I have read several documentation already but the definition of "class" and "instance" didnt get really clear for me yet.
Looks like that "class" is like a combination of functions or methods that return some result is that correct? And how about the instance? I read that you work with the class you creat trough the instance but wouldnt be easier to just work direct with the class?
Sometimes geting the concepts of the language is harder than working with it.
Your question is really rather broad as classes and instances/objects are vital parts of object-oriented programming, so this is not really Python specific. I recommend you buy some books on this as, while initially basic, it can get pretty in-depth. In essense, however:
The most popular and developed model of OOP is a class-based model, as opposed to an object-based model. In this model, objects are entities that combine state (i.e., data), behavior (i.e., procedures, or methods) and identity (unique existence among all other objects). The structure and behavior of an object are defined by a class, which is a definition, or blueprint, of all objects of a specific type. An object must be explicitly created based on a class and an object thus created is considered to be an instance of that class. An object is similar to a structure, with the addition of method pointers, member access control, and an implicit data member which locates instances of the class (i.e. actual objects of that class) in the class hierarchy (essential for runtime inheritance features).
So you would, for example, define a Dog class, and create instances of particular dogs:
>>> class Dog():
... def __init__(self, name, breed):
... self.name = name
... self.breed = breed
... def talk(self):
... print "Hi, my name is " + self.name + ", I am a " + self.breed
...
>>> skip = Dog('Skip','Bulldog')
>>> spot = Dog('Spot','Dalmatian')
>>> spot.talk()
Hi, my name is Spot, I am a Dalmatian
>>> skip.talk()
Hi, my name is Skip, I am a Bulldog
While this example is silly, you can then start seeing how you might define a Client class that sets a blueprint for what a Client is, has methods to perform actions on a particular client, then manipulate a particular instance of a client by creating an object and calling these methods in that context.
Sometimes, however, you have methods of a class that don't really make sense being accessed through an instance of the class, but more from the class itself. These are known as static methods.
I am not sure of what level of knowledge you have, so I apologize if this answer is too simplified (then just ignore it).
A class is a template for an object. Like a blueprint for a car. The instance of a class is like an actual car. So you have one blueprint, but you can have several different instances of cars. The blueprint and the car are different things.
So you make a class that describes what an instance of that class can do and what properties it should have. Then you "build" the instance and get an object that you can work with.
It's fairly simple actually. You know how in python they say "everything is an object". Well in simplistic terms you can think of any object as being an 'instance' and the instructions to create an object as the class. Or in biological terms DNA is the class and you are an instance of DNA.
class HumanDNA(): # class
... class attributes ...
you = HumanDNA() # instance
See http://homepage.mac.com/s_lott/books/python/htmlchunks/ch21.html
Object-oriented programming permits us
to organize our programs around the
interactions of objects. A class
provides the definition of the
structure and behavior of the objects;
each object is an instance of a class.
Objects ("instances") are things which interact, do work, persist in the file system, etc.
Classes are the definitions for the object's behavior.
Also, a class creates new objects that are members of that class (share common structure and behavior)
In part it is confusing due to the dynamically typed nature of Python, which allows you to operate on a class and an instance in essentially the same way. In other languages, the difference is more concrete in that a class provides a template by which to create an object (instance) and cannot be as directly manipulated as in Python. The benefit of operating on the instance rather than the class is that the class can provide a prototype upon which instances are created.
Related
What is the difference between class and instance variables in Python?
class Complex:
a = 1
and
class Complex:
def __init__(self):
self.a = 1
Using the call: x = Complex().a in both cases assigns x to 1.
A more in-depth answer about __init__() and self will be appreciated.
When you write a class block, you create class attributes (or class variables). All the names you assign in the class block, including methods you define with def become class attributes.
After a class instance is created, anything with a reference to the instance can create instance attributes on it. Inside methods, the "current" instance is almost always bound to the name self, which is why you are thinking of these as "self variables". Usually in object-oriented design, the code attached to a class is supposed to have control over the attributes of instances of that class, so almost all instance attribute assignment is done inside methods, using the reference to the instance received in the self parameter of the method.
