Numpy array memory issue - python

I believe I am having a memory issue using numpy arrays. The following code is being run for hours on end:
new_data = npy.array([new_x, new_y1, new_y2, new_y3])
private.data = npy.row_stack([private.data, new_data])
where new_x, new_y1, new_y2, new_y3 are floats.
After about 5 hours of recording this data every second (more than 72000 floats), the program becomes unresponsive. What I think is happening is some kind of realloc and copy operation that is swamping the process. Does anyone know if this is what is happening?
I need a way to record this data without encountering this slowdown issue. There is no way to know even approximately the size of this array beforehand. It does not necessarily need to use a numpy array, but it needs to be something similar. Does anyone know of a good method?

Use Python lists. Seriously, they grow far more efficiently. This is what they are designed for. They are remarkably efficient in this setting.
If you need to create an array out of them at the end (or even occasionally in the midst of this computation), it will be far more efficient to accumulate in a list first.

Update: I incorporated #EOL's excellent indexing suggestion into the answer.
The problem might be the way row_stack grows the destination. You might be better off handling the reallocation yourself. The following code allocates a big empty array, fills it, and grows it as it fills an hour at a time
numcols = 4
growsize = 60*60 #60 samples/min * 60 min/hour
numrows = 3*growsize #3 hours, to start with
private.data = npy.zeros([numrows, numcols]) #alloc one big memory block
rowctr = 0
while (recording):
private.data[rowctr] = npy.array([new_x, new_y1, new_y2, new_y3])
rowctr += 1
if (rowctr == numrows): #full, grow by another hour's worth of data
private.data = npy.row_stack([private.data, npy.zeros([growsize, numcols])])
numrows += growsize
This should keep the memory manager from thrashing around too much. I tried this versus row_stack on each iteration and it ran a couple of orders of magnitude faster.

Related

python for-loop getting increasingly slower when the data is a little big

I want to make a comparison between each other in a data set. The data set is a list ,has 20000 members, then my code is just as follows:
>>index = 0
>>for i in all:
index += 1
begin_time = time.time()
for j in all[index:]:
...
here are some data processing,then make comparison,
...
print time.time()-begin_time
then it get slower with the time, it will take 0.1s every loop at beginning ,and after half an hour, it wil take about 1s every loop.
someone said that it is due to the garbage collection, but when i add gc.disable() before the operation ,it still does not get better.
Who can tell me what should I do?
Your algorithm is O(n^2), which is pretty bad.
If possible, consider changing the algorithm.
Also, consider using itertools instead of manual combination handling.
It will be significantly more readable, and it will likely be more efficent than your approach:
import itertools
for i,j in itertools.product(all, all):
print i,j

