detecting end of tty output - python

Hi I'm writing a psudo-terminal that can live in a tty and spawn a second tty which is filters input and output from
I'm writing it in python for now, spawning the second tty and reading and writing is easy
but when I read, the read does not end, it waits for more input.
import subprocess
pfd = subprocess.Popen(['/bin/sh'], shell=True,
stdout=subprocess.PIPE, stdin=subprocess.PIPE)
cmd = "ls"
pfd.stdin.write(cmd + '\n')
out = ''
while 1:
c = pfd.stdout.read(1)
if not c: # if end of output (this never happends)
break
if c == '\n': # print line when found
print repr(out)
out = ''
else:
out += c
----------------------------- outputs ------------------------
intty $ python intty.py
'intty.py'
'testA_blank'
'testB_blank'
(hangs here does not return)
it looks like it's reaching the end of hte buffer and instead of returning None or '' it hangs waiting for more input.
what should I be looking for to see if the output has completed? the end of the buffer? a non-printable character?
---------------- edit -------------
this happends also when I run xpcshell instead of ls, I'm assuming these interactive programs have some way of knowing to display the prompt again,
strangly the prompt, in this case "js>" never apears

Well, your output actually hasn't completed. Because you spawned /bin/sh, the shell is still running after "ls" completes. There is no EOF indicator, because it's still running.
Why not simply run /bin/ls?
You could do something like
pfd = subprocess.Popen(['ls'], stdout=subprocess.PIPE, stdin=subprocess.PIPE)
out, err_output = pfd.communicate()
This also highlights subprocess.communicate, which is a safer way to get output (For outputs which fit in memory, anyway) from a single program run. This will return only when the program has finished running.
Alternately, you -could- read linewise from the shell, but you'd be looking for a special shell sequence like the sh~# line which could easily show up in program output. Thus, running a shell is probably a bad idea all around.
Edit Here is what I was referring to, but it's still not really the best solution, as it has a LOT of caveats:
while 1:
c = pfd.stdout.read(1)
if not c:
break
elif c == '\n': # print line when found
print repr(out)
out = ''
else:
out += c
if out.strip() == 'sh#':
break
Note that this will break out if any other command outputs 'sh#' at the beginning of the line, and also if for some reason the output is different from expected, you will enter the same blocking situation as before. This is why it's a very sub-optimal situation for a shell.

For applications like a shell, the output will not end until the shell ends. Either use select.select() to check if it has more output waiting for you, or end the process.