Class attributes are often compared to static variables (or methods) as found in languages like Java, C#, or C++. However, if you want to aim for deeper understanding I would avoid thinking of class attributes as "the same" as static variables. While they are often used for the same purposes, the underlying concept is quite different. More on this in the "advanced" section below the line.
An example!
class SomeClass:
def __init__(self):
self.foo = 'I am an instance attribute called foo'
self.foo_list = []
bar = 'I am a class attribute called bar'
bar_list = []
After executing this block, there is a class SomeClass, with 3 class attributes: __init__, bar, and bar_list.
Then we'll create an instance:
instance = SomeClass()
When this happens, SomeClass's __init__ method is executed, receiving the new instance in its self parameter. This method creates two instance attributes: foo and foo_list. Then this instance is assigned into the instance variable, so it's bound to a thing with those two instance attributes: foo and foo_list.
But:
print instance.bar
gives:
I am a class attribute called bar
How did this happen? When we try to retrieve an attribute through the dot syntax, and the attribute doesn't exist, Python goes through a bunch of steps to try and fulfill your request anyway. The next thing it will try is to look at the class attributes of the class of your instance. In this case, it found an attribute bar in SomeClass, so it returned that.
That's also how method calls work by the way. When you call mylist.append(5), for example, mylist doesn't have an attribute named append. But the class of mylist does, and it's bound to a method object. That method object is returned by the mylist.append bit, and then the (5) bit calls the method with the argument 5.
The way this is useful is that all instances of SomeClass will have access to the same bar attribute. We could create a million instances, but we only need to store that one string in memory, because they can all find it.
But you have to be a bit careful. Have a look at the following operations:
sc1 = SomeClass()
sc1.foo_list.append(1)
sc1.bar_list.append(2)
sc2 = SomeClass()
sc2.foo_list.append(10)
sc2.bar_list.append(20)
print sc1.foo_list
print sc1.bar_list
print sc2.foo_list
print sc2.bar_list
What do you think this prints?
[1]
[2, 20]
[10]
[2, 20]
This is because each instance has its own copy of foo_list, so they were appended to separately. But all instances share access to the same bar_list. So when we did sc1.bar_list.append(2) it affected sc2, even though sc2 didn't exist yet! And likewise sc2.bar_list.append(20) affected the bar_list retrieved through sc1. This is often not what you want.
Advanced study follows. :)
To really grok Python, coming from traditional statically typed OO-languages like Java and C#, you have to learn to rethink classes a little bit.
In Java, a class isn't really a thing in its own right. When you write a class you're more declaring a bunch of things that all instances of that class have in common. At runtime, there's only instances (and static methods/variables, but those are really just global variables and functions in a namespace associated with a class, nothing to do with OO really). Classes are the way you write down in your source code what the instances will be like at runtime; they only "exist" in your source code, not in the running program.
In Python, a class is nothing special. It's an object just like anything else. So "class attributes" are in fact exactly the same thing as "instance attributes"; in reality there's just "attributes". The only reason for drawing a distinction is that we tend to use objects which are classes differently from objects which are not classes. The underlying machinery is all the same. This is why I say it would be a mistake to think of class attributes as static variables from other languages.
But the thing that really makes Python classes different from Java-style classes is that just like any other object each class is an instance of some class!
In Python, most classes are instances of a builtin class called type. It is this class that controls the common behaviour of classes, and makes all the OO stuff the way it does. The default OO way of having instances of classes that have their own attributes, and have common methods/attributes defined by their class, is just a protocol in Python. You can change most aspects of it if you want. If you've ever heard of using a metaclass, all that is is defining a class that is an instance of a different class than type.
The only really "special" thing about classes (aside from all the builtin machinery to make them work they way they do by default), is the class block syntax, to make it easier for you to create instances of type. This:
class Foo(BaseFoo):
def __init__(self, foo):
self.foo = foo
z = 28
is roughly equivalent to the following:
def __init__(self, foo):
self.foo = foo
classdict = {'__init__': __init__, 'z': 28 }
Foo = type('Foo', (BaseFoo,) classdict)
And it will arrange for all the contents of classdict to become attributes of the object that gets created.
