>>> a
1
>>> b
2
Consider the "Bunch" solution in Python: load variables in a dict into namespace. Your variables end up as part of a new object, not locals, but you can treat them as variables instead of dict entries.
class Bunch(object):
def __init__(self, adict):
self.__dict__.update(adict)
d = {'a':1, 'b':2}
vars = Bunch(d)
print vars.a, vars.b
Python has great support for list unpacking, but not dict or object unpacking. The most unsurprising and Pythonic approach seems to be accessing each item by hand to build an intermediate tuple as described in this answer:
a, b = d['a'], d['b']
However, if you have a lot of properties, or variable names are long, it can get nasty to do:
great, wow, awesome = dictionary['great'], dictionary['wow'], dictionary['awesome']
For context, the JavaScript equivalent of the above (destructuring) is:
const {great, wow, awesome} = dictionary;
Here's an option that is a bit more dynamic:
>>> dictionary = dict(great=0, wow=1, awesome=2)
>>> great, wow, awesome = (dictionary[k] for k in ("great", "wow", "awesome"))
>>> great
0
>>> awesome
2
This is still verbose; you could write a function to abstract things a bit, but unfortunately you still have to type everything twice:
>>> def unpack(dct, *keys):
... return (dct[k] for k in keys)
...
>>> dictionary = dict(great=0, wow=1, awesome=2)
>>> great, wow, awesome = unpack(dictionary, "great", "wow", "awesome")
You can generalize this to work on objects too:
>>> def unpack(x, *keys):
... if isinstance(x, dict):
... return (x[k] for k in keys)
... return (getattr(x, k) for k in keys)
...
>>> from collections import namedtuple
>>> Foo = namedtuple("Foo", "a b c d e")
>>> foo = Foo(a=0, b=1, c=2, d=3, e=4)
>>> c, b, d, a = unpack(foo, "c", "b", "d", "a")
>>> d
3
After all is said and done, unpacking by hand on multiple lines is probably best for real production code that you need to be safe and comprehensible:
>>> great = dictionary["great"]
>>> wow = dictionary["wow"]
>>> awesome = dictionary["awesome"]
Use pandas:
import pandas as pd
var=pd.Series({'a':1, 'b':2})
#update both keys and variables
var.a=3
print(var.a,var['a'])
How do I add a key to an existing dictionary? It doesn't have an .add() method.
You create a new key/value pair on a dictionary by assigning a value to that key
d = {'key': 'value'}
print(d) # {'key': 'value'}
d['mynewkey'] = 'mynewvalue'
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
If the key doesn't exist, it's added and points to that value. If it exists, the current value it points to is overwritten.
I feel like consolidating info about Python dictionaries:
Creating an empty dictionary
data = {}
# OR
data = dict()
Creating a dictionary with initial values
data = {'a': 1, 'b': 2, 'c': 3}
# OR
data = dict(a=1, b=2, c=3)
# OR
data = {k: v for k, v in (('a', 1), ('b',2), ('c',3))}
Inserting/Updating a single value
data['a'] = 1 # Updates if 'a' exists, else adds 'a'
# OR
data.update({'a': 1})
# OR
data.update(dict(a=1))
# OR
data.update(a=1)
Inserting/Updating multiple values
data.update({'c':3,'d':4}) # Updates 'c' and adds 'd'
Python 3.9+:
The update operator |= now works for dictionaries:
data |= {'c':3,'d':4}
Creating a merged dictionary without modifying originals
data3 = {}
data3.update(data) # Modifies data3, not data
data3.update(data2) # Modifies data3, not data2
Python 3.5+:
This uses a new feature called dictionary unpacking.
data = {**data1, **data2, **data3}
Python 3.9+:
The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
Deleting items in dictionary
del data[key] # Removes specific element in a dictionary
data.pop(key) # Removes the key & returns the value
data.clear() # Clears entire dictionary
Check if a key is already in dictionary
key in data
Iterate through pairs in a dictionary
for key in data: # Iterates just through the keys, ignoring the values
for key, value in d.items(): # Iterates through the pairs
for key in d.keys(): # Iterates just through key, ignoring the values
for value in d.values(): # Iterates just through value, ignoring the keys
Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
To add multiple keys simultaneously, use dict.update():
>>> x = {1:2}
>>> print(x)
{1: 2}
>>> d = {3:4, 5:6, 7:8}
>>> x.update(d)
>>> print(x)
{1: 2, 3: 4, 5: 6, 7: 8}
For adding a single key, the accepted answer has less computational overhead.
"Is it possible to add a key to a Python dictionary after it has been created? It doesn't seem to have an .add() method."
Yes it is possible, and it does have a method that implements this, but you don't want to use it directly.