Related

Python subprocess: Giving stdin, reading stdout, then giving more stdin

I'm working with a piece of scientific software called Chimera. For some of the code downstream of this question, it requires that I use Python 2.7.
I want to call a process, give that process some input, read its output, give it more input based on that, etc.
I've used Popen to open the process, process.stdin.write to pass standard input, but then I've gotten stuck trying to get output while the process is still running. process.communicate() stops the process, process.stdout.readline() seems to keep me in an infinite loop.
Here's a simplified example of what I'd like to do:
Let's say I have a bash script called exampleInput.sh.
#!/bin/bash
# exampleInput.sh
# Read a number from the input
read -p 'Enter a number: ' num
# Multiply the number by 5
ans1=$( expr $num \* 5 )
# Give the user the multiplied number
echo $ans1
# Ask the user whether they want to keep going
read -p 'Based on the previous output, would you like to continue? ' doContinue
if [ $doContinue == "yes" ]
then
echo "Okay, moving on..."
# [...] more code here [...]
else
exit 0
fi
Interacting with this through the command line, I'd run the script, type in "5" and then, if it returned "25", I'd type "yes" and, if not, I would type "no".
I want to run a python script where I pass exampleInput.sh "5" and, if it gives me "25" back, then I pass "yes"
So far, this is as close as I can get:
#!/home/user/miniconda3/bin/python2
# talk_with_example_input.py
import subprocess
process = subprocess.Popen(["./exampleInput.sh"],
stdin = subprocess.PIPE,
stdout = subprocess.PIPE)
process.stdin.write("5")
answer = process.communicate()[0]
if answer == "25":
process.stdin.write("yes")
## I'd like to print the STDOUT here, but the process is already terminated
But that fails of course, because after `process.communicate()', my process isn't running anymore.
(Just in case/FYI): Actual problem
Chimera is usually a gui-based application to examine protein structure. If you run chimera --nogui, it'll open up a prompt and take input.
I often need to know what chimera outputs before I run my next command. For example, I will often try to generate a protein surface and, if Chimera can't generate a surface, it doesn't break--it just says so through STDOUT. So, in my python script, while I'm looping through many proteins to analyze, I need to check STDOUT to know whether to continue analysis on that protein.
In other use cases, I'll run lots of commands through Chimera to clean up a protein first, and then I'll want to run lots of separate commands to get different pieces of data, and use that data to decide whether to run other commands. I could get the data, close the subprocess, and then run another process, but that would require re-running all of those cleaning up commands each time.
Anyways, those are some of the real-world reasons why I want to be able to push STDIN to a subprocess, read the STDOUT, and still be able to push more STDIN.
Thanks for your time!
you don't need to use process.communicate in your example.
Simply read and write using process.stdin.write and process.stdout.read. Also make sure to send a newline, otherwise read won't return. And when you read from stdin, you also have to handle newlines coming from echo.
Note: process.stdout.read will block until EOF.
# talk_with_example_input.py
import subprocess
process = subprocess.Popen(["./exampleInput.sh"],
stdin = subprocess.PIPE,
stdout = subprocess.PIPE)
process.stdin.write("5\n")
stdout = process.stdout.readline()
print(stdout)
if stdout == "25\n":
process.stdin.write("yes\n")
print(process.stdout.readline())
$ python2 test.py
25
Okay, moving on...
Update
When communicating with an program in that way, you have to pay special attention to what the application is actually writing. Best is to analyze the output in a hex editor:
$ chimera --nogui 2>&1 | hexdump -C
Please note that readline [1] only reads to the next newline (\n). In your case you have to call readline at least four times to get that first block of output.
If you just want to read everything up until the subprocess stops printing, you have to read byte by byte and implement a timeout. Sadly, neither read nor readline does provide such a timeout mechanism. This is probably because the underlying read syscall [2] (Linux) does not provide one either.
On Linux we can write a single-threaded read_with_timeout() using poll / select. For an example see [3].
from select import epoll, EPOLLIN
def read_with_timeout(fd, timeout__s):
"""Reads from fd until there is no new data for at least timeout__s seconds.
This only works on linux > 2.5.44.
"""
buf = []
e = epoll()
e.register(fd, EPOLLIN)
while True:
ret = e.poll(timeout__s)
if not ret or ret[0][1] is not EPOLLIN:
break
buf.append(
fd.read(1)
)
return ''.join(buf)
In case you need a reliable way to read non blocking under Windows and Linux, this answer might be helpful.
[1] from the python 2 docs:
readline(limit=-1)
Read and return one line from the stream. If limit is specified, at most limit bytes will be read.
The line terminator is always b'\n' for binary files; for text files, the newline argument to open() can be used to select the line terminator(s) recognized.
[2] from man 2 read:
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
[3] example
$ tree
.
├── prog.py
└── prog.sh
prog.sh
#!/usr/bin/env bash
for i in $(seq 3); do
echo "${RANDOM}"
sleep 1
done
sleep 3
echo "${RANDOM}"
prog.py
# talk_with_example_input.py
import subprocess
from select import epoll, EPOLLIN
def read_with_timeout(fd, timeout__s):
"""Reads from f until there is no new data for at least timeout__s seconds.
This only works on linux > 2.5.44.
"""
buf = []
e = epoll()
e.register(fd, EPOLLIN)
while True:
ret = e.poll(timeout__s)
if not ret or ret[0][1] is not EPOLLIN:
break
buf.append(
fd.read(1)
)
return ''.join(buf)
process = subprocess.Popen(
["./prog.sh"],
stdin = subprocess.PIPE,
stdout = subprocess.PIPE
)
print(read_with_timeout(process.stdout, 1.5))
print('-----')
print(read_with_timeout(process.stdout, 3))
$ python2 prog.py
6194
14508
11293
-----
10506

