Controlling getter and setter for a python's class - python

Consider the following class :
class Token:
def __init__(self):
self.d_dict = {}
def __setattr__(self, s_name, value):
self.d_dict[s_name] = value
def __getattr__(self, s_name):
if s_name in self.d_dict.keys():
return self.d_dict[s_name]
else:
raise AttributeError('No attribute {0} found !'.format(s_name))
In my code Token have some other function (like get_all() wich return d_dict, has(s_name) which tell me if my token has a particular attribute).
Anyway, I think their is a flaw in my plan since it don't work : when I create a new instance, python try to call __setattr__('d_dict', '{}').
How can I achieve a similar behaviour (maybe in a more pythonic way ?) without having to write something like Token.set(name, value) and get(name) each I want to set or get an attribute for a token.
Critics about design flaw and/or stupidity welcome :)
Thank !

You need to special-case d_dict.
Although of course, in the above code, all you do is replicate what any object does with __dict__ already, so it's pretty pointless. Do I guess correctly if you intended to special case some attributes and actally use methods for those?
In that case, you can use properties.
class C(object):
def __init__(self):
self._x = None
#property
def x(self):
"""I'm the 'x' property."""
return self._x
#x.setter
def x(self, value):
self._x = value
#x.deleter
def x(self):
del self._x

The special-casing of __dict__ works like this:
def __init__(self):
self.__dict__['d_dict'] = {}
There is no need to use a new-style class for that.

A solution, not very pythonic but works. As Lennart Regebro pointed, you have to use a special case for d_dict.
class Token(object):
def __init__(self):
super(Token,self).__setattr__('d_dict', {})
def __getattr__(self,name):
return self.a[name]
def __setattr__(self,name,value):
self.a[name] = value
You need to use new style classes.

the problem seems to be in time of evaluation of your code in __init__ method.
You could define __new__ method and initialize d_dict variable there instead of __init__.
Thats a bit hackish but it works, remember though to comment it as after few months it'll be total magic.
>>> class Foo(object):
... def __new__(cls, *args):
... my_cls = super(Foo, cls).__new__(cls, *args)
... my_cls.d_dict = {}
... return my_cls
>>> f = Foo()
>>> id(f.d_dict)
3077948796L
>>> d = Foo()
>>> id(d.d_dict)
3078142804L
Word of explanation why I consider that hackish: call to __new__ returns new instance of class so then d_dict initialised in there is kind of static, but it's initialised with new instance of dictionary each time class is "created" so everything works as you need.

It's worth remembering that __getattr__ is only called if the attribute doesn't exist in the object, whereas __setattr__ is always called.

I think we'll be able to say something about the overall design of your class if you explain its purpose. For example,
# This is a class that serves as a dictionary but also has user-defined methods
class mydict(dict): pass
# This is a class that allows setting x.attr = value or getting x.attr:
class mysetget: pass
# This is a class that allows setting x.attr = value or getting x.attr:
class mygetsethas:
def has(self, key):
return key in self.__dict__
x = mygetsethas()
x.a = 5
print(x.has('a'), x.a)
I think the last class is closest to what you meant, and I also like to play with syntax and get lots of joy from it, but unfortunately this is not a good thing. Reasons why it's not advisable to use object attributes to re-implement dictionary: you can't use x.3, you conflict with x.has(), you have to put quotes in has('a') and many more.