So then it becomes almost trivial to see that you can access a class attribute by Class.attribute just as easily as i = Class(); i.attribute. Both i and Class are objects, and objects have attributes. This also makes it easy to understand how you can modify a class after it's been created; just assign its attributes the same way you would with any other object!
In fact, instances have no particular special relationship with the class used to create them. The way Python knows which class to search for attributes that aren't found in the instance is by the hidden __class__ attribute. Which you can read to find out what class this is an instance of, just as with any other attribute: c = some_instance.__class__. Now you have a variable c bound to a class, even though it probably doesn't have the same name as the class. You can use this to access class attributes, or even call it to create more instances of it (even though you don't know what class it is!).
And you can even assign to i.__class__ to change what class it is an instance of! If you do this, nothing in particular happens immediately. It's not earth-shattering. All that it means is that when you look up attributes that don't exist in the instance, Python will go look at the new contents of __class__. Since that includes most methods, and methods usually expect the instance they're operating on to be in certain states, this usually results in errors if you do it at random, and it's very confusing, but it can be done. If you're very careful, the thing you store in __class__ doesn't even have to be a class object; all Python's going to do with it is look up attributes under certain circumstances, so all you need is an object that has the right kind of attributes (some caveats aside where Python does get picky about things being classes or instances of a particular class).
That's probably enough for now. Hopefully (if you've even read this far) I haven't confused you too much. Python is neat when you learn how it works. :)
What you're calling an "instance" variable isn't actually an instance variable; it's a class variable. See the language reference about classes.
In your example, the a appears to be an instance variable because it is immutable. It's nature as a class variable can be seen in the case when you assign a mutable object:
>>> class Complex:
>>> a = []
>>>
>>> b = Complex()
>>> c = Complex()
>>>
>>> # What do they look like?
>>> b.a
[]
>>> c.a
[]
>>>
>>> # Change b...
>>> b.a.append('Hello')
>>> b.a
['Hello']
>>> # What does c look like?
>>> c.a
['Hello']
If you used self, then it would be a true instance variable, and thus each instance would have it's own unique a. An object's __init__ function is called when a new instance is created, and self is a reference to that instance.
My questions concern instance variables that are initialized in methods outside the class constructor. This is for Python.
I'll first state what I understand:
Classes may define a constructor, and it may also define other methods.
Instance variables are generally defined/initialized within the constructor.
But instance variables can also be defined/initialized outside the constructor, e.g. in the other methods of the same class.
An example of (2) and (3) -- see self.meow and self.roar in the Cat class below:
class Cat():
def __init__(self):
self.meow = "Meow!"
def meow_bigger(self):
self.roar = "Roar!"
My questions:
Why is it best practice to initialize the instance variable within the constructor?
What general/specific mess could arise if instance variables are regularly initialized in methods other than the constructor? (E.g. Having read Mark Lutz's Tkinter guide in his Programming Python, which I thought was excellent, I noticed that the instance variable used to hold the PhotoImage objects/references were initialized in the further methods, not in the constructor. It seemed to work without issue there, but could that practice cause issues in the long run?)
In what scenarios would it be better to initialize instance variables in the other methods, rather than in the constructor?
To my knowledge, instance variables exist not when the class object is created, but after the class object is instantiated. Proceeding upon my code above, I demonstrate this:
>> c = Cat()
>> c.meow
'Meow!'
>> c.roar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Cat' object has no attribute 'roar'
>>> c.meow_bigger()
>>> c.roar
'Roar!'
As it were:
I cannot access the instance variable (c.roar) at first.
However, after I have called the instance method c.meow_bigger() once, I am suddenly able to access the instance variable c.roar.
Why is the above behaviour so?
Thank you for helping out with my understanding.
Why is it best practice to initialize the instance variable within the
constructor?
Clarity.