Python - Run process and wait for output

I want to run a program, wait for it's output, send inputs to it and repeat until a condition.
All I could find was questions about waiting for a program to finish, which is NOT the case. The process will still be running, it just won't be giving any (new) outputs.
Program output is in stdout and in a log file, either can be used.
Using linux.
Code so far:
import subprocess
flag = True
vsim = subprocess.popen(['./run_vsim'],
stdin=subprocess.pipe,
shell=true,
cwd='path/to/program')
while flag:
with open(log_file), 'r') as f:
for l in f:
if condition:
break
vsim.stdin.write(b'do something\n')
vsim.stdin.flush()
vsim.stdin.write(b'do something else\n')
vsim.stdin.flush()
As is, the "do something" input is being sent multiple times even before the program finished starting up. Also, the log file is read before the program finishes running the command from the last while iteraction. That causes it to buffer the inputs, so I keeps executing the commands even after the condition as been met.
I could use time.sleep after each stdin.write but since the time needed to execute each command is variable, I would need to use times longer than necessary making the python script slower. Also, that's a dumb solution to this.
Thanks!
If you are using python3, you can try updating your code to use subprocess.run instead. It should wait for your task to complete and return the output.
As of 2019, you can use subprocess.getstatusoutput() to run a process and wait for the output, i.e.:
import subprocess
args = "echo 'Sleep for 5 seconds' && sleep 5"
status_output = subprocess.getstatusoutput(args)
if status_output[0] == 0: # exitcode 0 means NO error
print("Ok:", status_output[1])
else:
print("Error:", status_output[1])
Python Demo
From python docs:
subprocess.getstatusoutput(_cmd_)
Return (exitcode, output) of executing cmd in a shell.
Execute the string cmd in a shell with Popen.check_output() and return a 2-tuple (exitcode, output). The locale encoding is used; see the notes on Frequently Used Arguments for more details.
A trailing newline is stripped from the output. The exit code for the command can be interpreted as the return code of subprocess. Example:
>>> subprocess.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')
>>> subprocess.getstatusoutput('cat /bin/junk')
(1, 'cat: /bin/junk: No such file or directory')
>>> subprocess.getstatusoutput('/bin/junk')
(127, 'sh: /bin/junk: not found')
>>> subprocess.getstatusoutput('/bin/kill $$')
(-15, '')
You can use commands instead of subprocess. Here is an example with ls command:
import commands
status_output = commands.getstatusoutput('ls ./')
print status_output[0] #this will print the return code (0 if everything is fine)
print status_output[1] #this will print the output (list the content of the current directory)