Related

Some doubts about #property in python 3

In order not to extend myself too much I will give a basic and hypothetical example of what I am trying to do.
Suppose the following class:
class foo():
def __init__(self):
self.keywords = []
## this method returns the entire list
def get_keywords(self):
return self.keywords
def set_keywords(self, value):
self.keywords.append(value)
But I want to code this in a pythonic way using the #property decorator.
My (wrong) attempt to do this:
class foo:
def __init__(self):
self.key = []
#property
def key(self):
return self.__key
#key.setter
def key(self, value):
self.__key.append(value)
So, whats is wrong in my attempt ?
ps: English is not my native language and I hope my doubt is understandable.
In your original code, self.set_keywords only appends to an existing list; it does not let you initialize the value of keywords to an arbitrary list. This restriction is preserved in your property-based code, which means you cannot assign directly to self.key; you have to initialize the underlying list in __init__ directly.
class foo:
def __init__(self):
# self.key = [] is equivalent to `self.__key.append([])`, but
# self.__key doesn't exist yet. (And would be wrong even if it did.)
self.__key = []
#property
def key(self):
return self.__key
#key.setter
def key(self, value):
self.__key.append(value)
However, this means an assignment like self.key = 3 doesn't actually perform what most people would expect of an assignment. It doesn't overwrite the old value, it adds to it instead. Use the setter to provide a fixed list, but a different method to add to an existing one.
class foo:
def __init__(self):
self.__keys = []
#property
def keys(self):
return self.__keys
#keys.setter
def keys(self, values):
self.__keys = values
def add_key(self, value):
self.__key.append(value)
And finally, it's not necessarily more Pythonic to use a property if you don't actually do any sort of extra work or validation in the getter or setter. If all you are doing is wrapping access to an underlying value, just let the value be used directly.
class foo:
def __init__(self):
self.keys = []
self.keys = [1,2,3]
print(self.keys)
self.keys.append(4)
# etc
The nice thing about properties is that if you start by allowing direct access to keys, then nothing about how you use keys changes if you later decide to replace it with a property.
You can give this a try:
class Foo:
def __init__(self):
self._key = []
#property
def key(self):
return self._key
#key.setter
def key(self, value):
self._key = value
Here are my two cents:
Rename the class foo to Foo
You can't initialize self.key, as this is the property, so initialize the correct variable in the constructor (i.e. __init__)
Private vars are prefixed with one _ scope and not two (two __ are Python internals)
I suppose you rather want my_instance.key = ['spam', 'eggs'] to replace the foo._key value than extend it. Because this is kind of a "setter" and that would result in a weird behaviour, or at least another developer won't expect that behaviour from that setter/function
However, and that's important: As long as you're only doing this, you won't need properties. You can simply initialize self.keys in the constructor and froget about the property and setter function. Later on, when you want to change the behaviour, you can still add the property and setter. That's one reason why we've properties in Python, so that you won't have to refactor your whole code in case "a bit more logic" comes into place.
Btw. if you're really depending everything on those dict functions, you might also want to inherit your class from the dict class. Depends what you're up to.

How to make a decorator for defining required properties of a class?

I tried writing a decorator as such (going off memory, excuse any problems in code):
def required(fn):
def wrapped(self):
self.required_attributes += [fn.__name__]
fn(self)
return wrapped
and I used this to decorate #property attributes in classes, e.g.:
#property
#required
def some_property(self):
return self._some_property
...so that I could do something like this:
def validate_required_attributes(instance):
for attribute in instance.required_attributes:
if not hasattr(instance, attribute):
raise ValueError(f"Required attribute {attribute} was not set!")
Now I forgot that this wouldn't work because in order for the required_attributes to be updated with the name of the property, I would have to retrieve the property first. So in essence, when I do init in the class, I can just do a self.propertyname to add it... but this solution is not nice at all, I might as well create a list of required attribute names in the init.
From what I know, the decorator is applied at compile time so I wouldn't be able to modify the required_attributes before defining the wrapped function. Is there another way I can make this work? I just want a nice, elegant solution.
Thanks!
I think the attrs library does what you want. You can define a class like this, where x and y are required and z is optional.
from attr import attrs, attrib
#attrs
class MyClass:
x = attrib()
y = attrib()
z = attrib(default=0)
Testing it out:
>>> instance = MyClass(1, 2)
>>> print(instance)
MyClass(x=1, y=2, z=0)
Here's my take at doing it with a class decorator and a method decorator. There's probably a nicer way of doing this using metaclasses (nice being the API not the implementation ;)).
def requiredproperty(f):
setattr(f, "_required", True)
return property(f)
def hasrequiredprops(cls):
props = [x for x in cls.__dict__.items() if isinstance(x[1], property)]
cls._required_props = {k for k, v in props if v.fget._required}
return cls
#hasrequiredprops
class A(object):
def __init__(self):
self._my_prop = 1
def validate(self):
print("required attributes are", ",".join(self._required_props))
#requiredproperty
def my_prop(self):
return self._my_prop
This should make validation work without the requiring the caller to touch the property first:
>>> a = A()
>>> a.validate()
required attributes are my_prop
>>> a.my_prop
1
The class decorator is required to make sure it has the required property names duing instantiation. The requiredproperty function is just a way to mark the properties as required.
That being said, I'm not completely sure what you are trying to achieve here. Perhaps validation of the instance attribute values that the property should return?

