How to do a non-blocking URL fetch in Python - python

I am writing a GUI app in Pyglet that has to display tens to hundreds of thumbnails from the Internet. Right now, I am using urllib.urlretrieve to grab them, but this blocks each time until they are finished, and only grabs one at a time.
I would prefer to download them in parallel and have each one display as soon as it's finished, without blocking the GUI at any point. What is the best way to do this?
I don't know much about threads, but it looks like the threading module might help? Or perhaps there is some easy way I've overlooked.

You'll probably benefit from threading or multiprocessing modules. You don't actually need to create all those Thread-based classes by yourself, there is a simpler method using Pool.map:
from multiprocessing import Pool
def fetch_url(url):
# Fetch the URL contents and save it anywhere you need and
# return something meaningful (like filename or error code),
# if you wish.
...
pool = Pool(processes=4)
result = pool.map(f, image_url_list)

As you suspected, this is a perfect situation for threading. Here is a short guide I found immensely helpful when doing my own first bit of threading in python.

As you rightly indicated, you could create a number of threads, each of which is responsible for performing urlretrieve operations. This allows the main thread to continue uninterrupted.
Here is a tutorial on threading in python:
http://heather.cs.ucdavis.edu/~matloff/Python/PyThreads.pdf

Here's an example of how to use threading.Thread. Just replace the class name with your own and the run function with your own. Note that threading is great for IO restricted applications like your's and can really speed it up. Using pythong threading strictly for computation in standard python doesn't help because only one thread can compute at a time.
import threading, time
class Ping(threading.Thread):
def __init__(self, multiple):
threading.Thread.__init__(self)
self.multiple = multiple
def run(self):
#sleeps 3 seconds then prints 'pong' x times
time.sleep(3)
printString = 'pong' * self.multiple
pingInstance = Ping(3)
pingInstance.start() #your run function will be called with the start function
print "pingInstance is alive? : %d" % pingInstance.isAlive() #will return True, or 1
print "Number of threads alive: %d" % threading.activeCount()
#main thread + class instance
time.sleep(3.5)
print "Number of threads alive: %d" % threading.activeCount()
print "pingInstance is alive?: %d" % pingInstance.isAlive()
#isAlive returns false when your thread reaches the end of it's run function.
#only main thread now

You have these choices:
Threads: easiest but doesn't scale well
Twisted: medium difficulty, scales well but shares CPU due to GIL and being single threaded.
Multiprocessing: hardest. Scales well if you know how to write your own event loop.
I recommend just using threads unless you need an industrial scale fetcher.

You either need to use threads, or an asynchronous networking library such as Twisted. I suspect that using threads might be simpler in your particular use case.

Related

Set function timeout without having to use contextlib [duplicate]

