Calculating the area underneath a mathematical function - python

I have a range of data that I have approximated using a polynomial of degree 2 in Python. I want to calculate the area underneath this polynomial between 0 and 1.
Is there a calculus, or similar package from numpy that I can use, or should I just make a simple function to integrate these functions?
I'm a little unclear what the best approach for defining mathematical functions is.
Thanks.

If you're integrating only polynomials, you don't need to represent a general mathematical function, use numpy.poly1d, which has an integ method for integration.
>>> import numpy
>>> p = numpy.poly1d([2, 4, 6])
>>> print p
2
2 x + 4 x + 6
>>> i = p.integ()
>>> i
poly1d([ 0.66666667, 2. , 6. , 0. ])
>>> integrand = i(1) - i(0) # Use call notation to evaluate a poly1d
>>> integrand
8.6666666666666661
For integrating arbitrary numerical functions, you would use scipy.integrate with normal Python functions for functions. For integrating functions analytically, you would use sympy. It doesn't sound like you want either in this case, especially not the latter.

Look, Ma, no imports!
>>> coeffs = [2., 4., 6.]
>>> sum(coeff / (i+1) for i, coeff in enumerate(reversed(coeffs)))
8.6666666666666661
>>>
Our guarantee: Works for a polynomial of any positive degree or your money back!
Update from our research lab: Guarantee extended; s/positive/non-negative/ :-)
Update Here's the industrial-strength version that is robust in the face of stray ints in the coefficients without having a function call in the loop, and uses neither enumerate() nor reversed() in the setup:
>>> icoeffs = [2, 4, 6]
>>> tot = 0.0
>>> divisor = float(len(icoeffs))
>>> for coeff in icoeffs:
... tot += coeff / divisor
... divisor -= 1.0
...
>>> tot
8.6666666666666661
>>>

It might be overkill to resort to general-purpose numeric integration algorithms for your special case...if you work out the algebra, there's a simple expression that gives you the area.
You have a polynomial of degree 2: f(x) = ax2 + bx + c
You want to find the area under the curve for x in the range [0,1].
The antiderivative F(x) = ax3/3 + bx2/2 + cx + C
The area under the curve from 0 to 1 is: F(1) - F(0) = a/3 + b/2 + c
So if you're only calculating the area for the interval [0,1], you might consider
using this simple expression rather than resorting to the general-purpose methods.

'quad' in scipy.integrate is the general purpose method for integrating functions of a single variable over a definite interval. In a simple case (such as the one described in your question) you pass in your function and the lower and upper limits, respectively. 'quad' returns a tuple comprised of the integral result and an upper bound on the error term.
from scipy import integrate as TG
fnx = lambda x: 3*x**2 + 9*x # some polynomial of degree two
aoc, err = TG.quad(fnx, 0, 1)
[Note: after i posted this i an answer posted before mine, and which represents polynomials using 'poly1d' in Numpy. My scriptlet just above can also accept a polynomial in this form:
import numpy as NP
px = NP.poly1d([2,4,6])
aoc, err = TG.quad(px, 0, 1)
# returns (8.6666666666666661, 9.6219328800846896e-14)

If one is integrating quadratic or cubic polynomials from the get-go, an alternative to deriving the explicit integral expressions is to use Simpson's rule; it is a deep fact that this method exactly integrates polynomials of degree 3 and lower.
To borrow Mike Graham's example (I haven't used Python in a while; apologies if the code looks wonky):
>>> import numpy
>>> p = numpy.poly1d([2, 4, 6])
>>> print p
2
2 x + 4 x + 6
>>> integrand = (1 - 0)(p(0) + 4*p((0 + 1)/2) + p(1))/6
uses Simpson's rule to compute the value of integrand. You can verify for yourself that the method works as advertised.
Of course, I did not simplify the expression for integrand to indicate that the 0 and 1 can be replaced with arbitrary values u and v, and the code will still work for finding the integral of the function from u to v.

Related

Numpy: Solve linear equation system with one unknown + number

I would like to solve a linear equation system in numpy in order to check whether a point lines up with a vector or not.
Given are the following equations for a vector2:
point[x] = vector1[x] + λ * vector2[x]
point[y] = vector1[y] + λ * vector2[y]
Numpys linalg.solve() offers the option to solve two equations in the form:
ax + by = c
by defining the parameters a and b in a numpy.array().
But I can't seem to find a way to deal with equations with one fixed parameter like:
m*x + b = 0
Am I missing a point or do I have to deal with another solution?
Thanks in advance!
Hi I will give it a try to help with this question.
The numpy.linagl.solve says:
Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.
Note the assumptions made on the matrix!
Lambda the same
If your lambda for the point[x] and point[y] equation should be the same. Then just concatenate all the vectors.
x_new = np.concatenate([x,y])
vec1_new = np.concatenate([vec1_x,vec1_y])
...
Assuming that this will overdetermined your system and probably it will. Meaning you have too many equations and only one parameter to determine (well-determined assumption violated). My approach would be to go with least sqare.
The numpy.linagl.lstsq has a least square method too. Where the equation is y = mx + c is solved. For your case this is y = point[x], x = vector2[x] and c = vector1[x].
This is copied from the numpy.linagl.lstsq example:
x = np.array([0, 1, 2, 3])
y = np.array([-1, 0.2, 0.9, 2.1])
A = np.vstack([x, np.ones(len(x))]).T # => horizontal stack
m, c = np.linalg.lstsq(A, y, rcond=None)[0]
Lambda different
If the lambdas are different. Stack the vector2[x] and vector2[y] horizontal and you have [lambda_1, lambda_2] to find. Probably also more equations then lambds and you will find a least square solution.
Note
Keep in mind that even if you construct your system from a staight line and a fixed lambda. You might need a least square approach due to rounding and numeric differences.
You can solve your equation 2*x + 4 = 0 with sympy:
from sympy.abc import x
from sympy import Eq, solve
eq = Eq(2 * x + 4, 0)
print(solve(eq))