To demonstrate how and how not to use it, let's create an empty dict with the dict literal, {}:
my_dict = {}
Best Practice 1: Subscript notation
To update this dict with a single new key and value, you can use the subscript notation (see Mappings here) that provides for item assignment:
my_dict['new key'] = 'new value'
my_dict is now:
{'new key': 'new value'}
Best Practice 2: The update method - 2 ways
We can also update the dict with multiple values efficiently as well using the update method. We may be unnecessarily creating an extra dict here, so we hope our dict has already been created and came from or was used for another purpose:
my_dict.update({'key 2': 'value 2', 'key 3': 'value 3'})
my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value'}
Another efficient way of doing this with the update method is with keyword arguments, but since they have to be legitimate python words, you can't have spaces or special symbols or start the name with a number, but many consider this a more readable way to create keys for a dict, and here we certainly avoid creating an extra unnecessary dict:
my_dict.update(foo='bar', foo2='baz')
and my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value',
'foo': 'bar', 'foo2': 'baz'}
So now we have covered three Pythonic ways of updating a dict.
Magic method, __setitem__, and why it should be avoided
There's another way of updating a dict that you shouldn't use, which uses the __setitem__ method. Here's an example of how one might use the __setitem__ method to add a key-value pair to a dict, and a demonstration of the poor performance of using it:
>>> d = {}
>>> d.__setitem__('foo', 'bar')
>>> d
{'foo': 'bar'}
>>> def f():
... d = {}
... for i in xrange(100):
... d['foo'] = i
...
>>> def g():
... d = {}
... for i in xrange(100):
... d.__setitem__('foo', i)
...
>>> import timeit
>>> number = 100
>>> min(timeit.repeat(f, number=number))
0.0020880699157714844
>>> min(timeit.repeat(g, number=number))
0.005071878433227539
So we see that using the subscript notation is actually much faster than using __setitem__. Doing the Pythonic thing, that is, using the language in the way it was intended to be used, usually is both more readable and computationally efficient.
dictionary[key] = value
If you want to add a dictionary within a dictionary you can do it this way.
Example: Add a new entry to your dictionary & sub dictionary
dictionary = {}
dictionary["new key"] = "some new entry" # add new dictionary entry
dictionary["dictionary_within_a_dictionary"] = {} # this is required by python
dictionary["dictionary_within_a_dictionary"]["sub_dict"] = {"other" : "dictionary"}
print (dictionary)
Output:
{'new key': 'some new entry', 'dictionary_within_a_dictionary': {'sub_dict': {'other': 'dictionarly'}}}
NOTE: Python requires that you first add a sub
dictionary["dictionary_within_a_dictionary"] = {}
before adding entries.
The conventional syntax is d[key] = value, but if your keyboard is missing the square bracket keys you could also do:
d.__setitem__(key, value)
In fact, defining __getitem__ and __setitem__ methods is how you can make your own class support the square bracket syntax. See Dive Into Python, Classes That Act Like Dictionaries.
You can create one:
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
self[key] = value
## example
myd = myDict()
myd.add('apples',6)
myd.add('bananas',3)
print(myd)
Gives:
>>>
{'apples': 6, 'bananas': 3}
This popular question addresses functional methods of merging dictionaries a and b.
Here are some of the more straightforward methods (tested in Python 3)...
c = dict( a, **b ) ## see also https://stackoverflow.com/q/2255878
c = dict( list(a.items()) + list(b.items()) )
c = dict( i for d in [a,b] for i in d.items() )
Note: The first method above only works if the keys in b are strings.
To add or modify a single element, the b dictionary would contain only that one element...
c = dict( a, **{'d':'dog'} ) ## returns a dictionary based on 'a'
This is equivalent to...
def functional_dict_add( dictionary, key, value ):
temp = dictionary.copy()
temp[key] = value
return temp
c = functional_dict_add( a, 'd', 'dog' )
Let's pretend you want to live in the immutable world and do not want to modify the original but want to create a new dict that is the result of adding a new key to the original.
In Python 3.5+ you can do:
params = {'a': 1, 'b': 2}
new_params = {**params, **{'c': 3}}
The Python 2 equivalent is:
params = {'a': 1, 'b': 2}
new_params = dict(params, **{'c': 3})
After either of these:
params is still equal to {'a': 1, 'b': 2}
and
new_params is equal to {'a': 1, 'b': 2, 'c': 3}
There will be times when you don't want to modify the original (you only want the result of adding to the original). I find this a refreshing alternative to the following:
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params['c'] = 3
or
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params.update({'c': 3})
Reference: What does `**` mean in the expression `dict(d1, **d2)`?
There is also the strangely named, oddly behaved, and yet still handy dict.setdefault().