I looked online and found some SO discussing and ActiveState recipes for running some code with a timeout. It looks there are some common approaches:
Use thread that run the code, and join it with timeout. If timeout elapsed - kill the thread. This is not directly supported in Python (used private _Thread__stop function) so it is bad practice
Use signal.SIGALRM - but this approach not working on Windows!
Use subprocess with timeout - but this is too heavy - what if I want to start interruptible task often, I don't want fire process for each!
So, what is the right way? I'm not asking about workarounds (eg use Twisted and async IO), but actual way to solve actual problem - I have some function and I want to run it only with some timeout. If timeout elapsed, I want control back. And I want it to work on Linux and Windows.
A completely general solution to this really, honestly does not exist. You have to use the right solution for a given domain.
If you want timeouts for code you fully control, you have to write it to cooperate. Such code has to be able to break up into little chunks in some way, as in an event-driven system. You can also do this by threading if you can ensure nothing will hold a lock too long, but handling locks right is actually pretty hard.
If you want timeouts because you're afraid code is out of control (for example, if you're afraid the user will ask your calculator to compute 9**(9**9)), you need to run it in another process. This is the only easy way to sufficiently isolate it. Running it in your event system or even a different thread will not be enough. It is also possible to break things up into little chunks similar to the other solution, but requires very careful handling and usually isn't worth it; in any event, that doesn't allow you to do the same exact thing as just running the Python code.
What you might be looking for is the multiprocessing module. If subprocess is too heavy, then this may not suit your needs either.
import time
import multiprocessing
def do_this_other_thing_that_may_take_too_long(duration):
time.sleep(duration)
return 'done after sleeping {0} seconds.'.format(duration)
pool = multiprocessing.Pool(1)
print 'starting....'
res = pool.apply_async(do_this_other_thing_that_may_take_too_long, [8])
for timeout in range(1, 10):
try:
print '{0}: {1}'.format(duration, res.get(timeout))
except multiprocessing.TimeoutError:
print '{0}: timed out'.format(duration)
print 'end'
If it's network related you could try:
import socket
socket.setdefaulttimeout(number)
I found this with eventlet library:
http://eventlet.net/doc/modules/timeout.html
from eventlet.timeout import Timeout
timeout = Timeout(seconds, exception)
try:
... # execution here is limited by timeout
finally:
timeout.cancel()
For "normal" Python code, that doesn't linger prolongued times in C extensions or I/O waits, you can achieve your goal by setting a trace function with sys.settrace() that aborts the running code when the timeout is reached.
Whether that is sufficient or not depends on how co-operating or malicious the code you run is. If it's well-behaved, a tracing function is sufficient.
An other way is to use faulthandler:
import time
import faulthandler
faulthandler.enable()
try:
faulthandler.dump_tracebacks_later(3)
time.sleep(10)
finally:
faulthandler.cancel_dump_tracebacks_later()