Get all positive integral solutions for a linear equation

A game I played has a riddle that involves solving the following equation:
x*411 + y*295 + z*161 = 3200
Not wanting to think I just slapped it into sympy, which I haven’t really used up to that point:
>>> from sympy import *
>>> x, y, z = symbols('x y z', integer=True, positive=True)
>>> solve(x*411 + y*295 + z*161 - 3200, [x, y, z])
[{x: -295*y/411 - 161*z/411 + 3200/411}]
Hmm, this only gave me a dependent solution, but I want all possible solutions in the domain I constrained the variables to, e.g. (assuming there are no other solutions) [{x: 4, y: 2, z:6}] or [(4, 2, 6)]
Of course I could now manually substitute two variables in a nested loop, or solve it by hand (as I did to get the solution above), but I want to know how to get sympy (or another library) to do it for me.
SymPy can solve Diophantine equations but doesn't have a built-in way to generate positive solutions. With Sage one can do that easily: here is four-line code that generates all nonnegative integer solutions of your equation.
p = MixedIntegerLinearProgram()
w = p.new_variable(integer=True, nonnegative=True)
p.add_constraint(411*w[0] + 295*w[1] + 161*w[2] == 3200)
p.polyhedron().integral_points()
The output is ((4, 2, 6),)
Behind the scenes, integral_points will most likely just run a multiple loop; although when that doesn't seem to work it tries to use Smith normal form.
I know you wanted positive solutions, but (a) it's easy to exclude any zero-containing tuples from the answer; (b) it's also easy to replace x by x-1, etc, prior to solving; (c) sticking to "nonnegative" makes it easy to create a polyhedron using Mixed Integer Linear Programming module
as above.
According to documentation one can also build a Polyhedron object directly from a system of inequalities ("Hrep"). This would allow one to explicitly say x >= 1, etc, but I haven't succeeded at this route.
With SymPy
The output of SymPy's Diophantine module is a parametric solution, like
(t_0, 2627*t_0 + 161*t_1 - 19200, -4816*t_0 - 295*t_1 + 35200)
in your example. This can be used in a loop to generate solutions in a pretty efficient way. The sticky point is finding bounds for parameters t_0 and t_1. Since this is just an illustration, I looked at the last expression above and plugged the limits 35200/4816 and 35200/295 directly in the loops below.
from sympy import *
x, y, z = symbols('x y z')
[s] = diophantine(x*411 + y*295 + z*161 - 3200)
print(s)
t_0, t_1 = s[2].free_symbols
for t0 in range(int(35200/4816)+1):
for t1 in range(int(35200/295)+1):
sol = [expr.subs({t_0: t0, t_1: t1}) for expr in s]
if min(sol) > 0:
print(sol)
The output is [4, 2, 6].

Transforming polynomial variable in Numpy

I am trying to learn how to use Numpy. Consider I have the roots of a polynomial. I use
coeff = np.polynomial.polynomial.polyfromroots(roots)
to get the coefficients of the polynomial as an array. Then I use
print np.poly1d(coeff)
To print out the polynomial. Let that polynomial be
x^2 +3x + 2
Now how do I transform the variable such that
x is now 2/x
That is the equation becomes
(2/x)^2 + 6/x + 2
In scilab I can do this using the horner function. Is it possible in numpy?
In SymPy this would be simply:
from sympy.abc import x
f = x**2 + 3*x + 2
g = f.subs({x:2/x})
Resulting in:
print(g)
#2 + 6/x + 4/x**2
The resulting expression is not a polynomial, and Sympy would probably be a better choice here.
Alternatively you can just scale the coefficients of the polynomial by the appropriate numerical factor,
coeff *= np.power(factor, np.arange(len(coefs)-1, -1, -1)) # factor=2 here
and then use the polynomial functions from numpy, with the variable 1/x instead of x.