Prevent access to an instance variable from subclass, without affecting base class

Say I have a simple class Foo, which comes from an external library, thus I cannot change it directly:
class Foo(object):
def __init__(self, x):
self.x = x
I want to create a subclass Bar and prevent x from being change from an instance of Bar, but still use the x in Bar's methods.
Here's what I tried, and it will probably enlighten the basic idea, but unfortunately it doesn't work:
class Bar(Foo):
#property
def x(self):
return super().x
#x.setter
def x(self, value):
raise NotImplementedError('Do not change x directly, use "do_stuff()" instead')
def do_stuff(self, value):
if <something>:
super().x = value
So basically I've created some wrapper functions (do_stuff()) around an attribute, and now I want to prevent the attribute from being changed directly, as it might mess up some functionality of the wrapper functions. Is this possible in a reasonable way?
Edited with a better example of what I want. I'm not trying to prevent them from seeing the variable x, but instead changing it from outside of do_stuff()
This should be much simpler to accomplish if you are willing to avoid inheritance altogether:
def main():
bar = Bar(123)
bar.fizz()
bar.buzz()
bar.fizz()
bar.set_x(456)
print('bar.x =', bar.x)
try:
bar.x = 123
except AttributeError:
print('bar.x cannot be set directly')
else:
raise AssertionError('an AttributeError should have been raised')
bar.mutate_x(789)
bar.fizz()
bar.set_x(0)
bar.fizz()
bar.mutate_x(1)
bar.fizz()
bar.set_x('Hello World')
bar.fizz()
class Foo:
def __init__(self, x):
self.x = x
def fizz(self):
print(self.x)
def buzz(self):
self.x = None
class Bar:
def __init__(self, x):
self.__foo = foo = Foo(x)
self.__copy_methods(foo)
def __copy_methods(self, obj):
for name in dir(obj):
if name.startswith('__') or name.endswith('__'):
continue
attr = getattr(obj, name)
if callable(attr):
setattr(self, name, attr)
#property
def x(self):
return self.__foo.x
def set_x(self, value):
if isinstance(value, int) and value > 0:
self.__foo.x = value
mutate_x = set_x
if __name__ == '__main__':
main()
The short answer is: No, this is not possible in a reasonable way.
Python's guiding principle here, to use the phrasing from the style guide is that we are all responsible users. Meaning that code is trusted not to do silly things, and people should generally avoid messing with members of other people's classes without a good reason.
The first and best way to prevent people from accidentally changing a value is to mark it using the single underscore (_variable). This however may not offer you the protection you want against accidental modification of your variables.
The next step up in protection is to use a double underscore. Quoting from PEP-8:
To avoid name clashes with subclasses, use two leading underscores to invoke Python's name mangling rules.
Python mangles these names with the class name: if class Foo has an attribute named __a , it cannot be accessed by Foo.__a . (An insistent user could still gain access by calling Foo._Foo__a .) Generally, double leading underscores should be used only to avoid name conflicts with attributes in classes designed to be subclassed.
The mangling makes it more difficult to accidentally overwrite a value.
I added emphasis to that last sentence because it is important. Using this mechanism for preventing accidental access to a member is not really the something that should be done for a lot of members.
In your specific case, the way that I'd solve the problem would be to not subclass at all. Consider:
class Foo(object):
def __init__(self, x):
self.x = x
class Bar():
def __init__(self, x):
self._foo = Foo(x)
#property
def x(self):
return self._foo.x
def do_stuff(self, value):
# Validate the value, and the wrapped object's state
if valid:
self._foo.x = value
Of course this means that Bar has to wrap all of Foo's methods that you want to wrap. Yes, someone could still,
b = Bar(100)
b._foo.x = 127 # shame on them :)
or
b = Bar(100)
b._foo = EvilFoo(127)
but it's harder to unintentionally do.
You're on the right track, you want to make x a property instead of having it be an attribute in the subclass. Where you went wrong was trying to store the raw data for x on super. What you want to do is exploit the fact that the parent class can use the new property of the subclass transparently and does not need to know that it is now a property and not a attribute. Something like this should work for you:
class Foo(object):
def __init__(self, x):
self.x = x
class Bar(Foo):
_protected_x = None
#property
def x(self):
return self._protected_x
#x.setter
def x(self, value):
if self._protected_x is None:
self._protected_x = value
else:
raise ValueError("Use set_x to change x.")
def set_x(self, value):
self._protected_x = value
b = Bar(12)
print b.x
b.set_x(5)
print b.x