Because it makes it easy to see at a glance all of the attributes of the class. If you initialize the variables in multiple methods, it becomes difficult to understand the complete data structure without reading every line of code.
Initializing within the __init__ also makes documentation easier. With your example, you can't write "an instance of Cat has a roar attribute". Instead, you have to add a paragraph explaining that an instance of Cat might have a "roar" attribute, but only after calling the "meow_louder" method.
Clarity is king. One of the smartest programmers I ever met once told me "show me your data structures, and I can tell you how your code works without seeing any of your code". While that's a tiny bit hyperbolic, there's definitely a ring of truth to it. One of the biggest hurdles to learning a code base is understanding the data that it manipulates.
What general/specific mess could arise if instance variables are
regularly initialized in methods other than the constructor?
The most obvious one is that an object may not have an attribute available during all parts of the program, leading to having to add a lot of extra code to handle the case where the attribute is undefined.
In what scenarios would it be better to initialize instance variables
in the other methods, rather than in the constructor?
I don't think there are any.
Note: you don't necessarily have to initialize an attribute with it's final value. In your case it's acceptable to initialize roar to None. The mere fact that it has been initialized to something shows that it's a piece of data that the class maintains. It's fine if the value changes later.
Remember that class members in "pure" Python are just a dictionary. Members aren't added to an instance's dictionary until you run the function in which they are defined. Ideally this is the constructor, because that then guarantees that your members will all exist regardless of the order that your functions are called.
I believe your example above could be translated to:
class Cat():
def __init__(self):
self.__dict__['meow'] = "Meow!"
def meow_bigger(self):
self.__dict__['roar'] = "Roar!"
>>> c = Cat() # c.__dict__ = { 'meow': "Meow!" }
>>> c.meow_bigger() # c.__dict__ = { 'meow': "Meow!", 'roar': "Roar!" }
To initialize instance variables within the constructor, is - as you already pointed out - only recommended in python.
First of all, defining all instance variables within the constructor is a good way to document a class. Everybody, seeing the code, knows what kind of internal state an instance has.
Secondly, order matters. if one defines an instance variable V in a function A and there is another function B also accessing V, it is important to call A before B. Otherwise B will fail since V was never defined. Maybe, A has to be invoked before B, but then it should be ensured by an internal state, which would be an instance variable.
There are many more examples. Generally it is just a good idea to define everything in the __init__ method, and set it to None if it can not / should not be initialized at initialization.
Of course, one could use hasattr method to derive some information of the state. But, also one could check if some instance variable V is for example None, which can imply the same then.
So in my opinion, it is never a good idea to define an instance variable anywhere else as in the constructor.
Your examples state some basic properties of python. An object in Python is basically just a dictionary.
Lets use a dictionary: One can add functions and values to that dictionary and construct some kind of OOP. Using the class statement just brings everything into a clean syntax and provides extra stuff like magic methods.
In other languages all information about instance variables and functions are present before the object was initialized. Python does that at runtime. You can also add new methods to any object outside the class definition: Adding a Method to an Existing Object Instance
3.) But instance variables can also be defined/initialized outside the constructor, e.g. in the other methods of the same class.
I'd recommend providing a default state in initialization, just so its clear what the class should expect. In statically typed languages, you'd have to do this, and it's good practice in python.
Let's convey this by replacing the variable roar with a more meaningful variable like has_roared.
In this case, your meow_bigger() method now has a reason to set has_roar. You'd initialize it to false in __init__, as the cat has not roared yet upon instantiation.
class Cat():
def __init__(self):
self.meow = "Meow!"
self.has_roared = False
def meow_bigger(self):
print self.meow + "!!!"
self.has_roared = True
Now do you see why it often makes sense to initialize attributes with default values?
All that being said, why does python not enforce that we HAVE to define our variables in the __init__ method? Well, being a dynamic language, we can now do things like this.
>>> cat1 = Cat()
>>> cat2 = Cat()
>>> cat1.name = "steve"
>>> cat2.name = "sarah"
>>> print cat1.name
... "steve"
The name attribute was not defined in the __init__ method, but we're able to add it anyway. This is a more realistic use case of setting variables that aren't defaulted in __init__.