Integration on python

hi i have been given a question by my lecturer to integrate a function through python and he gave us very little information. the boundaries are +infinity and -infinity and the function is
(cos a*x) * (e**-x**2)
so far I have
def gauss_cosine(a, n):
sum=0.0
dx = ((math.cosine(a*x)*math.exp(-x**2)))
return
for k in range (0,n):
x=a+k*dx
sum=sum+f(x)
return dx*sum
not sure if this is right at all.
kind regards
I don't see it recommended much on this site, but you could try sympy:
In [1]: import sympy as sp
In [2]: x, a = sp.symbols(('x', 'a'))
In [3]: f = sp.cos(a*x) * sp.exp(-x**2)
In [4]: res = sp.integrate(f, (x, -sp.oo, sp.oo))
In [5]: res
Out[5]: sqrt(pi) * exp
In [6]: sp.pprint(res)
Out[6]:
2
-a
────
___ 4
╲╱ π ⋅ℯ
For numerical integration, try the scipy package.
Well, your integral has an analytical solution, and you can calculate it with sympy, as #Bill pointed out, +1.
However, what I think was the point of the question is how to numerically calculate this integral, and this is what I discuss here.
The integrand is even. We reduce the domain to [0,+inf], and will multiply by 2 the result.
We still have an oscillatory integral on an unbounded domain. This is often a nasty beast, but we know that it is convergent, and well behaved at +- inf. In other words, the exp(-x**2) decays to zero fast enough.
The trick is to change variable of integration, x=tan(t), so that dx=(1+x**2)dt. The domain becomes [0,pi/2], it is bounded and the numerical integration is then a piece of cake.
Example with the simpson's rule from scipy, with a=2. With just 100 discretization points we have a 5 digits precision!
from scipy.integrate import simps
from numpy import seterr, pi, sqrt, linspace, tan, cos, exp
N = 100
a = 2.
t = linspace(0, pi / 2, N)
x = tan(t)
f = cos(a * x) * exp(-x ** 2) * (1 + x ** 2)
print "numerical solution = ", 2 * simps(f, t)
print "analytical solution = ",sqrt(pi) * exp(-a ** 2 / 4)
Your computer will have a very hard time representing those boundary limits.
Start by plotting your function.
It also helps to know the answer before you start.
I'd recommend breaking it into two integrals: one from minus-infinity to zero and another from zero to plus-infinity. As noted by flebool below, it's an even function. Make sure you know what that means and the implications for your solution.
Next you'll need an integration scheme that can deal with boundary conditions at infinity. Look for a log quadrature scheme.
A naive Euler integration would not be my first thought.

Iterative polynomial multiplication -- Chebyshev polynomials in Python

My question is: What is the best approach to iterative polynomial multiplication in Python?
I thought an interesting project would be to write a function in Python to generate the coefficients and exponents of each term for a Chebyshev polynomial of a given degree. The recursive function to generate such a polynomial (represented by Tn(x)) is:
With:
T0(x) = 1
and
T1(x) = x:
Tn(x) = 2xTn-1(x) - Tn-2(x)
What I have so far isn't very useful, but I am having trouble kind of wrapping my brain around how to get this going. What I want to happen is the following:
>> chebyshev(4)
[[8,4], [8,2], [1,0]]
This list represents the Chebyshev polynomial of the 4th degree:
T4(x) = 8x4 - 8x2 + 1
import sys
def chebyshev(n, a=[1,0], b=[1,1]):
z = [2,1]
result = []
if n == 0:
return a
if n == 1:
return b
print >> sys.stderr, ([z[0]*b[0],
z[1]+b[1]],
a) # This displays the proper result for n = 2
return result
The one solution I found on the web didn't work, so I am hoping someone can shed some light.
p.s. More information on Chebyshev polynomials: CSU Fullteron, Wikipedia - Chebyshev polynomials. They are very cool/useful, and tie together some really interesting trig functions/properties; worth a read.
SciPy has an implementation for Chebyshev
http://www.scipy.org/doc/api_docs/SciPy.special.orthogonal.html
I would suggest looking at their code.
The best implementation for Chebyshev is :
// Computes T_n(x), with -1 <= x <= 1
real T( int n, real x )
{
return cos( n*acos(x) ) ;
}
If you test this against other implementations, including explicit polynomial evaluation and iteratively computing the recurrence relation, this is actually just as fast. Try it yourself..
Generally:
Explicit polynomial evaluation is the worst (for large n)
Recursive evaluation is a little better
cosine evaluation is the best
orthopy (a project of mine) also supports computation of Chebyshev polynomials. With
import orthopy
# from sympy.abc import x
x = 0.5
normalization = "normal" # or "classical", "monic"
evaluator = orthopy.c1.chebyshev1.Eval(x, normalization)
for _ in range(10):
print(next(evaluator))
0.5641895835477564
0.39894228040143276
-0.39894228040143265
...
you get the values of the polynomials with increasing degree at x = 0.5. You can use a list/vector of multiple values, or even sympy symbolics.
Computation happens with recurrence relations of course. If you're interested in the coefficients, check out
rc = orthopy.c1.chebyshev1.RecurrenceCoefficients("monic", symbolic=True)

Categories