N.B: The faulthandler module is part of stdlib in python3.3.
If you're running code that you expect to die after a set time, then you should write it properly so that there aren't any negative effects on shutdown, no matter if its a thread or a subprocess. A command pattern with undo would be useful here.
So, it really depends on what the thread is doing when you kill it. If its just crunching numbers who cares if you kill it. If its interacting with the filesystem and you kill it , then maybe you should really rethink your strategy.
What is supported in Python when it comes to threads? Daemon threads and joins. Why does python let the main thread exit if you've joined a daemon while its still active? Because its understood that someone using daemon threads will (hopefully) write the code in a way that it wont matter when that thread dies. Giving a timeout to a join and then letting main die, and thus taking any daemon threads with it, is perfectly acceptable in this context.
I've solved that in that way:
For me is worked great (in windows and not heavy at all) I'am hope it was useful for someone)
import threading
import time
class LongFunctionInside(object):
lock_state = threading.Lock()
working = False
def long_function(self, timeout):
self.working = True
timeout_work = threading.Thread(name="thread_name", target=self.work_time, args=(timeout,))
timeout_work.setDaemon(True)
timeout_work.start()
while True: # endless/long work
time.sleep(0.1) # in this rate the CPU is almost not used
if not self.working: # if state is working == true still working
break
self.set_state(True)
def work_time(self, sleep_time): # thread function that just sleeping specified time,
# in wake up it asking if function still working if it does set the secured variable work to false
time.sleep(sleep_time)
if self.working:
self.set_state(False)
def set_state(self, state): # secured state change
while True:
self.lock_state.acquire()
try:
self.working = state
break
finally:
self.lock_state.release()
lw = LongFunctionInside()
lw.long_function(10)
The main idea is to create a thread that will just sleep in parallel to "long work" and in wake up (after timeout) change the secured variable state, the long function checking the secured variable during its work.
I'm pretty new in Python programming, so if that solution has a fundamental errors, like resources, timing, deadlocks problems , please response)).
solving with the 'with' construct and merging solution from -
Timeout function if it takes too long to finish
this thread which work better.
import threading, time
class Exception_TIMEOUT(Exception):
pass
class linwintimeout:
def __init__(self, f, seconds=1.0, error_message='Timeout'):
self.seconds = seconds
self.thread = threading.Thread(target=f)
self.thread.daemon = True
self.error_message = error_message
def handle_timeout(self):
raise Exception_TIMEOUT(self.error_message)
def __enter__(self):
try:
self.thread.start()
self.thread.join(self.seconds)
except Exception, te:
raise te
def __exit__(self, type, value, traceback):
if self.thread.is_alive():
return self.handle_timeout()
def function():
while True:
print "keep printing ...", time.sleep(1)
try:
with linwintimeout(function, seconds=5.0, error_message='exceeded timeout of %s seconds' % 5.0):
pass
except Exception_TIMEOUT, e:
print " attention !! execeeded timeout, giving up ... %s " % e