I try to provide a case where you would do so for:
3.) But instance variables can also be defined/initialized outside the constructor, e.g. in the other methods of the same class.
I agree it would be clear and organized to include instance field in the constructor, but sometimes you are inherit other class, which is created by some other people and has many instance fields and api.
But if you inherit it only for certain apis and you want to have your own instance field for your own apis, in this case, it is easier for you to just declare extra instance field in the method instead override the other's constructor without bothering to deep into the source code. This also support Adam Hughes's answer, because in this case, you will always have your defined instance because you will guarantee to call you own api first.
For instance, suppose you inherit a package's handler class for web development, you want to include a new instance field called user for handler, you would probability just declare it directly in the method--initialize without override the constructor, I saw it is more common to do so.
class BlogHandler(webapp2.RequestHandler):
def initialize(self, *a, **kw):
webapp2.RequestHandler.initialize(self, *a, **kw)
uid = self.read_cookie('user_id') #get user_id by read cookie in the browser
self.user = User.by_id(int(uid)) #run query in data base find the user and return user
These are very open questions.
Python is a very "free" language in the sense that it tries to never restrict you from doing anything, even if it looks silly. This is why you can do completely useless things such as replacing a class with a boolean (Yes you can).
The behaviour that you mention follows that same logic: if you wish to add an attribute to an object (or to a function - yes you can, too) dynamically, anywhere, not necessarily in the constructor, well... you can.
But it is not because you can that you should. The main reason for initializing attributes in the constructor is readability, which is a prerequisite for maintenance. As Bryan Oakley explains in his answer, class fields are key to understand the code as their names and types often reveal the intent better than the methods.
That being said, there is now a way to separate attribute definition from constructor initialization: pyfields. I wrote this library to be able to define the "contract" of a class in terms of attributes, while not requiring initialization in the constructor. This allows you in particular to create "mix-in classes" where attributes and methods relying on these attributes are defined, but no constructor is provided.
See this other answer for an example and details.
i think to keep it simple and understandable, better to initialize the class variables in the class constructor, so they can be directly called without the necessity of compiling of a specific class method.
class Cat():
def __init__(self,Meow,Roar):
self.meow = Meow
self.roar = Roar
def meow_bigger(self):
return self.roar
def mix(self):
return self.meow+self.roar
c=Cat("Meow!","Roar!")
print(c.meow_bigger())
print(c.mix())
Output
Roar!
Roar!
Meow!Roar!
I have been trying to get my head around classmethods for a while now. I know how they work but I don't understand why use them or not use them.
For example.
I know i can use an instance method like this:
class MyClass():
def __init__(self):
self.name = 'Chris'
self.age = 27
def who_are_you(self):
print('Hello {}, you are {} years old'.format(self.name, self.age)
c = MyClass()
c.who_are_you()
I also know that by using the classmethod I can call the who_are_you() without creating an instance of my class:
class MyClass():
name = 'Chris'
age = 27
#classmethod
def who_are_you(cls):
print('Hello {}, you are {} years old'.format(cls.name, cls.age)
MyClass.who_are_you()
I dont get why you would pick one method over the other
In your second example, you've hard-coded the name and age into the class. If name and age are indeed properties of the class and not a specific instance of the class, than using a class method makes sense. However, if your class was something like Human of which there are many instances with different names and ages, then it wouldn't be possible to create a class method to access the unique names and ages of the specific instance. In that case, you would want to use an instance method.
In general:
If you want to access a property of a class as a whole, and not the property of a specific instance of that class, use a class method.
If you want to access/modify a property associated with a specific instance of the class, then you will want to use an instance method.
Class methods are called when you don't have, or don't need, or can't have, an instance. Sometimes, a class can serve as a singleton when used this way. But probably the most common use of class methods is as a non-standard constructor.
