I want to detect whether a file is locked, using python on Unix. It's OK to delete the file, assuming that it helps detects whether the file was locked.
The file could have been originally opened exclusively by another process. Documentation seems to suggest that os.unlink won't necessarily return an error if the file is locked.
Ideas?
The best way to check if a file is locked is to try to lock it. The fcntl module will do this in Python, e.g.
fcntl.lockf(fileobj.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
This will raise an IOError if the file is already locked; if it doesn't, you can then call
fcntl.lockf(fileobj.fileno(), fcntl.LOCK_UN)
To unlock it again.
Note that unlike Windows, opening a file for writing does not automatically give you an exclusive lock in Unix. Also note that the fcntl module is not available on Windows; you'll need to use os.open, which is a much less friendly but more portable interface (and may require re-opening the file again).
From the fcntl docs:
fcntl.lockf(fd, operation[, length[, start[, whence]]])
If LOCK_NB is used and the lock cannot be acquired, an IOError will be raised and the exception will have an errno attribute set to EACCES or EAGAIN (depending on the operating system; for portability, check for both values).
This uses the underlying unix flock mechanism, so looks like it should do what you want. Also note there is also os.open, which may be more platform-independent.
I tried to lock a file in mac and delete the same file in another terminal.
It allows the file to be deleted.
lock_file_path = "/tmp/lock.file"
fd = open(lock_file_path,"w")
fcntl.flock(fd.fileno(),LOCK_EX)
while True:
print("Locked")
Related
I've been playing around a bit with file-based Streams in Python and have noticed that several methods (e.g. write, close, writable) do not raise Exceptions when an underlying file for the stream has been deleted (e.g. per a call to os.remove().
Having reviewed the standard library docs here - there isn't any content referring specifically how such methods would behave if the stream's underlying file was deleted - but the behavior I've observed seems unintuitive. One can imagine, for example, a case where an application believes it has successfully written critical information to a log file - but the log file, in fact, has been deleted and the application is unaware that is no longer exists because no Exception is raised.
Here is some example code that illustrates this behavior. I used Python 3.10.7 to execute it.
import os
from os.path import exists
p = "./myfile.txt"
f = open(p, "w")
f.write("Here is my content\n")
f.flush()
os.remove(p)
print(exists(p)) # False (as expected)
print(f.writable()) # True - but 'myfile.txt' has been deleted!
f.write("Some more content") # Does not raise an exception!
f.flush() # Does not raise an exception
exists(p) # Still False - which is expected (and I confirmed there is no file at path "p")
f.close() # Does not raise an exception!
# Line below fails with "ValueError: I/O operation on closed file." That is consistent with the documentation for
# "close()" in the io module.
f.write("This better fail!")
As indicated above, I expected the f.write, f.flush, f.close and f.writable operations to raise Exceptions once the file was deleted with the os.remove() call. None of those operations, however, raised an Exception.
Obviously, this is very unlikely to be a bug. But if not, why is this behavior desirable and is this behavior specific to Python or file-based streams as a whole?
reading/writing to files is not handled by python, it is handled by the operating system, python just puts the data in a buffer, and the operating system is responsible for writing it to the disk. (by calling a kernel mode function)
what the operating system does when it writes to a file that doesn't exist is up to the operating system, for example on windows the above code does raise an error
Traceback (most recent call last):
File "example_python.py", line 8, in <module>
os.remove(p)
PermissionError: [WinError 32] The process cannot access the file because it is being used by another process: './myfile.txt'
this is not the case for linux, and you can read more about it in this answer What happens to an open file handle on Linux if the pointed file gets moved or deleted
Consider the following piece of Python (2.x) code:
for line in open('foo').readlines():
print line.rstrip()
I assume that since the open file remains unreferenced it has to be closed automatically. I have read about garbage collector in Python which frees memory allocated by unused objects. Is GC general enough to handle the files too?
UPDATE
For current versions of python, the clear recommendation is to close files explicitly or use a with statement. No indication anymore that the GC will close the file for you. So now the answer should be: Maybe, but no guarantee. Always use close() or a with statement.
In the Python 3.8 docs the text has been updated to:
If you’re not using the with keyword, then you should call f.close() to close the file and immediately free up any system resources used by it.
Warning: Calling f.write() without using the with keyword or calling f.close() might result in the arguments of f.write() not being completely written to the disk, even if the program exits successfully.
Old Answer:
Taken from the Python 3.6 docs:
If you’re not using the with keyword, then you should call f.close() to close the file and immediately free up any system resources used by it. If you don’t explicitly close a file, Python’s garbage collector will eventually destroy the object and close the open file for you, but the file may stay open for a while. Another risk is that different Python implementations will do this clean-up at different times.