How to make a python thread dependent on the completion of another thread?

Basically I want make like 15000 get requests of the form GET www.somewebsite.com/archive/1, www.somewebsite.com/archive/2, and write the content to its own file locally. But doing all those in order takes a bit. And doing them all with their own thread results in all sorts of IO and HTTP errors. But if I do say 50 at a time it works fine. What I want to do is create a chunk thread that I spawn 50 threads off of, and then spawn another chunk thread when that one is finished. But I haven't found a way to do this.
I need a way to say "don't execute any more lines until this thread is completed" or a way to queue up threads that get executed asynchronously in order.
Python has a built in library multiprocessing that will allow you to implement simple batch processing with a queue.
import multiprocessing
static_input = range(100)
chunksize = 10
def work(item):
return "Number " + str(item)
with multiprocessing.Pool() as pool:
for out in pool.imap_unordered(work, static_input, chunksize):
print(out)
"You need to use join method of Thread object in the end of the script."
This has been stated here by maksim skurydzin.
You might also want to take a look at the multiprocessing class here.

Python simplest form of multiprocessing

Ive been trying to read up on threading and multiprocessing but all the examples are to intricate and advanced for my level of python/programming knowlegde. I want to run a function, which consists of a while loop, and while that loop runs I want to continue with the program and eventually change the condition for the while-loop and end that process. This is the code:
class Example():
def __init__(self):
self.condition = False
def func1(self):
self.condition = True
while self.condition:
print "Still looping"
time.sleep(1)
print "Finished loop"
def end_loop(self):
self.condition = False
The I make the following function-calls:
ex = Example()
ex.func1()
time.sleep(5)
ex.end_loop()
What I want is for the func1 to run for 5s before the end_loop() is called and changes the condition and ends the loop and thus also the function. I.e I want one process to start and "go" into func1 and at the same time I want time.sleep(5) to be called, so the processes "split" when arriving at func1, one process entering the function while the other continues down the program and start with the time.sleep(5) execution.
This must be the most basic example of a multiprocess, still Ive had trouble finding a simple way to do it!
Thank you
EDIT1: regarding do_something. In my real problem do_something is replaced by some code that communicates with another program via a socket and receives packages with coordinates every 0.02s and stores them in membervariables of the class. I want this constant updating of the coordinates to start and then be able to to read the coordinates via other functions at the same time.
However that is not so relevant. What if do_something is replaced by:
time.sleep(1)
print "Still looping"
How do I solve my problem then?
EDIT2: I have tried multiprocessing like this:
from multiprocessing import Process
ex = Example()
p1 = Process(target=ex.func1())
p2 = Process(target=ex.end_loop())
p1.start()
time.sleep(5)
p2.start()
When I ran this, I never got to p2.start(), so that did not help. Even if it had this is not really what Im looking for either. What I want would be just to start the process p1, and then continue with time.sleep and ex.end_loop()
The first problem with your code are the calls
p1 = Process(target=ex.func1())
p2 = Process(target=ex.end_loop())
With ex.func1() you're calling the function and pass the return value as target parameter. Since the function doesn't return anything, you're effectively calling
p1 = Process(target=None)
p2 = Process(target=None)
which makes, of course, no sense.
After fixing that, the next problem will be shared data: when using the multiprocessing package, you implement concurrency using multiple processes which, by default, cannot simply share data afaik. Have a look at Sharing state between processes in the package's documentation to read about this. Especially take the first sentence into account: "when doing concurrent programming it is usually best to avoid using shared state as far as possible"!
So you might want to also have a look at Exchanging objects between processes to read about how to send/receive data between two different processes. So, instead of simply setting a flag to stop the loop, it might be better to send a message to signal the loop should be terminated.
Also note that processes are a heavyweight form of multiprocessing, they spawn multiple OS processes which comes with a relatively big overhead. multiprocessing's main purpose is to avoid problems imposed by Python's Global Interpreter Lock (google about this to read more...) If your problem is'nt much more complex than what you've told us, you might want to use the threading package instead: threads come with less overhead than processes and also allow to access the same data (although you really should read about synchronization when doing this...)
I'm afraid, multiprocessing is an inherently complex subject. So I think you will need to advance your programming/python skills to successfully use it. But I'm sure you'll manage this, the python documentation about this is comprehensive and there are a lot of other resources about this.
To tackle your EDIT2 problem, you could try using the shared memory map Value.
import time
from multiprocessing import Process, Value
class Example():
def func1(self, cond):
while (cond.value == 1):
print('do something')
time.sleep(1)
return
if __name__ == '__main__':
ex = Example()
cond = Value('i', 1)
proc = Process(target=ex.func1, args=(cond,))
proc.start()
time.sleep(5)
cond.value = 0
proc.join()
(Note the target=ex.func1 without the parentheses and the comma after cond in args=(cond,).)
But look at the answer provided by MartinStettner to find a good solution.