Attribute mapping with a Python property

Is there a way to make a Python #property act as a setter and getter all at once?
I feel like I've seen this somewhere before but can't remember and can't recreate the solution myself.
For example, instead of:
class A(object):
def __init__(self, b): self.b = b
def get_c(self): return self.b.c
def set_c(self, value): self.b.c = value
c = property(get_c, set_c)
we could somehow signal that for A objects, the c attribute is really equivalent to b.c for getter, setter (and deleter if we like).
Motivation:
This would be particularly useful when we need A to be a proxy wrapper around B objects (of which b is an instance) but share only the data attributes and no methods. Properties such as these would allow the A and B objects' data to stay completely in sync while both are used by the same code.
I think you are looking for this forwardTo class as posted on ActiveState.
This recipe lets you transparently forward attribute access to another
object in your class. This way, you can expose functionality from some
member of your class instance directly, e.g. foo.baz() instead of
foo.bar.baz().
class forwardTo(object):
"""
A descriptor based recipe that makes it possible to write shorthands
that forward attribute access from one object onto another.
>>> class C(object):
... def __init__(self):
... class CC(object):
... def xx(self, extra):
... return 100 + extra
... foo = 42
... self.cc = CC()
...
... localcc = forwardTo('cc', 'xx')
... localfoo = forwardTo('cc', 'foo')
...
>>> print C().localcc(10)
110
>>> print C().localfoo
42
Arguments: objectName - name of the attribute containing the second object.
attrName - name of the attribute in the second object.
Returns: An object that will forward any calls as described above.
"""
def __init__(self, objectName, attrName):
self.objectName = objectName
self.attrName = attrName
def __get__(self, instance, owner=None):
return getattr(getattr(instance, self.objectName), self.attrName)
def __set__(self, instance, value):
setattr(getattr(instance, self.objectName), self.attrName, value)
def __delete__(self, instance):
delattr(getattr(instance, self.objectName), self.attrName)
For a more robust code, you may want to consider replacing getattr(instance, self.objectName) with operator.attrgetter(self.objectName)(instance). This would allow objectName to be a dotted name (e.g., so you could have A.c be a proxy for A.x.y.z.d).
If you're trying to delegate a whole slew of properties from any A object to its b member, it's probably easier to do that inside __getattr__, __setattr__, and __delattr__, e.g.:
class A(object):
delegated = ['c', 'd', 'e', 'f']
def __getattr__(self, attr):
if attr in A.delegated:
return getattr(self.b, attr)
raise AttributeError()
I haven't shown the __setattr__ and __delattr__ definitions here, for brevity, and to avoid having to explain the difference between __getattr__ and __getattribute__. See the docs if you need more information.
This is readily extensible to classes that want to proxy different attributes to different members:
class A(object):
b_delegated = ['c', 'd', 'e', 'f']
x_delegated = ['y', 'z']
def __getattr__(self, attr):
if attr in A.b_delegated:
return getattr(self.b, attr)
elif attr in A.x_delegated:
return getattr(self.x, attr)
else:
raise AttributeError()
If you need to delegate all attributes, dynamically, that's almost as easy. You just get a list of self.b's attributes (or self.b.__class__'s) at init time or at call time (which of the four possibilities depends on exactly what you want to do), and use that in place of the static list b_delegated.
You can of course filter this by name (e.g., to remove _private methods), or by type, or any arbitrary predicate (e.g., to remove any callable attributes).
Or combine any of the above.
At any rate, this is the idiomatic way to do (especially dynamic) proxying in Python. It's not perfect, but trying to invent a different mechanism is probably not a good idea.
And in fact, it's not really meant to be perfect. This is something you shouldn't be doing too often, and shouldn't be trying to disguise when you do it. It's obvious that a ctypes.cdll or a pyobjc module is actually delegating to something else, because it's actually useful for the user to know that. If you really need to delegate most of the public interface of one class to another, and don't want the user to know about the delegation… maybe you don't need it. Maybe it's better to just expose the private object directly, or reorganize your object model so the user is interacting with the right things in the first place.
There's the decorator syntax for creating properties, then there are full blown custom-defined descriptors, but since the setter/getter pseudo-private pattern is actively discouraged in Python and the Python community, there isn't really a widely distributed or commonly used way to do what you are looking for.
For proxy objects, you can use __getattr__, __setattr__, and __getattribute__, or try to manipulate things earlier in the process by fooling around with __new__ or a metaclass.
def make_property(parent, attr):
def get(self):
return getattr(getattr(self, parent), attr)
def set(self, value):
setattr(getattr(self, parent), attr, value)
return property(get, set)
class A(object):
def __init__(self, b): self.b = b
c = make_property('b', 'c')
Here's another way of doing it, statically forwarding properties from one object to another, but with economy.
It allows to forward get/set property in two lines, and aread-only property in one line, making use of dynamic property definition at the class level and lambdas.
class A:
"""Classic definition of property, with decorator"""
_id = ""
_answer = 42
#property
def id(self):
return self._id
#id.setter
def id(self, value):
self._id = value
#property
def what(self):
return self._answer
class B:
obj = A()
# Forward "id" from self.obj
id = property(lambda self: self.obj.id,
lambda self, value: setattr(self.obj, "id", value))
# Forward read-only property from self.obj
what = property(lambda self: self.obj.what)