Controlling a python script from another script

I am trying to learn how to write a script control.py, that runs another script test.py in a loop for a certain number of times, in each run, reads its output and halts it if some predefined output is printed (e.g. the text 'stop now'), and the loop continues its iteration (once test.py has finished, either on its own, or by force). So something along the lines:
for i in range(n):
os.system('test.py someargument')
if output == 'stop now': #stop the current test.py process and continue with next iteration
#output here is supposed to contain what test.py prints
The problem with the above is that, it does not check the output of test.py as it is running, instead it waits until test.py process is finished on its own, right?
Basically trying to learn how I can use a python script to control another one, as it is running. (e.g. having access to what it prints and so on).
Finally, is it possible to run test.py in a new terminal (i.e. not in control.py's terminal) and still achieve the above goals?
An attempt:
test.py is this:
from itertools import permutations
import random as random
perms = [''.join(p) for p in permutations('stop')]
for i in range(1000000):
rand_ind = random.randrange(0,len(perms))
print perms[rand_ind]
And control.py is this: (following Marc's suggestion)
import subprocess
command = ["python", "test.py"]
n = 10
for i in range(n):
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
while True:
output = p.stdout.readline().strip()
print output
#if output == '' and p.poll() is not None:
# break
if output == 'stop':
print 'sucess'
p.kill()
break
#Do whatever you want
#rc = p.poll() #Exit Code
You can use subprocess module or also the os.popen
os.popen(command[, mode[, bufsize]])
Open a pipe to or from command. The return value is an open file object connected to the pipe, which can be read or written depending on whether mode is 'r' (default) or 'w'.
With subprocess I would suggest
subprocess.call(['python.exe', command])
or the subprocess.Popen --> that is similar to os.popen (for instance)
With popen you can read the connected object/file and check whether "Stop now" is there.
The os.system is not deprecated and you can use as well (but you won't get a object from that), you can just check if return at the end of execution.
From subprocess.call you can run it in a new terminal or if you want to call multiple times ONLY the test.py --> than you can put your script in a def main() and run the main as much as you want till the "Stop now" is generated.
Hope this solve your query :-) otherwise comment again.
Looking at what you wrote above you can also redirect the output to a file directly from the OS call --> os.system(test.py *args >> /tmp/mickey.txt) then you can check at each round the file.
As said the popen is an object file that you can access.
What you are hinting at in your comment to Marc Cabos' answer is Threading
There are several ways Python can use the functionality of other files. If the content of test.py can be encapsulated in a function or class, then you can import the relevant parts into your program, giving you greater access to the runnings of that code.
As described in other answers you can use the stdout of a script, running it in a subprocess. This could give you separate terminal outputs as you require.
However if you want to run the test.py concurrently and access variables as they are changed then you need to consider threading.
Yes you can use Python to control another program using stdin/stdout, but when using another process output often there is a problem of buffering, in other words the other process doesn't really output anything until it's done.
There are even cases in which the output is buffered or not depending on if the program is started from a terminal or not.
If you are the author of both programs then probably is better using another interprocess channel where the flushing is explicitly controlled by the code, like sockets.
You can use the "subprocess" library for that.
import subprocess
command = ["python", "test.py", "someargument"]
for i in range(n):
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
while True:
output = p.stdout.readline()
if output == '' and p.poll() is not None:
break
if output == 'stop now':
#Do whatever you want
rc = p.poll() #Exit Code