For example, the Python dict class has a non-standard constructor called dict.fromkeys(seq, [value]). Clearly, there can be no instance involved - the whole point is to create an instance. But it's not the standard __init__() constructor, because it takes data in a slightly different format.
There are similar methods in the standard library: int.from_bytes, bytes.fromhex and bytearray.fromhex() and float.fromhex().
If you think about the Unix standard library, the fdopen function is a similar idea - it constructs a file from a descriptor, instead of a string path. Python's open() will accept file handles instead of paths, so it doesn't need a separate constructor. But the concept is more common than you might suspect.
#classmethod declares that method is static, therefore you could use it without creating new instance of class. One the other hand, in first example you have to create instance before youcould use method.
Static methods are very useful for controllers in MVC pattern, etc, while nonstatic methods are used in models.
More about #classmethod and #staticmethod here
https://stackoverflow.com/a/12179752/5564059
In python, when I read others' code, I meet this situation where a class is defined and after it there is a pair of brackets.
class AStarFoodSearchAgent(SearchAgent):
def __init__():
#....
I don't know what is the meaning of '(SearchAgent)',because what I usually meet and use doesn't seem that.
It indicates that AStarFoodSearchAgent is a subclass of SearchAgent. It's part of a concept called inheritance.
What is inheritance?
Here's an example. You might have a Car class, and a RaceCar class. When implementing the RaceCar class, you may find that it has a lot of behavior that is very similar, or exactly the same, as a Car. In that case, you'd make RaceCar a subclass ofCar`.
class Car(object):
#Car is a subclass of Python's base objeect. The reasons for this, and the reasons why you
#see some classes without (object) or any other class between brackets is beyond the scope
#of this answer.
def get_number_of_wheels(self):
return 4
def get_engine(self):
return CarEngine(fuel=30)
class RaceCar(Car):
#Racecar is a subclass of Car
def get_engine(self):
return RaceCarEngine(fuel=50)
my_car = Car() #create a new Car instance
desired_car = RaceCar() #create a new RaceCar instance.
my_car.get_engine() #returns a CarEngine instance
desired_car.get_engine() #returns a RaceCarEngine instance
my_car.get_number_of_wheels() #returns 4.
desired_car.get_number_of_wheels() # also returns 4! WHAT?!?!?!
We didn't define get_number_of_wheels on RaceCar, and still, it exists, and returns 4 when called. That's because RaceCar has inherited get_number_of_wheels from Car. Inheritance is a very nice way to reuse functionality from other classes, and override or add only the functionality that needs to be different.
Your Example
In your example, AStarFoodSearchAgent is a subclass of SearchAgent. This means that it inherits some functionality from SearchAgemt. For instance, SearchAgent might implement a method called get_neighbouring_locations(), that returns all the locations reachable from the agent's current location. It's not necessary to reimplement this, just to make an A* agent.
What's also nice about this, is that you can use this when you expect a certain type of object, but you don't care about the implementation. For instance, a find_food function may expect a SearchAgent object, but it wouldn't care about how it searches. You might have an AStarFoodSearchAgent and a DijkstraFoodSearchAgent. As long as both of them inherit from SearchAgent, find_food can use ìsinstanceto check that the searcher it expects behaves like aSearchAgent. Thefind_food`function might look like this:
def find_food(searcher):
if not isinstance(searcher, SearchAgent):
raise ValueError("searcher must be a SearchAgent instance.")
food = searcher.find_food()
if not food:
raise Exception("No, food. We'll starve!")
if food.type == "sprouts":
raise Exception("Sprouts, Yuk!)
return food
Old/Classic Style Classes
Upto Python 2.1, old-style classes were the only type that existed. Unless they were a subclass of some other class, they wouldn't have any parenthesis after the class name.
class OldStyleCar:
...
New style classes always inherit from something. If you don't want to inherit from any other class, you inherit from object.
class NewStyleCar(object):
...
New style classes unify python types and classes. For instance, the type of 1, which you can obtain by calling type(1) is int, but the type of OldStyleClass() is instance, with new style classes, type(NewStyleCar) is Car.