How to Optimize the Python Code

All,
I am going to compute some feature values using the following python codes. But, because the input sizes are too big, it is very time-consuming. Please help me to optimize the codes.
leaving_volume=len([x for x in pickup_ids if x not in dropoff_ids])
arriving_volume=len([x for x in dropoff_ids if x not in pickup_ids])
transition_volume=len([x for x in dropoff_ids if x in pickup_ids])
union_ids=list(set(pickup_ids + dropoff_ids))
busstop_ids=[x for x in union_ids if self.geoitems[x].fare>0]
busstop_density=np.sum([Util.Geodist(self.geoitems[x].orilat, self.geoitems[x].orilng, self.geoitems[x].destlat, self.geoitems[x].destlng)/(1000*self.geoitems[x].fare) for x in busstop_ids])/len(busstop_ids) if len(busstop_ids) > 0 else 0
busstop_ids=[x for x in union_ids if self.geoitems[x].balance>0]
smartcard_balance=np.sum([self.geoitems[x].balance for x in busstop_ids])/len(busstop_ids) if len(busstop_ids) > 0 else 0
Hi, All,
Here is my revised version. I run this code on my GPS traces data. It is faster.
intersect_ids=set(pickup_ids).intersection( set(dropoff_ids) )
union_ids=list(set(pickup_ids + dropoff_ids))
leaving_ids=set(pickup_ids)-intersect_ids
leaving_volume=len(leaving_ids)
arriving_ids=set(dropoff_ids)-intersect_ids
arriving_volume=len(arriving_ids)
transition_volume=len(intersect_ids)
busstop_density=np.mean([Util.Geodist(self.geoitems[x].orilat, self.geoitems[x].orilng, self.geoitems[x].destlat, self.geoitems[x].destlng)/(1000*self.geoitems[x].fare) for x in union_ids if self.geoitems[x].fare>0])
if not busstop_density > 0:
busstop_density = 0
smartcard_balance=np.mean([self.geoitems[x].balance for x in union_ids if self.geoitems[x].balance>0])
if not smartcard_balance > 0:
smartcard_balance = 0
Many thanks for the help.
Just a few things I noticed, as some Python efficiency trivia:
if x not in dropoff_ids
Checking for membership using the in operator is more efficient on a set than a list. But iterating with for through a list is probably more efficient than on a set. So if you want your first two lines to be as efficient as possible you should have both types of data structure around beforehand.
list(set(pickup_ids + dropoff_ids))
It's more efficient to create your sets before you combine data, rather than creating a long list and constructing a set from it. Luckily you probably already have the set versions around now (see the first comment)!
Above all you need to ask yourself the question:
Is the time I save by constructing extra data structures worth the time it takes to construct them?
Next one:
np.sum([...])
I've been trained by Python to think of constructing a list and then applying a function that theoretically only requires a generator as a code smell. I'm not sure if this applies in numpy, since from what I remember it's not completely straightforward to pull data from a generator and put it in a numpy structure.
It looks like this is just a small fragment of your code. If you're really concerned about efficiency I'd recommend making use of numpy arrays rather than lists, and trying to stick within numpy's built-in data structures and function as much as possible. They are likely more highly optimized for raw data crunching in C than the built-in Python functions.
If you're really, really concerned about efficiency then you should probably be doing this data analysis straight-up in C. Especially if you don't have much more code than what you've presented here it might be pretty easy to translate over.
I can only support what machine yerning wrote in his this post. If you are thinking of switching to numpy so if your variables pickup_ids and dropoff_ids were numpy arrays (which maybe they already are else do:
dropoff_ids = np.array( dropoff_ids, dtype='i' )
pickup_ids = np.array( pickup_ids, dtype='i' )
then you can make use of the functions np.in1d() which will give you a True/False array which you can just sum over to get the total number of True entries.
leaving_volume = (-np.in1d( pickup_ids, dropoff_ids )).sum()
transition_volume= np.in1d( dropoff_ids, pickup_ids).sum()
arriving_volume = (-np.in1d( dropoff_ids, pickup_ids)).sum()
somehow I have the feeling that transition_volume = len(pickup_ids) - arriving_volume but I'm not 100% sure right now.
Another function that could be useful to you is np.unique() if you want to get rid of duplicate entries which in a way will turn your array into a set.

Nested Iteration of HDF5 using PyTables

I am have a fairly large dataset that I store in HDF5 and access using PyTables. One operation I need to do on this dataset are pairwise comparisons between each of the elements. This requires 2 loops, one to iterate over each element, and an inner loop to iterate over every other element. This operation thus looks at N(N-1)/2 comparisons.
For fairly small sets I found it to be faster to dump the contents into a multdimensional numpy array and then do my iteration. I run into problems with large sets because of memory issues and need to access each element of the dataset at run time.
Putting the elements into an array gives me about 600 comparisons per second, while operating on hdf5 data itself gives me about 300 comparisons per second.
Is there a way to speed this process up?
Example follows (this is not my real code, just an example):
Small Set:
with tb.openFile(h5_file, 'r') as f:
data = f.root.data
N_elements = len(data)
elements = np.empty((N_elements, 1e5))
for ii, d in enumerate(data):
elements[ii] = data['element']
D = np.empty((N_elements, N_elements))
for ii in xrange(N_elements):
for jj in xrange(ii+1, N_elements):
D[ii, jj] = compare(elements[ii], elements[jj])
Large Set:
with tb.openFile(h5_file, 'r') as f:
data = f.root.data
N_elements = len(data)
D = np.empty((N_elements, N_elements))
for ii in xrange(N_elements):
for jj in xrange(ii+1, N_elements):
D[ii, jj] = compare(data['element'][ii], data['element'][jj])
Two approaches I'd suggest here:
numpy memmap: Create a memory mapped array, put the data inside this and then run code for "Small Set". Memory maps behave almost like arrays.
Use multiprocessing-module to allow parallel processing: if the "compare" method consumes at least a noticeable amount of CPU time, you could use more than one process.
Assuming you have more than one core in the CPU, this will speed up significantly. Use
one process to read the data from the hdf and put in into a queue
one process to grab from the queue and do the comparisson and put some result to "output-queue"
one process to collect the results again.
Before choosing the way: "Know your enemy", i.e., use profiling! Optimizations are only worth the effort if you improve at the bottlenecks, so first find out which methods consume you precious CPU time.
Your algorithm is O(n^2), which is not good for large data. Don't you see any chance to reduce this, e.g., by applying some logic? This is always the best approach.
Greetings,
Thorsten

Repeatedly appending to a large list (Python 2.6.6)