A python class that acts like dict

I want to write a custom class that behaves like dict - so, I am inheriting from dict.
My question, though, is: Do I need to create a private dict member in my __init__() method?. I don't see the point of this, since I already have the dict behavior if I simply inherit from dict.
Can anyone point out why most of the inheritance snippets look like the one below?
class CustomDictOne(dict):
def __init__(self):
self._mydict = {}
# other methods follow
Instead of the simpler...
class CustomDictTwo(dict):
def __init__(self):
# initialize my other stuff here ...
# other methods follow
Actually, I think I suspect the answer to the question is so that users cannot directly access your dictionary (i.e. they have to use the access methods that you have provided).
However, what about the array access operator []? How would one implement that? So far, I have not seen an example that shows how to override the [] operator.
So if a [] access function is not provided in the custom class, the inherited base methods will be operating on a different dictionary?
I tried the following snippet to test out my understanding of Python inheritance:
class myDict(dict):
def __init__(self):
self._dict = {}
def add(self, id, val):
self._dict[id] = val
md = myDict()
md.add('id', 123)
print md[id]
I got the following error:
KeyError: < built-in function id>
What is wrong with the code above?
How do I correct the class myDict so that I can write code like this?
md = myDict()
md['id'] = 123
[Edit]
I have edited the code sample above to get rid of the silly error I made before I dashed away from my desk. It was a typo (I should have spotted it from the error message).
class Mapping(dict):
def __setitem__(self, key, item):
self.__dict__[key] = item
def __getitem__(self, key):
return self.__dict__[key]
def __repr__(self):
return repr(self.__dict__)
def __len__(self):
return len(self.__dict__)
def __delitem__(self, key):
del self.__dict__[key]
def clear(self):
return self.__dict__.clear()
def copy(self):
return self.__dict__.copy()
def has_key(self, k):
return k in self.__dict__
def update(self, *args, **kwargs):
return self.__dict__.update(*args, **kwargs)
def keys(self):
return self.__dict__.keys()
def values(self):
return self.__dict__.values()
def items(self):
return self.__dict__.items()
def pop(self, *args):
return self.__dict__.pop(*args)
def __cmp__(self, dict_):
return self.__cmp__(self.__dict__, dict_)
def __contains__(self, item):
return item in self.__dict__
def __iter__(self):
return iter(self.__dict__)
def __unicode__(self):
return unicode(repr(self.__dict__))
o = Mapping()
o.foo = "bar"
o['lumberjack'] = 'foo'
o.update({'a': 'b'}, c=44)
print 'lumberjack' in o
print o
In [187]: run mapping.py
True
{'a': 'b', 'lumberjack': 'foo', 'foo': 'bar', 'c': 44}
Like this
class CustomDictOne(dict):
def __init__(self,*arg,**kw):
super(CustomDictOne, self).__init__(*arg, **kw)
Now you can use the built-in functions, like dict.get() as self.get().
You do not need to wrap a hidden self._dict. Your class already is a dict.
Check the documentation on emulating container types. In your case, the first parameter to add should be self.
UserDict from the Python standard library is designed for this purpose.
Here is an alternative solution:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.__dict__ = self
a = AttrDict()
a.a = 1
a.b = 2
This is my best solution. I used this many times.
class DictLikeClass:
...
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
setattr(self, key, value)
...
You can use like:
>>> d = DictLikeClass()
>>> d["key"] = "value"
>>> print(d["key"])
A python class that acts like dict
What's wrong with this?
Can anyone point out why most of the inheritance snippets look like the one below?
class CustomDictOne(dict):
def __init__(self):
self._mydict = {}
Presumably there's a good reason to inherit from dict (maybe you're already passing one around and you want a more specific kind of dict) and you have a good reason to instantiate another dict to delegate to (because this will instantiate two dicts per instance of this class.) But doesn't that sound incorrect?