SearchAgent is the superclass of the class AStarFoodSearchAgent. This basically means that an AStarFoodSearchAgent is a special kind of SearchAgent.
It means that class AStarFoodSearchAgent extends SearchAgent.
Check section 9.5 here
https://docs.python.org/2/tutorial/classes.html
This is inheritance in python, just like in any other OO language
https://docs.python.org/2/tutorial/classes.html#inheritance
It means that SearchAgent is a base class of AStarFoodSearchAgent. In other word, AStarFoodSearchAgent inherits from SearchAgent class.
See Inheritance - Python tutorial.
I've been reading lots of previous SO discussions of factory functions, etc. and still don't know what the best (pythonic) approach is to this particular situation. I'll admit up front that i am imposing a somewhat artificial constraint on the problem in that i want my solution to work without modifying the module i am trying to extend: i could make modifications to it, but let's assume that it must remain as-is because i'm trying to understand best practice in this situation.
I'm working with the http://pypi.python.org/pypi/icalendar module, which handles parsing from and serializing to the Icalendar spec (hereafter ical). It parses the text into a hierarchy of dictionary-like "component" objects, where every "component" is an instance of a trivial derived class implementing the different valid ical types (VCALENDAR, VEVENT, etc.) and they are all spit out by a recursive factory from the common parent class:
class Component(...):
#classmethod
def from_ical(cls, ...)
I have created a 'CalendarFile' class that extends the ical 'Calendar' class, including in it generator function of its own:
class CalendarFile(Calendar):
#classmethod
def from_file(cls, ics):
which opens a file (ics) and passes it on:
instance = cls.from_ical(f.read())
It initializes and modifies some other things in instance and then returns it. The problem is that instance ends up being a Calendar object instead of a CalendarFile object, in spite of cls being CalendarFile. Short of going into the factory function of the ical module and fiddling around in there, is there any way to essentially "recast" that object as a 'CalendarFile'?
The alternatives (again without modifying the original module) that I have considered are:make the CalendarFile class a has-a Calendar class (each instance creates its own internal instance of a Calendar object), but that seems methodically stilted.
fiddle with the returned object to give it the methods it needs (i know there's a term for creating a customized object but it escapes me).
make the additional methods into functions and just have them work with instances of Calendar.
or perhaps the answer is that i shouldn't be trying to subclass from a module in the first place, and this type of code belongs in the module itself.
Again i'm trying to understand what the "best" approach is and also learn if i'm missing any alternatives. Thanks.
Normally, I would expect an alternative constructor defined as a classmethod to simply call the class's standard constructor, transforming the arguments that it receives into valid arguments to the standard constructor.
>>> class Toy(object):
... def __init__(self, x):
... self.x = abs(x)
... def __repr__(self):
... return 'Toy({})'.format(self.x)
... #classmethod
... def from_string(cls, s):
... return cls(int(s))
...
>>> Toy.from_string('5')
Toy(5)
In most cases, I would strongly recommend something like this approach; this is the gold standard for alternative constructors.
But this is a special case.
I've now looked over the source, and I think the best way to add a new class is to edit the module directly; otherwise, scrap inheritance and take option one (your "has-a" option). The different classes are all slightly differentiated versions of the same container class -- they shouldn't really even be separate classes. But if you want to add a new class in the idiom of the code as it it is written, you have to add a new class to the module itself. Furthermore, from_iter is deceptively named; it's not really a constructor at all. I think it should be a standalone function. It builds a whole tree of components linked together, and the code that builds the individual components is buried in a chain of calls to various factory functions that also should be standalone functions but aren't. IMO much of that code ought to live in __init__ where it would be useful to you for subclassing, but it doesn't.
Indeed, none of the subclasses of Component even add any methods. By adding methods to your subclass of Calendar, you're completely disregarding the actual idiom of the code. I don't like its idiom very much but by disregarding that idiom, you're making it even worse. If you don't want to modify the original module, then forget about inheritance here and give your object a has-a relationship to Calendar objects. Don't modify __class__; establish your own OO structure that follows standard OO practices.