I have a project where I am reading in ASCII values from a microcontroller through a serial port (looks like this : AA FF BA 11 43 CF etc)
The input is coming in quickly (38 two character sets / second).
I'm taking this input and appending it to a running list of all measurements.
After about 5 hours, my list has grown to ~ 855000 entries.
I'm given to understand that the larger a list becomes, the slower list operations become. My intent is to have this test run for 24 hours, which should yield around 3M results.
Is there a more efficient, faster way to append to a list then list.append()?
Thanks Everyone.
I'm given to understand that the larger a list becomes, the slower list operations become.
That's not true in general. Lists in Python are, despite the name, not linked lists but arrays. There are operations that are O(n) on arrays (copying and searching, for instance), but you don't seem to use any of these. As a rule of thumb: If it's widely used and idiomatic, some smart people went and chose a smart way to do it. list.append is a widely-used builtin (and the underlying C function is also used in other places, e.g. list comprehensions). If there was a faster way, it would already be in use.
As you will see when you inspect the source code, lists are overallocating, i.e. when they are resized, they allocate more than needed for one item so the next n items can be appended without need to another resize (which is O(n)). The growth isn't constant, it is proportional with the list size, so resizing becomes rarer as the list grows larger. Here's the snippet from listobject.c:list_resize that determines the overallocation:
/* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc().
* The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
*/
new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6);
As Mark Ransom points out, older Python versions (<2.7, 3.0) have a bug that make the GC sabotage this. If you have such a Python version, you may want to disable the gc. If you can't because you generate too much garbage (that slips refcounting), you're out of luck though.
One thing you might want to consider is writing your data to a file as it's collected. I don't know (or really care) if it will affect performance, but it will help ensure that you don't lose all your data if power blips. Once you've got all the data, you can suck it out of the file and jam it in a list or an array or a numpy matrix or whatever for processing.
Appending to a python list has a constant cost. It is not affected by the number of items in the list (in theory). In practice appending to a list will get slower once you run out of memory and the system starts swapping.
http://wiki.python.org/moin/TimeComplexity
It would be helpful to understand why you actually append things into a list. What are you planning to do with the items. If you don't need all of them you could build a ring buffer, if you don't need to do computation you could write the list to a file, etc.
First of all, 38 two-character sets per second, 1 stop bit, 8 data bits, and no parity, is only 760 baud, not fast at all.
But anyway, my suggestion, if you're worried about having overly large lists/don't want to use one huge list, is just to store store a list on disk once it reaches a certain size and start a new list, repeating until you've gotten all the data, then combining all the lists into one once you're done receiving the data.
Though you may skip the sublists completely and just go with nmichaels' suggestion, writing the data to a file as you get it and using a small circular buffer to hold the received data that has not yet been written.
It might be faster to use numpy if you know how long the array is going to be and you can convert your hex codes to ints:
import numpy
a = numpy.zeros(3000000, numpy.int32)
for i in range(3000000):
a[i] = int(scanHexFromSerial(),16)
This will leave you with an array of integers (which you could convert back to hex with hex()), but depending on your application maybe that will work just as well for you.

Why do dicts of defaultdict(int)'s use so much memory? (and other simple python performance questions)