This
value = my_dict.setdefault(key, default)
basically just does this:
try:
value = my_dict[key]
except KeyError: # key not found
value = my_dict[key] = default
E.g.,
>>> mydict = {'a':1, 'b':2, 'c':3}
>>> mydict.setdefault('d', 4)
4 # returns new value at mydict['d']
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # a new key/value pair was indeed added
# but see what happens when trying it on an existing key...
>>> mydict.setdefault('a', 111)
1 # old value was returned
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # existing key was ignored
This question has already been answered ad nauseam, but since my
comment
gained a lot of traction, here it is as an answer:
Adding new keys without updating the existing dict
If you are here trying to figure out how to add a key and return a new dictionary (without modifying the existing one), you can do this using the techniques below
Python >= 3.5
new_dict = {**mydict, 'new_key': new_val}
Python < 3.5
new_dict = dict(mydict, new_key=new_val)
Note that with this approach, your key will need to follow the rules of valid identifier names in Python.
If you're not joining two dictionaries, but adding new key-value pairs to a dictionary, then using the subscript notation seems like the best way.
import timeit
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary.update({"aaa": 123123, "asd": 233})')
>> 0.49582505226135254
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary["aaa"] = 123123; dictionary["asd"] = 233;')
>> 0.20782899856567383
However, if you'd like to add, for example, thousands of new key-value pairs, you should consider using the update() method.
Here's another way that I didn't see here:
>>> foo = dict(a=1,b=2)
>>> foo
{'a': 1, 'b': 2}
>>> goo = dict(c=3,**foo)
>>> goo
{'c': 3, 'a': 1, 'b': 2}
You can use the dictionary constructor and implicit expansion to reconstruct a dictionary. Moreover, interestingly, this method can be used to control the positional order during dictionary construction (post Python 3.6). In fact, insertion order is guaranteed for Python 3.7 and above!
>>> foo = dict(a=1,b=2,c=3,d=4)
>>> new_dict = {k: v for k, v in list(foo.items())[:2]}
>>> new_dict
{'a': 1, 'b': 2}
>>> new_dict.update(newvalue=99)
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99}
>>> new_dict.update({k: v for k, v in list(foo.items())[2:]})
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99, 'c': 3, 'd': 4}
>>>
The above is using dictionary comprehension.
First to check whether the key already exists:
a={1:2,3:4}
a.get(1)
2
a.get(5)
None
Then you can add the new key and value.
Add a dictionary (key,value) class.
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
#self[key] = value # add new key and value overwriting any exiting same key
if self.get(key)!=None:
print('key', key, 'already used') # report if key already used
self.setdefault(key, value) # if key exit do nothing
## example
myd = myDict()
name = "fred"
myd.add('apples',6)
print('\n', myd)
myd.add('bananas',3)
print('\n', myd)
myd.add('jack', 7)
print('\n', myd)
myd.add(name, myd)
print('\n', myd)
myd.add('apples', 23)
print('\n', myd)
myd.add(name, 2)
print(myd)
I think it would also be useful to point out Python's collections module that consists of many useful dictionary subclasses and wrappers that simplify the addition and modification of data types in a dictionary, specifically defaultdict:
dict subclass that calls a factory function to supply missing values
This is particularly useful if you are working with dictionaries that always consist of the same data types or structures, for example a dictionary of lists.
>>> from collections import defaultdict
>>> example = defaultdict(int)
>>> example['key'] += 1
>>> example['key']
defaultdict(<class 'int'>, {'key': 1})
If the key does not yet exist, defaultdict assigns the value given (in our case 10) as the initial value to the dictionary (often used inside loops). This operation therefore does two things: it adds a new key to a dictionary (as per question), and assigns the value if the key doesn't yet exist. With the standard dictionary, this would have raised an error as the += operation is trying to access a value that doesn't yet exist:
>>> example = dict()
>>> example['key'] += 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'key'
Without the use of defaultdict, the amount of code to add a new element would be much greater and perhaps looks something like:
# This type of code would often be inside a loop
if 'key' not in example:
example['key'] = 0 # add key and initial value to dict; could also be a list
example['key'] += 1 # this is implementing a counter
defaultdict can also be used with complex data types such as list and set:
>>> example = defaultdict(list)
>>> example['key'].append(1)
>>> example
defaultdict(<class 'list'>, {'key': [1]})
Adding an element automatically initialises the list.
Adding keys to dictionary without using add
# Inserting/Updating single value
# subscript notation method
d['mynewkey'] = 'mynewvalue' # Updates if 'a' exists, else adds 'a'
# OR
d.update({'mynewkey': 'mynewvalue'})
# OR
d.update(dict('mynewkey'='mynewvalue'))
# OR
d.update('mynewkey'='mynewvalue')
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
# To add/update multiple keys simultaneously, use d.update():
x = {3:4, 5:6, 7:8}
d.update(x)
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue', 3: 4, 5: 6, 7: 8}
# update operator |= now works for dictionaries:
d |= {'c':3,'d':4}
# Assigning new key value pair using dictionary unpacking.
data1 = {4:6, 9:10, 17:20}
data2 = {20:30, 32:48, 90:100}
data3 = { 38:"value", 99:"notvalid"}
d = {**data1, **data2, **data3}
# The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
# Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
dico["new key"] = "value"