Detecting the end of the stream on popen.stdout.readline

I have a python program which launches subprocesses using Popen and consumes their output nearly real-time as it is produced. The code of the relevant loop is:
def run(self, output_consumer):
self.prepare_to_run()
popen_args = self.get_popen_args()
logging.debug("Calling popen with arguments %s" % popen_args)
self.popen = subprocess.Popen(**popen_args)
while True:
outdata = self.popen.stdout.readline()
if not outdata and self.popen.returncode is not None:
# Terminate when we've read all the output and the returncode is set
break
output_consumer.process_output(outdata)
self.popen.poll() # updates returncode so we can exit the loop
output_consumer.finish(self.popen.returncode)
self.post_run()
def get_popen_args(self):
return {
'args': self.command,
'shell': False, # Just being explicit for security's sake
'bufsize': 0, # More likely to see what's being printed as it happens
# Not guarantted since the process itself might buffer its output
# run `python -u` to unbuffer output of a python processes
'cwd': self.get_cwd(),
'env': self.get_environment(),
'stdout': subprocess.PIPE,
'stderr': subprocess.STDOUT,
'close_fds': True, # Doesn't seem to matter
}
This works great on my production machines, but on my dev machine, the call to .readline() hangs when certain subprocesses complete. That is, it will successfully process all of the output, including the final output line saying "process complete", but then will again poll readline and never return. This method exits properly on the dev machine for most of the sub-processes I call, but consistently fails to exit for one complex bash script that itself calls many sub-processes.
It's worth noting that popen.returncode gets set to a non-None (usually 0) value many lines before the end of the output. So I can't just break out of the loop when that is set or else I lose everything that gets spat out at the end of the process and is still buffered waiting for reading. The problem is that when I'm flushing the buffer at that point, I can't tell when I'm at the end because the last call to readline() hangs. Calling read() also hangs. Calling read(1) gets me every last character out, but also hangs after the final line. popen.stdout.closed is always False. How can I tell when I'm at the end?
All systems are running python 2.7.3 on Ubuntu 12.04LTS. FWIW, stderr is being merged with stdout using stderr=subprocess.STDOUT.
Why the difference? Is it failing to close stdout for some reason? Could the sub-sub-processes do something to keep it open somehow? Could it be because I'm launching the process from a terminal on my dev box, but in production it's launched as a daemon through supervisord? Would that change the way the pipes are processed and if so how do I normalize them?
The main code loop looks right. It could be that the pipe isn't closing because another process is keeping it open. For example, if script launches a background process that writes to stdout then the pipe will no close. Are you sure no other child process still running?
An idea is to change modes when you see the .returncode has set. Once you know the main process is done, read all its output from buffer, but don't get stuck waiting. You can use select to read from the pipe with a timeout. Set a several seconds timeout and you can clear the buffer without getting stuck waiting child process.
Without knowing the contents of the "one complex bash script" which causes the problem, there's too many possibilities to determine the exact cause.
However, focusing on the fact that you claim it works if you run your Python script under supervisord, then it might be getting stuck if a sub-process is trying to read from stdin, or just behaves differently if stdin is a tty, which (I presume) supervisord will redirect from /dev/null.
This minimal example seems to cope better with cases where my example test.sh runs subprocesses which try to read from stdin...
import os
import subprocess
f = subprocess.Popen(args='./test.sh',
shell=False,
bufsize=0,
stdin=open(os.devnull, 'rb'),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
close_fds=True)
while 1:
s = f.stdout.readline()
if not s and f.returncode is not None:
break
print s.strip()
f.poll()
print "done %d" % f.returncode
Otherwise, you can always fall back to using a non-blocking read, and bail out when you get your final output line saying "process complete", although it's a bit of a hack.
If you use readline() or read(), it should not hang. No need to check returncode or poll(). If it is hanging when you know the process is finished, it is most probably a subprocess keeping your pipe open, as others said before.
There are two things you could do to debug this:
* Try to reproduce with a minimal script instead of the current complex one, or
* Run that complex script with strace -f -e clone,execve,exit_group and see what is that script starting, and if any process is surviving the main script (check when the main script calls exit_group, if strace is still waiting after that, you have a child still alive).
I find that calls to read (or readline) sometimes hang, despite previously calling poll. So I resorted to calling select to find out if there is readable data. However, select without a timeout can hang, too, if the process was closed. So I call select in a semi-busy loop with a tiny timeout for each iteration (see below).
I'm not sure if you can adapt this to readline, as readline might hang if the final \n is missing, or if the process doesn't close its stdout before you close its stdin and/or terminate it. You could wrap this in a generator, and everytime you encounter a \n in stdout_collected, yield the current line.
Also note that in my actual code, I'm using pseudoterminals (pty) to wrap the popen handles (to more closely fake user input) but it should work without.
# handle to read from
handle = self.popen.stdout
# how many seconds to wait without data
timeout = 1
begin = datetime.now()
stdout_collected = ""
while self.popen.poll() is None:
try:
fds = select.select([handle], [], [], 0.01)[0]
except select.error, exc:
print exc
break
if len(fds) == 0:
# select timed out, no new data
delta = (datetime.now() - begin).total_seconds()
if delta > timeout:
return stdout_collected
# try longer
continue
else:
# have data, timeout counter resets again
begin = datetime.now()
for fd in fds:
if fd == handle:
data = os.read(handle, 1024)
# can handle the bytes as they come in here
# self._handle_stdout(data)
stdout_collected += data
# process exited
# if using a pseudoterminal, close the handles here
self.popen.wait()
Why are you setting the sdterr to STDOUT?
The real benefit of making a communicate() call on a subproces is that you are able to retrieve a tuple containining the stdout response as well as the stderr meesage.
Those might be useful if the logic depends on their succsss or failure.
Also, it would save you from the pain of having to iterate through lines. Communicate() gives you everything and there would be no unresolved questions about whether or not the full message was received
I wrote a demo with bash subprocess that can be easy explored.
A closed pipe can be recognized by '' in the output from readline(), while the output from an empty line is '\n'.
from subprocess import Popen, PIPE, STDOUT
p = Popen(['bash'], stdout=PIPE, stderr=STDOUT)
out = []
while True:
outdata = p.stdout.readline()
if not outdata:
break
#output_consumer.process_output(outdata)
print "* " + repr(outdata)
out.append(outdata)
print "* closed", repr(out)
print "* returncode", p.wait()
Example of input/output: Closing the pipe distinctly before terminating the process. That is why wait() should be used instead of poll()
[prompt] $ python myscript.py
echo abc
* 'abc\n'
exec 1>&- # close stdout
exec 2>&- # close stderr
* closed ['abc\n']
exit
* returncode 0
[prompt] $
Your code did output a huge number of empty strings for this case.
Example: Fast terminated process without '\n' on the last line:
echo -n abc
exit
* 'abc'
* closed ['abc']
* returncode 0