I do understand that querying a non-existent key in a defaultdict the way I do will add items to the defaultdict. That is why it is fair to compare my 2nd code snippet to my first one in terms of performance.
import numpy as num
from collections import defaultdict
topKeys = range(16384)
keys = range(8192)
table = dict((k,defaultdict(int)) for k in topKeys)
dat = num.zeros((16384,8192), dtype="int32")
print "looping begins"
#how much memory should this use? I think it shouldn't use more that a few
#times the memory required to hold (16384*8192) int32's (512 mb), but
#it uses 11 GB!
for k in topKeys:
for j in keys:
dat[k,j] = table[k][j]
print "done"
What is going on here? Furthermore, this similar script takes eons to run compared to the first one, and also uses an absurd quantity of memory.
topKeys = range(16384)
keys = range(8192)
table = [(j,0) for k in topKeys for j in keys]
I guess python ints might be 64 bit ints, which would account for some of this, but do these relatively natural and simple constructions really produce such a massive overhead?
I guess these scripts show that they do, so my question is: what exactly is causing the high memory usage in the first script and the long runtime and high memory usage of the second script and is there any way to avoid these costs?
Edit:
Python 2.6.4 on 64 bit machine.
Edit 2: I can see why, to a first approximation, my table should take up 3 GB
16384*8192*(12+12) bytes
and 6GB with a defaultdict load factor that forces it to reserve double the space.
Then inefficiencies in memory allocation eat up another factor of 2.
So here are my remaining questions:
Is there a way for me to tell it to use 32 bit ints somehow?
And why does my second code snippet take FOREVER to run compared to the first one? The first one takes about a minute and I killed the second one after 80 minutes.
Python ints are internally represented as C longs (it's actually a bit more complicated than that), but that's not really the root of your problem.
The biggest overhead is your usage of dicts. (defaultdicts and dicts are about the same in this description). dicts are implemented using hash tables, which is nice because it gives quick lookup of pretty general keys. (It's not so necessary when you only need to look up sequential numerical keys, since they can be laid out in an easy way to get to them.)
A dict can have many more slots than it has items. Let's say you have a dict with 3x as many slots as items. Each of these slots needs room for a pointer to a key and a pointer serving as the end of a linked list. That's 6x as many points as numbers, plus all the pointers to the items you're interested in. Consider that each of these pointers is 8 bytes on your system and that you have 16384 defaultdicts in this situation. As a rough, handwavey look at this, 16384 occurrences * (8192 items/occurance) * 7 (pointers/item) * 8 (bytes/pointer) = 7 GB. This is before I've gotten to the actual numbers you're storing (each unique number of which is itself a Python dict), the outer dict, that numpy array, or the stuff Python's keeping track of to try to optimize some.
Your overhead sounds a little higher than I suspect and I would be interested in knowing whether that 11GB was for a whole process or whether you calculated it for just table. In any event, I do expect the size of this dict-of-defaultdicts data structure to be orders of magnitude bigger than the numpy array representation.
As to "is there any way to avoid these costs?" the answer is "use numpy for storing large, fixed-size contiguous numerical arrays, not dicts!" You'll have to be more specific and concrete about why you found such a structure necessary for better advice about what the best solution is.
Well, look at what your code is actually doing:
topKeys = range(16384)
table = dict((k,defaultdict(int)) for k in topKeys)
This creates a dict holding 16384 defaultdict(int)'s. A dict has a certain amount of overhead: the dict object itself is between 60 and 120 bytes (depending on the size of pointers and ssize_t's in your build.) That's just the object itself; unless the dict is less than a couple of items, the data is a separate block of memory, between 12 and 24 bytes, and it's always between 1/2 and 2/3rds filled. And defaultdicts are 4 to 8 bytes bigger because they have this extra thing to store. And ints are 12 bytes each, and although they're reused where possible, that snippet won't reuse most of them. So, realistically, in a 32-bit build, that snippet will take up 60 + (16384*12) * 1.8 (fill factor) bytes for the table dict, 16384 * 64 bytes for the defaultdicts it stores as values, and 16384 * 12 bytes for the integers. So that's just over a megabyte and a half without storing anything in your defaultdicts. And that's in a 32-bit build; a 64-bit build would be twice that size.
Then you create a numpy array, which is actually pretty conservative with memory:
dat = num.zeros((16384,8192), dtype="int32")
This will have some overhead for the array itself, the usual Python object overhead plus the dimensions and type of the array and such, but it wouldn't be much more than 100 bytes, and only for the one array. It does store 16384*8192 int32's in your 512Mb though.
And then you have this rather peculiar way of filling this numpy array:
for k in topKeys:
for j in keys:
dat[k,j] = table[k][j]
The two loops themselves don't use much memory, and they re-use it each iteration. However, table[k][j] creates a new Python integer for each value you request, and stores it in the defaultdict. The integer created is always 0, and it so happens that that always gets reused, but storing the reference to it still uses up space in the defaultdict: the aforementioned 12 bytes per entry, times the fill factor (between 1.66 and 2.) That lands you close to 3Gb of actual data right there, and 6Gb in a 64-bit build.
On top of that the defaultdicts, because you keep adding data, have to keep growing, which means they have to keep reallocating. Because of Python's malloc frontend (obmalloc) and how it allocates smaller objects in blocks of its own, and how process memory works on most operating systems, this means your process will allocate more and not be able to free it; it won't actually use all of the 11Gb, and Python will re-use the available memory inbetween the large blocks for the defaultdicts, but the total mapped address space will be that 11Gb.
Mike Graham gives a good explanation of why dictionaries use more memory, but I thought that I'd explain why your table dict of defaultdicts starts to take up so much memory.
The way that the defaultdict (DD) is set-up right now, whenever you retrieve an element that isn't in the DD, you get the default value for the DD (0 for your case) but also the DD now stores a key that previously wasn't in the DD with the default value of 0. I personally don't like this, but that's how it goes. However, it means that for every iteration of the inner loop, new memory is being allocated which is why it is taking forever. If you change the lines
for k in topKeys:
for j in keys:
dat[k,j] = table[k][j]
to
for k in topKeys:
for j in keys:
if j in table[k]:
dat[k,j] = table[k][j]
else:
dat[k,j] = 0
then default values aren't being assigned to keys in the DDs and so the memory stays around 540 MB for me which is mostly just the memory allocated for dat. DDs are decent for sparse matrices though you probably should just use the sparse matrices in Scipy if that's what you want.

Categories