What kind of problems (if any) would there be combining asyncio with multiprocessing?

As almost everyone is aware when they first look at threading in Python, there is the GIL that makes life miserable for people who actually want to do processing in parallel - or at least give it a chance.
I am currently looking at implementing something like the Reactor pattern. Effectively I want to listen for incoming socket connections on one thread-like, and when someone tries to connect, accept that connection and pass it along to another thread-like for processing.
I'm not (yet) sure what kind of load I might be facing. I know there is currently setup a 2MB cap on incoming messages. Theoretically we could get thousands per second (though I don't know if practically we've seen anything like that). The amount of time spent processing a message isn't terribly important, though obviously quicker would be better.
I was looking into the Reactor pattern, and developed a small example using the multiprocessing library that (at least in testing) seems to work just fine. However, now/soon we'll have the asyncio library available, which would handle the event loop for me.
Is there anything that could bite me by combining asyncio and multiprocessing?
You should be able to safely combine asyncio and multiprocessing without too much trouble, though you shouldn't be using multiprocessing directly. The cardinal sin of asyncio (and any other event-loop based asynchronous framework) is blocking the event loop. If you try to use multiprocessing directly, any time you block to wait for a child process, you're going to block the event loop. Obviously, this is bad.
The simplest way to avoid this is to use BaseEventLoop.run_in_executor to execute a function in a concurrent.futures.ProcessPoolExecutor. ProcessPoolExecutor is a process pool implemented using multiprocessing.Process, but asyncio has built-in support for executing a function in it without blocking the event loop. Here's a simple example:
import time
import asyncio
from concurrent.futures import ProcessPoolExecutor
def blocking_func(x):
time.sleep(x) # Pretend this is expensive calculations
return x * 5
#asyncio.coroutine
def main():
#pool = multiprocessing.Pool()
#out = pool.apply(blocking_func, args=(10,)) # This blocks the event loop.
executor = ProcessPoolExecutor()
out = yield from loop.run_in_executor(executor, blocking_func, 10) # This does not
print(out)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
For the majority of cases, this is function alone is good enough. If you find yourself needing other constructs from multiprocessing, like Queue, Event, Manager, etc., there is a third-party library called aioprocessing (full disclosure: I wrote it), that provides asyncio-compatible versions of all the multiprocessing data structures. Here's an example demoing that:
import time
import asyncio
import aioprocessing
import multiprocessing
def func(queue, event, lock, items):
with lock:
event.set()
for item in items:
time.sleep(3)
queue.put(item+5)
queue.close()
#asyncio.coroutine
def example(queue, event, lock):
l = [1,2,3,4,5]
p = aioprocessing.AioProcess(target=func, args=(queue, event, lock, l))
p.start()
while True:
result = yield from queue.coro_get()
if result is None:
break
print("Got result {}".format(result))
yield from p.coro_join()
#asyncio.coroutine
def example2(queue, event, lock):
yield from event.coro_wait()
with (yield from lock):
yield from queue.coro_put(78)
yield from queue.coro_put(None) # Shut down the worker
if __name__ == "__main__":
loop = asyncio.get_event_loop()
queue = aioprocessing.AioQueue()
lock = aioprocessing.AioLock()
event = aioprocessing.AioEvent()
tasks = [
asyncio.async(example(queue, event, lock)),
asyncio.async(example2(queue, event, lock)),
]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
Yes, there are quite a few bits that may (or may not) bite you.
When you run something like asyncio it expects to run on one thread or process. This does not (by itself) work with parallel processing. You somehow have to distribute the work while leaving the IO operations (specifically those on sockets) in a single thread/process.
While your idea to hand off individual connections to a different handler process is nice, it is hard to implement. The first obstacle is that you need a way to pull the connection out of asyncio without closing it. The next obstacle is that you cannot simply send a file descriptor to a different process unless you use platform-specific (probably Linux) code from a C-extension.
Note that the multiprocessing module is known to create a number of threads for communication. Most of the time when you use communication structures (such as Queues), a thread is spawned. Unfortunately those threads are not completely invisible. For instance they can fail to tear down cleanly (when you intend to terminate your program), but depending on their number the resource usage may be noticeable on its own.
If you really intend to handle individual connections in individual processes, I suggest to examine different approaches. For instance you can put a socket into listen mode and then simultaneously accept connections from multiple worker processes in parallel. Once a worker is finished processing a request, it can go accept the next connection, so you still use less resources than forking a process for each connection. Spamassassin and Apache (mpm prefork) can use this worker model for instance. It might end up easier and more robust depending on your use case. Specifically you can make your workers die after serving a configured number of requests and be respawned by a master process thereby eliminating much of the negative effects of memory leaks.
Based on #dano's answer above I wrote this function to replace places where I used to use multiprocess pool + map.
def asyncio_friendly_multiproc_map(fn: Callable, l: list):
"""
This is designed to replace the use of this pattern:
with multiprocessing.Pool(5) as p:
results = p.map(analyze_day, list_of_days)
By letting caller drop in replace:
asyncio_friendly_multiproc_map(analyze_day, list_of_days)
"""
tasks = []
with ProcessPoolExecutor(5) as executor:
for e in l:
tasks.append(asyncio.get_event_loop().run_in_executor(executor, fn, e))
res = asyncio.get_event_loop().run_until_complete(asyncio.gather(*tasks))
return res
See PEP 3156, in particular the section on Thread interaction:
http://www.python.org/dev/peps/pep-3156/#thread-interaction
This documents clearly the new asyncio methods you might use, including run_in_executor(). Note that the Executor is defined in concurrent.futures, I suggest you also have a look there.

How do I run two python loops concurrently?