So yes, the file will be closed automatically, but in order to be in control of the process you should do so yourself or use a with statement:
with open('foo') as foo_file:
for line in foo_file.readlines():
print line.rstrip()
foo_file will be clsoed once the with block ends
In the Python 2.7 docs, the wording was different:
When you’re done with a file, call f.close() to close it and free up
any system resources taken up by the open file. After calling
f.close(), attempts to use the file object will automatically fail.
so I assume that you should not depend on the garbage collector automatically closing files for you and just do it manually/use with
I often use open without with so I ran a little test. For the test I use Python 3.9 so I'm not speaking of earlier versions but for 3.9 at least, we do not need the with to have a clean file close.
bash
inotifywait -m "testfile"
python3.9
lines=[line for line in open("testfile")]
sleep(5)
for line in lines:
print(line)
Watch the inotifywait window and run the python script. Before the sleep the final event will be CLOSE_NOWRITE,CLOSE and there will be no other events from that file through the run of the python script.
It depends on what you do, check out this description how it works.
In general I would recommend to use the context manager of the file:
with open("foo", "r") as f:
for line in f.readlines():
# ....
which is similar to (for basic understanding):
file_context_manager = open("foo", "r").__enter__()
for line in file_context_manager.readlines():
# ....
file_context_manager.__exit__()
The first version is a lot more readable, and the withstatement calls the exit method automatically (plus a bit more context handling).
The file will be closed automatically when the scope of the with statement is left.
I want to create empty file using Python script in Unix environment. Could see different ways mentioned of achieving the same. What are the benefits/pitfalls of one over the other.
os.system('touch abc')
open('abc','a').close()
open('abc','a')
subprocess.call(['touch','abc'])
Well, for a start, the ones that rely on touch are not portable. They won't work under standard Windows, for example, without the installation of CygWin, GNUWin32, or some other package providing a touch utility..
They also involve the creation of a separate process for doing the work, something that's totally unnecessary in this case.
Of the four, I would probably use open('abc','a').close() if the intent is to try and just create the file if it doesn't exist. In my opinion, that makes the intent clear.
But, if you're trying to create an empty file, I'd probably be using the w write mode rather than the a append mode.
In addition, you probably also want to catch the exception if, for example, you cannot actually create the file.
TLDR: use
open('abc','a').close()
(or 'w' instead of 'a' if the intent is to truncate the file if it already exists).
Invoking a separate process to do something Python can do itself is wasteful, and non-portable to platforms where the external command is not available. (Additionally, os.system uses two processes -- one more for a shell to parse the command line -- and is being deprecated in favor of subprocess.)
Not closing an open filehandle when you're done with it is bad practice, and could cause resource depletion in a larger program (you run out of filehandles if you open more and more files and never close them).
To create an empty file on Unix in Python:
import os
try:
os.close(os.open('abc', os.O_WRONLY | os.O_CREAT | os.O_EXCL |
getattr(os, "O_CLOEXEC", 0) |
os.O_NONBLOCK | os.O_NOCTTY))
except OSError:
pass # decide what to consider an error in your case and reraise
# 1. is it an error if 'abc' entry already exists?
# 2. is it an error if 'abc' is a directory or a symlink to a directory?
# 3. is it an error if 'abc' is a named pipe?
# 4. it is probably an error if the parent directory is not writable
# or the filesystem is read-only (can't create a file)
Or more portable variant:
try:
open('abc', 'ab', 0).close()
except OSError:
pass # see the comment above
Without the explicit .close() call, non-reference-counting Python implementations such as Pypy, Jython may delay closing the file until garbage collection is run (it may exhaust available file descriptors for your process).
The latter example may stuck on FIFO and follows symlinks. On my system, it is equivalent to:
from os import *
open("abc", O_WRONLY|O_CREAT|O_APPEND|O_CLOEXEC, 0666)
In addition, touch command updates the access and modification times of existing files to the current time.
In more recent Python 3 variants, we have Path.touch() from pathlib. This will create an empty file if it doesn't exist, and update the mtime if it does, in the same way as your example os.system('touch abc'), but it's much more portable:
from pathlib import Path
abc = Path('abc')
abc.touch()
I'm trying to create a script in Python to back up some files. But, these files could be renamed or deleted at any time. I don't want my script to prevent that by locking the file; the file should be able to still be deleted at any time during the backup.
How can I do this in Python? And, what happens? Do my objects just become null if the stream cannot be read?
Thank you! I'm somewhat new to Python.
As mentioned by #kindall, this is a Windows-specific issue. Unix OSes allow deleting.
To do this in Windows, I needed to use win32file.CreateFile() to use the Windows-specific dwSharingMode flag (in Python's pywin32, it's just called shareMode).