I never run into this use-case myself. I do like the idea of typing dicts where you are using dicts that are type-able. But in that case I like the idea of typed class attributes even moreso - and the whole point of a dict is you can give it keys of any hashable type, and values of any type.
So why do we see snippets like this? I personally think it's an easily made mistake that went uncorrected and thus perpetuated over time.
I would rather see, in these snippets, this, to demonstrate code reuse through inheritance:
class AlternativeOne(dict):
__slots__ = ()
def __init__(self):
super().__init__()
# other init code here
# new methods implemented here
or, to demonstrate re-implementing the behavior of dicts, this:
from collections.abc import MutableMapping
class AlternativeTwo(MutableMapping):
__slots__ = '_mydict'
def __init__(self):
self._mydict = {}
# other init code here
# dict methods reimplemented and new methods implemented here
By request - adding slots to a dict subclass.
Why add slots? A builtin dict instance doesn't have arbitrary attributes:
>>> d = dict()
>>> d.foo = 'bar'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'foo'
If we create a subclass the way most are doing it here on this answer, we see we don't get the same behavior, because we'll have a __dict__ attribute, causing our dicts to take up to potentially twice the space:
my_dict(dict):
"""my subclass of dict"""
md = my_dict()
md.foo = 'bar'
Since there's no error created by the above, the above class doesn't actually act, "like dict."
We can make it act like dict by giving it empty slots:
class my_dict(dict):
__slots__ = ()
md = my_dict()
So now attempting to use arbitrary attributes will fail:
>>> md.foo = 'bar'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'my_dict' object has no attribute 'foo'
And this Python class acts more like a dict.
For more on how and why to use slots, see this Q&A: Usage of __slots__?
I really don't see the right answer to this anywhere
class MyClass(dict):
def __init__(self, a_property):
self[a_property] = a_property
All you are really having to do is define your own __init__ - that really is all that there is too it.
Another example (little more complex):
class MyClass(dict):
def __init__(self, planet):
self[planet] = planet
info = self.do_something_that_returns_a_dict()
if info:
for k, v in info.items():
self[k] = v
def do_something_that_returns_a_dict(self):
return {"mercury": "venus", "mars": "jupiter"}
This last example is handy when you want to embed some kind of logic.
Anyway... in short class GiveYourClassAName(dict) is enough to make your class act like a dict. Any dict operation you do on self will be just like a regular dict.
The problem with this chunk of code:
class myDict(dict):
def __init__(self):
self._dict = {}
def add(id, val):
self._dict[id] = val
md = myDict()
md.add('id', 123)
...is that your 'add' method (...and any method you want to be a member of a class) needs to have an explicit 'self' declared as its first argument, like:
def add(self, 'id', 23):
To implement the operator overloading to access items by key, look in the docs for the magic methods __getitem__ and __setitem__.
Note that because Python uses Duck Typing, there may actually be no reason to derive your custom dict class from the language's dict class -- without knowing more about what you're trying to do (e.g, if you need to pass an instance of this class into some code someplace that will break unless isinstance(MyDict(), dict) == True), you may be better off just implementing the API that makes your class sufficiently dict-like and stopping there.
Don’t inherit from Python built-in dict, ever! for example update method woldn't use __setitem__, they do a lot for optimization. Use UserDict.
from collections import UserDict
class MyDict(UserDict):
def __delitem__(self, key):
pass
def __setitem__(self, key, value):
pass

Categories