Suppose I have the following in Python
# A loop
for i in range(10000):
Do Task A
# B loop
for i in range(10000):
Do Task B
How do I run these loops simultaneously in Python?
If you want concurrency, here's a very simple example:
from multiprocessing import Process
def loop_a():
while 1:
print("a")
def loop_b():
while 1:
print("b")
if __name__ == '__main__':
Process(target=loop_a).start()
Process(target=loop_b).start()
This is just the most basic example I could think of. Be sure to read http://docs.python.org/library/multiprocessing.html to understand what's happening.
If you want to send data back to the program, I'd recommend using a Queue (which in my experience is easiest to use).
You can use a thread instead if you don't mind the global interpreter lock. Processes are more expensive to instantiate but they offer true concurrency.
There are many possible options for what you wanted:
use loop
As many people have pointed out, this is the simplest way.
for i in xrange(10000):
# use xrange instead of range
taskA()
taskB()
Merits: easy to understand and use, no extra library needed.
Drawbacks: taskB must be done after taskA, or otherwise. They can't be running simultaneously.
multiprocess
Another thought would be: run two processes at the same time, python provides multiprocess library, the following is a simple example:
from multiprocessing import Process
p1 = Process(target=taskA, args=(*args, **kwargs))
p2 = Process(target=taskB, args=(*args, **kwargs))
p1.start()
p2.start()
merits: task can be run simultaneously in the background, you can control tasks(end, stop them etc), tasks can exchange data, can be synchronized if they compete the same resources etc.
drawbacks: too heavy!OS will frequently switch between them, they have their own data space even if data is redundant. If you have a lot tasks (say 100 or more), it's not what you want.
threading
threading is like process, just lightweight. check out this post. Their usage is quite similar:
import threading
p1 = threading.Thread(target=taskA, args=(*args, **kwargs))
p2 = threading.Thread(target=taskB, args=(*args, **kwargs))
p1.start()
p2.start()
coroutines
libraries like greenlet and gevent provides something called coroutines, which is supposed to be faster than threading. No examples provided, please google how to use them if you're interested.
merits: more flexible and lightweight
drawbacks: extra library needed, learning curve.
Why do you want to run the two processes at the same time? Is it because you think they will go faster (there is a good chance that they wont). Why not run the tasks in the same loop, e.g.
for i in range(10000):
doTaskA()
doTaskB()
The obvious answer to your question is to use threads - see the python threading module. However threading is a big subject and has many pitfalls, so read up on it before you go down that route.
Alternatively you could run the tasks in separate proccesses, using the python multiprocessing module. If both tasks are CPU intensive this will make better use of multiple cores on your computer.
There are other options such as coroutines, stackless tasklets, greenlets, CSP etc, but Without knowing more about Task A and Task B and why they need to be run at the same time it is impossible to give a more specific answer.
from threading import Thread
def loopA():
for i in range(10000):
#Do task A
def loopB():
for i in range(10000):
#Do task B
threadA = Thread(target = loopA)
threadB = Thread(target = loobB)
threadA.run()
threadB.run()
# Do work indepedent of loopA and loopB
threadA.join()
threadB.join()
You could use threading or multiprocessing.
How about: A loop for i in range(10000): Do Task A, Do Task B ? Without more information i dont have a better answer.
I find that using the "pool" submodule within "multiprocessing" works amazingly for executing multiple processes at once within a Python Script.
See Section: Using a pool of workers
Look carefully at "# launching multiple evaluations asynchronously may use more processes" in the example. Once you understand what those lines are doing, the following example I constructed will make a lot of sense.
import numpy as np
from multiprocessing import Pool
def desired_function(option, processes, data, etc...):
# your code will go here. option allows you to make choices within your script
# to execute desired sections of code for each pool or subprocess.
return result_array # "for example"
result_array = np.zeros("some shape") # This is normally populated by 1 loop, lets try 4.
processes = 4
pool = Pool(processes=processes)
args = (processes, data, etc...) # Arguments to be passed into desired function.
multiple_results = []
for i in range(processes): # Executes each pool w/ option (1-4 in this case).
multiple_results.append(pool.apply_async(param_process, (i+1,)+args)) # Syncs each.
results = np.array(res.get() for res in multiple_results) # Retrieves results after
# every pool is finished!
for i in range(processes):
result_array = result_array + results[i] # Combines all datasets!
The code will basically run the desired function for a set number of processes. You will have to carefully make sure your function can distinguish between each process (hence why I added the variable "option".) Additionally, it doesn't have to be an array that is being populated in the end, but for my example, that's how I used it. Hope this simplifies or helps you better understand the power of multiprocessing in Python!

Categories