Rough Example:
import msvcrt
import os
import win32file
py_handle = win32file.CreateFile(
'filename.txt',
win32file.GENERIC_READ,
win32file.FILE_SHARE_DELETE
| win32file.FILE_SHARE_READ
| win32file.FILE_SHARE_WRITE,
None,
win32file.OPEN_EXISTING,
win32file.FILE_ATTRIBUTE_NORMAL,
None
)
try:
with os.fdopen(
msvcrt.open_osfhandle(py_handle.handle, os.O_RDONLY)
) as file_descriptor:
... # read from `file_descriptor`
finally:
py_handle.Close()
Note: if you need to keep the win32-file open beyond the lifetime of the file-handle object returned, you should invoke PyHandle.detach() on that handle.
On UNIX-like OSs, including Linux, this isn't an issue. Well, some other program could write to the file at the same time you're reading it, which could cause problems (the file you are copying could end up corrupted) but this is solvable with a verification pass.
On Windows, use Volume Snapshot Service (aka Volume Shadow Copy). VSS creates a snapshot of the volume at a moment in time, and you can open files on the snapshot without locking the files on the original volume. A quick Google found a Python module for doing copies using VSS here: http://sourceforge.net/projects/pyvss/
In Python, and in general - does a close() operation on a file object imply a flush() operation?
Yes. It uses the underlying close() function which does that for you (source).
NB: close() and flush() won't ensure that the data is actually secure on the disk. It just ensures that the OS has the data == that it isn't buffered inside the process.
You can try sync or fsync to get the data written to the disk.
Yes, in Python 3 this is finally in the official documentation, but is was already the case in Python 2 (see Martin's answer).
As a complement to this question, yes python flushes before close, however if you want to ensure data is written properly to disk this is not enough.
This is how I would write a file in a way that it's atomically updated on a UNIX/Linux server, whenever the target file exists or not. Note that some filesystem will implicitly commit data to disk on close+rename (ext3 with data=ordered (default), and ext4 initially uncovered many application flaws before adding detection of write-close-rename patterns and sync data before metadata on those[1]).
# Write destfile, using a temporary name .<name>_XXXXXXXX
base, name = os.path.split(destfile)
tmpname = os.path.join(base, '.{}_'.format(name)) # This is the tmpfile prefix
with tempfile.NamedTemporaryFile('w', prefix=tmpname, delete=False) as fd:
# Replace prefix with actual file path/name
tmpname = str(fd.name)
try:
# Write fd here... ex:
json.dumps({}, fd)
# We want to fdatasync before closing, so we need to flush before close anyway
fd.flush()
os.fdatasync(fd)
# Since we're using tmpfile, we need to also set the proper permissions
if os.path.exists(destfile):
# Copy destination file's mask
os.fchmod(fd.fileno, os.stat(destfile).st_mode)
else:
# Set mask based on current umask value
umask = os.umask(0o22)
os.umask(umask)
os.fchmod(fd.fileno, 0o666 & ~umask) # 0o777 for dirs and executable files
# Now we can close and rename the file (overwriting any existing one)
fd.close()
os.rename(tmpname, destfile)
except:
# On error, try to cleanup the temporary file
try:
os.unlink(tmpname)
except OSError:
pass
raise
IMHO it would have been nice if Python provided simple methods around this... At the same time I guess if you care about data consistency it's probably best to really understand what is going on at a low level, especially since there are many differences across various Operating Systems and Filesystems.
Also note that this does not guarantee the written data can be recovered, only that you will get a consistent copy of the data (old or new). To ensure the new data is safely written and accessible when returning, you need to use os.fsync(...) after the rename, and even then if you have unsafe caches in the write path you could still lose data. this is common on consumer-grade hardware although any system can be configured for unsafe writes which boosts performance too. At least even with unsafe caches, the method above should still guarantee whichever copy of the data you get is valid.
filehandle.close does not necessarily flush. Surprisingly, filehandle.flush doesn't help either---it still can get stuck in the OS buffers when Python is running. Observe this session where I wrote to a file, closed it and Ctrl-Z to the shell command prompt and examined the file:
$ cat xyz
ghi
$ fg
python
>>> x=open("xyz","a")
>>> x.write("morestuff\n")
>>> x.write("morestuff\n")
>>> x.write("morestuff\n")
>>> x.flush
<built-in method flush of file object at 0x7f58e0044660>
>>> x.close
<built-in method close of file object at 0x7f58e0044660>
>>>
[1]+ Stopped python
$ cat xyz
ghi
Subsequently I can reopen the file, and that necessarily syncs the file (because, in this case, I open it in the append mode). As the others have said, the sync syscall (available from the os package) should flush all buffers to disk but it has possible system-wide performance implications (it syncs all files on the system).