draw a border around subplots in matplotlib - python

Anyone know how to draw a border around an individual subplot within a figure in matplotlib? I'm using pyplot.
eg:
import matplotlib.pyplot as plt
f = plt.figure()
ax1 = f.add_subplot(211)
ax2 = f.add_subplot(212)
# ax1.set_edgecolor('black')
..but Axes objects have no 'edgecolor', and I can't seem to find a way to outline the plot from the figure level either.
I'm actually wrapping mpl code and adding a wx UI with controls that I would like to have context depending on which subplot is selected. i.e. User clicks on subplot within figure canvas -- subplot is 'selected' (has an outline drawn around it, ideally sawtooth) -- GUI updates to present controls to modify that specific subplot.

You essentially want to draw outside of the axes, right?
I adapted this from here. It would need clean up as I used some hard-coded "fudge-factors" in there.
#!/usr/bin/env python
from pylab import *
def f(t):
s1 = cos(2*pi*t)
e1 = exp(-t)
return multiply(s1,e1)
t1 = arange(0.0, 5.0, 0.1)
t2 = arange(0.0, 5.0, 0.02)
t3 = arange(0.0, 2.0, 0.01)
figure(figsize=(4, 4))
sub1 = subplot(211)
l = plot(t1, f(t1), 'bo', t2, f(t2), 'k--', markerfacecolor='green')
grid(True)
title('A tale of 2 subplots')
ylabel('Damped oscillation')
## I ADDED THIS
autoAxis = sub1.axis()
rec = Rectangle((autoAxis[0]-0.7,autoAxis[2]-0.2),(autoAxis[1]-autoAxis[0])+1,(autoAxis[3]-autoAxis[2])+0.4,fill=False,lw=2)
rec = sub1.add_patch(rec)
rec.set_clip_on(False)
subplot(212)
plot(t3, cos(2*pi*t3), 'r.')
grid(True)
xlabel('time (s)')
ylabel('Undamped')
savefig('test.png')
Produces:

An alternative solution is derived from this answer on SO regarding placing Rectangle patches directly to the figure canvas, rather than to individual axes:
import matplotlib.pyplot as plt
import numpy as np
fig, axes = plt.subplots(nrows=2, ncols=1)
axes[0].plot(np.cumsum(np.random.randn(100)))
axes[1].plot(np.cumsum(np.random.randn(100)))
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.02, 0.5), 0.97, 0.49, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
plt.tight_layout()
plt.show()
Result:

Related

python bar chart total label on bar

plt.figure(figsize = (8,5))
sns.countplot(data = HRdfMerged, x = 'Gender', hue='Attrition').set_title('Gender vs Attrition')
I'm having a hard time adding a label to the top of my bar that states the total number. I have tried many different ways but can't get it right. Im using matplotlib. Picture of bar chart added.
Once you have called sns.countplot, we will explore the list ax.patches to get information from the bars and place the texts you want:
# Imports.
import matplotlib.pyplot as plt
import seaborn as sns
# Load a dataset to replicate what you have in the question.
data = sns.load_dataset("titanic")
fig, ax = plt.subplots() # Use the object-oriented approach with Matplotlib when you can.
sns.countplot(data=data, x="class", hue="who", ax=ax)
ax.set_title("title goes here")
fig.show()
# For each bar, grab its coordinates and colors, find a suitable location
# for a text and place it there.
for patch in ax.patches:
x0, y0 = patch.get_xy() # Bottom-left corner.
x0 += patch.get_width()/2 # Middle of the width.
y0 += patch.get_height() # Top of the bar
color = patch.get_facecolor()
ax.text(x0, y0, str(y0), ha="center", va="bottom", color="white", clip_on=True, bbox=dict(ec="black",
fc=color))
Play around with the kwargs of ax.text to get the result you prefer. An alternative:
ax.text(x0, y0, str(y0), ha="center", va="bottom", color=color, clip_on=True)
You can also use the convenient Axes.bar_label method here to do this in just a couple lines.
Since seaborn does not return the BaContainer objects to us, we will need to access them from the Axes object via Axes.containers attribute.
import matplotlib.pyplot as plt
import seaborn as sns
data = sns.load_dataset("titanic")
fig, ax = plt.subplots()
sns.countplot(data=data, x="class", hue="who", ax=ax)
for bar_contain in ax.containers:
ax.bar_label(bar_contain)

How to add one legend bar for all maps in subplot in matplotlib? [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Showing legend for only one subplot using matplotlib