python subprocess - How to check if there is not any new data in the PIPE?

I have the following example:
import subprocess
p = subprocess.Popen("cmd",stdin = subprocess.PIPE, stdout=subprocess.PIPE )
p.stdin.write(b'cd\\' + b'\r\n')
p.stdin.write(b'dir' + b'\r\n')
p.stdin.write(b'\r\n')
while True:
line = p.stdout.readline()
print(line.decode('ascii'), end='')
if line.rstrip().decode('ascii') == 'C:\>': #I need to check at this point if there is new data in the PIPE
print('End of File')
break
I am listening to the PIPE for any output from the subprocess and if there is not any new data coming through the PIPE I would like to stop reading. I would like to have a control statement that would tell me that PIPE is empty. This would help me to avoid problems in case my process freezes or ends with an unexpected result.
Unless the process is over or there is a signal you are expecting to stop reading at, there is no good way to know ahead of time if there is data in the pipe, because the command will only terminate when it reaches the number of bytes you want to read [.read(n)], reaches a newline char [.readline()], or reaches the end of the file (which doesn't exist until the process is over).
However, you don't need to run cmd.exe to run your program, since your program will already be run in the cmd shell.
I suggest you use subprocess to call the program directly, and handle exceptions/return_code in your code. You could do something like...
import subprocess
import time
p = subprocess.Popen("your_program.exe",
"-f", "filename",
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
# If you have to use stdin, do it here.
p.stdin.write('lawl here are my inputs\n')
run_for = 0
while p.poll() == None:
time.sleep(1)
if run_for > 10:
p.kill()
break
run_for += 1
if p.return_code == 0:
...handle success...
else:
...handle failure...
You could do this in a loop and spin up a new process that would run the next file.
If it's that costly to spin up the program (and if it's not then stop reading now because it's about to get embarrassing) then perhaps (and this is a total hack, but) after your process has run a while, you could pass a particularly odd but innocuous string to p.stdin, as in p.stdin.write("\n~%$%~\n").
If you could get away with that, then you could do something like...
for line in p.stdout.readlines():
if '~%$%~' in line:
break
But holy crap, please don't do that. It's such a hack.

Categories