I'm facing a problem in showing the legend in the correct format using matplotlib.
EDIT: I have 4 subplots in a figure in 2 by 2 format and I want legend only on the first subplot which has two lines plotted on it. The legend that I got using the code attached below contained endless entries and extended vertically throughout the figure. When I use the same code using linspace to generate fake data the legend works absolutely fine.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import os
#------------------set default directory, import data and create column output vectors---------------------------#
path="C:/Users/Pacman/Data files"
os.chdir(path)
data =np.genfromtxt('vrp.txt')
x=np.array([data[:,][:,0]])
y1=np.array([data[:,][:,6]])
y2=np.array([data[:,][:,7]])
y3=np.array([data[:,][:,9]])
y4=np.array([data[:,][:,11]])
y5=np.array([data[:,][:,10]])
nrows=2
ncols=2
tick_l=6 #length of ticks
fs_axis=16 #font size of axis labels
plt.rcParams['axes.linewidth'] = 2 #Sets global line width of all the axis
plt.rcParams['xtick.labelsize']=14 #Sets global font size for x-axis labels
plt.rcParams['ytick.labelsize']=14 #Sets global font size for y-axis labels
plt.subplot(nrows, ncols, 1)
ax=plt.subplot(nrows, ncols, 1)
l1=plt.plot(x, y2, 'yo',label='Flow rate-fan')
l2=plt.plot(x,y3,'ro',label='Flow rate-discharge')
plt.title('(a)')
plt.ylabel('Flow rate ($m^3 s^{-1}$)',fontsize=fs_axis)
plt.xlabel('Rupture Position (ft)',fontsize=fs_axis)
# This part is not working
plt.legend(loc='upper right', fontsize='x-large')
#Same code for rest of the subplots
I tried to implement a fix suggested in the following link, however, could not make it work:
how do I make a single legend for many subplots with matplotlib?
Any help in this regard will be highly appreciated.
If I understand correctly, you need to tell plt.legend what to put as legends... at this point it is being loaded empty. What you get must be from another source. I have quickly the following, and of course when I run fig.legend as you do I get nothing.
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_axes([0.1, 0.1, 0.4, 0.7])
ax2 = fig.add_axes([0.55, 0.1, 0.4, 0.7])
x = np.arange(0.0, 2.0, 0.02)
y1 = np.sin(2*np.pi*x)
y2 = np.exp(-x)
l1, l2 = ax1.plot(x, y1, 'rs-', x, y2, 'go')
y3 = np.sin(4*np.pi*x)
y4 = np.exp(-2*x)
l3, l4 = ax2.plot(x, y3, 'yd-', x, y4, 'k^')
fig.legend(loc='upper right', fontsize='x-large')
#fig.legend((l1, l2), ('Line 1', 'Line 2'), 'upper left')
#fig.legend((l3, l4), ('Line 3', 'Line 4'), 'upper right')
plt.show()
I'd suggest doing one by one, and then applying for all.
It is useful to work with the axes directly (ax in your case) when when working with subplots. So if you set up two plots in a figure and only wish to have a legend in your second plot:
t = np.linspace(0, 10, 100)
plt.figure()
ax1 = plt.subplot(2, 1, 1)
ax1.plot(t, t * t)
ax2 = plt.subplot(2, 1, 2)
ax2.plot(t, t * t * t)
ax2.legend('Cubic Function')
Note that when creating the legend, I am doing so on ax2 as opposed to plt. If you wish to create a second legend for the first subplot, you can do so in the same way but on ax1.

matplotlib two legends out of plot

I'm facing problem with showing two legends outside of plot.
Showing multiple legends inside plot is easy - its described in matplotlib doc's with examples.
Even showing one legend outside of plot is rather easy as i found here on stackoverflow (ex. here).
But i cant find working example to show two legends outside of the plot.
Methods which work with one legend is not working in this case.
Here is an example.
First of all base code:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.lines import Line2D
from matplotlib.font_manager import FontProperties
fig1 = plt.figure(figsize=(17,5))
fontP = FontProperties()
fontP.set_size('small')
ax1 = fig1.add_subplot(111, aspect='equal')
ax1.grid()
# stuff for legend
rec1 = patches.Rectangle(
(0.9, 0.25), # (x,y)
0.1, # width
0.1, # height
label='rectangle',
**{
'color': 'blue'
}
)
ax1.add_patch(rec1)
leg = plt.legend(handles=[rec1], bbox_to_anchor=(0.7, -0.1))
fig1.savefig('sample1.png', dpi=90, bbox_inches='tight')
But now i want to draw another legend at the right side of plot.
Here is the code:
...
ax1.add_patch(rec1)
l1 = plt.legend(prop=fontP, handles=[rec1], loc='center left',
box to_anchor=(1.0, 0.5))
plt.gca().add_artist(l1)
...
And the result:
As you can see, second legend is truncated.
My conclusion is that matplotlib ignores size and position of objects added with
plt.gca().add_artist(obj)
How can i fix this?
So far i found a solution but its very nasty:
Create three legends, two of them as additiontal (added by add_artist) and one as normal legend.
As far matplotlib respect position and size of normal legends, move it to the right down corner and hide it with code:
leg.get_frame().set_alpha(0)
Here are the results (without setting alpha for example purpose):
It behave exactly how i want it to but as you know its nasty.
Here is the final code:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.lines import Line2D
from matplotlib.font_manager import FontProperties
fig1 = plt.figure(figsize=(17,5))
fontP = FontProperties()
fontP.set_size('small')
ax1 = fig1.add_subplot(111, aspect='equal')
ax1.grid()
# stuff for additional legends
rec1 = patches.Rectangle(
(0.9, 0.25), # (x,y)
0.1, # width
0.1, # height
label='rectangle',
**{
'color': 'blue'
}
)
ax1.add_patch(rec1)
# example additional legends
l1 = plt.legend(prop=fontP, handles=[rec1], loc='center left',
bbox_to_anchor=(1.0, 0.5))
l2 = plt.legend(prop=fontP, handles=[rec1], loc=3, bbox_to_anchor=(0.4,
-0.2))
# add legends
plt.gca().add_artist(l1)
plt.gca().add_artist(l2)
# add third legend
leg = plt.legend(handles=[], bbox_to_anchor=(1.3, -0.3))
leg.get_frame().set_alpha(0) # hide legend
fig1.savefig('sample3.png', dpi=90, bbox_inches='tight')
I can suggest the following solution:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
fig = plt.figure()
fig.set_size_inches((10,10))
gs1 = gridspec.GridSpec(1, 1)
ax1 = fig.add_subplot(gs1[0])
x = np.arange(0.0, 3.0, 0.02)
y1 = np.sin(2*np.pi*x)
y2 = np.exp(-x)
l1, l2 = ax1.plot(x, y1, 'rs-', x, y2, 'go')
y3 = np.sin(4*np.pi*x)
y4 = np.exp(-2*x)
l3, l4 = ax1.plot(x, y3, 'yd-', x, y4, 'k^')
fig.legend((l1, l2), ('Line 1', 'Line 2'), "right")
fig.legend((l3, l4), ('Line 3', 'Line 4'), "lower center")
gs1.tight_layout(fig, rect=[0, 0.1, 0.8, 0.5])
I used an example from matplotlib site and followed the documentation about tight layout http://matplotlib.org/users/tight_layout_guide.html.
The result is

add vertical line intersecting 3 different axes in a figure in matplotlib

i have to plot eeg data of 3 different channels in my graph. I would like to plot of all of them in one figure seperated by horozintal lines. X axis common to all the channels.
I can do this easily by using add_axes. But i want to draw a vertical line intersecting these axes. But i m not able to do it.
Currently, my sample code look like this.
from pylab import figure, show, setp
from numpy import sin, cos, exp, pi, arange
t = arange(0.0, 2.0, 0.01)
s1 = sin(2*pi*t)
s2 = exp(-t)
s3 = 200*t
fig = figure()
t = arange(0.0, 2.0, 0.01)
yprops = dict(rotation=0,
horizontalalignment='right',
verticalalignment='center',
x=-0.1)
axprops = dict(yticks=[])
ax1 =fig.add_axes([0.1, 0.5, 0.8, 0.2], **axprops)
ax1.plot(t, s1)
ax1.set_ylabel('S1', **yprops)
axprops['sharex'] = ax1
#axprops['sharey'] = ax1
# force x axes to remain in register, even with toolbar navigation
ax2 = fig.add_axes([0.1, 0.3, 0.8, 0.2], **axprops)
ax2.plot(t, s2)
ax2.set_ylabel('S2', **yprops)
ax3 = fig.add_axes([0.1, 0.1, 0.8, 0.2], **axprops)
ax3.plot(t, s3)
ax3.set_ylabel('S3', **yprops)
# turn off x ticklabels for all but the lower axes
for ax in ax1, ax2:
setp(ax.get_xticklabels(), visible=False)
show()
I want my final image to look like the one below. In my current output, i can get the same graph without the green vertical line.
can any one please help ??? I dont want to use subplots and also i dont want to add axvline for each axes.
Thank u,
thothadri
use
vl_lst = [a.axvline(x_pos, color='g', lw=3, linestyle='-') for a in [ax1, ax2, ax3]]
to update for each frame:
new_x = X
for v in vl_lst:
v.set_xdata(new_x)
axvline doc

Categories