How do I get the inverse of a matrix in python? I've implemented it myself, but it's pure python, and I suspect there are faster modules out there to do it.
You should have a look at numpy if you do matrix manipulation. This is a module mainly written in C, which will be much faster than programming in pure python. Here is an example of how to invert a matrix, and do other matrix manipulation.
from numpy import matrix
from numpy import linalg
A = matrix( [[1,2,3],[11,12,13],[21,22,23]]) # Creates a matrix.
x = matrix( [[1],[2],[3]] ) # Creates a matrix (like a column vector).
y = matrix( [[1,2,3]] ) # Creates a matrix (like a row vector).
print A.T # Transpose of A.
print A*x # Matrix multiplication of A and x.
print A.I # Inverse of A.
print linalg.solve(A, x) # Solve the linear equation system.
You can also have a look at the array module, which is a much more efficient implementation of lists when you have to deal with only one data type.
Make sure you really need to invert the matrix. This is often unnecessary and can be numerically unstable. When most people ask how to invert a matrix, they really want to know how to solve Ax = b where A is a matrix and x and b are vectors. It's more efficient and more accurate to use code that solves the equation Ax = b for x directly than to calculate A inverse then multiply the inverse by B. Even if you need to solve Ax = b for many b values, it's not a good idea to invert A. If you have to solve the system for multiple b values, save the Cholesky factorization of A, but don't invert it.
See Don't invert that matrix.
It is a pity that the chosen matrix, repeated here again, is either singular or badly conditioned:
A = matrix( [[1,2,3],[11,12,13],[21,22,23]])
By definition, the inverse of A when multiplied by the matrix A itself must give a unit matrix. The A chosen in the much praised explanation does not do that. In fact just looking at the inverse gives a clue that the inversion did not work correctly. Look at the magnitude of the individual terms - they are very, very big compared with the terms of the original A matrix...
It is remarkable that the humans when picking an example of a matrix so often manage to pick a singular matrix!
I did have a problem with the solution, so looked into it further. On the ubuntu-kubuntu platform, the debian package numpy does not have the matrix and the linalg sub-packages, so in addition to import of numpy, scipy needs to be imported also.
If the diagonal terms of A are multiplied by a large enough factor, say 2, the matrix will most likely cease to be singular or near singular. So
A = matrix( [[2,2,3],[11,24,13],[21,22,46]])
becomes neither singular nor nearly singular and the example gives meaningful results... When dealing with floating numbers one must be watchful for the effects of inavoidable round off errors.
For those like me, who were looking for a pure Python solution without pandas or numpy involved, check out the following GitHub project: https://github.com/ThomIves/MatrixInverse.
It generously provides a very good explanation of how the process looks like "behind the scenes". The author has nicely described the step-by-step approach and presented some practical examples, all easy to follow.
This is just a little code snippet from there to illustrate the approach very briefly (AM is the source matrix, IM is the identity matrix of the same size):
def invert_matrix(AM, IM):
for fd in range(len(AM)):
fdScaler = 1.0 / AM[fd][fd]
for j in range(len(AM)):
AM[fd][j] *= fdScaler
IM[fd][j] *= fdScaler
for i in list(range(len(AM)))[0:fd] + list(range(len(AM)))[fd+1:]:
crScaler = AM[i][fd]
for j in range(len(AM)):
AM[i][j] = AM[i][j] - crScaler * AM[fd][j]
IM[i][j] = IM[i][j] - crScaler * IM[fd][j]
return IM
But please do follow the entire thing, you'll learn a lot more than just copy-pasting this code! There's a Jupyter notebook as well, btw.
Hope that helps someone, I personally found it extremely useful for my very particular task (Absorbing Markov Chain) where I wasn't able to use any non-standard packages.
You could calculate the determinant of the matrix which is recursive
and then form the adjoined matrix
Here is a short tutorial
I think this only works for square matrices
Another way of computing these involves gram-schmidt orthogonalization and then transposing the matrix, the transpose of an orthogonalized matrix is its inverse!
Numpy will be suitable for most people, but you can also do matrices in Sympy
Try running these commands at http://live.sympy.org/
M = Matrix([[1, 3], [-2, 3]])
M
M**-1
For fun, try M**(1/2)
If you hate numpy, get out RPy and your local copy of R, and use it instead.
(I would also echo to make you you really need to invert the matrix. In R, for example, linalg.solve and the solve() function don't actually do a full inversion, since it is unnecessary.)
Related
Suppose I have a symmetric matrix A and a vector b and want to find A^(-1) b. Now, this is well-known to be doable in time O(N^2) (where N is the dimension of the vector\matrix), and I believe that in MATLAB this can be done as b\A. But all I can find in python is numpy.linalg.solve() which will do Gaussian elimination, which is O(N^3). I must not be looking in the right place...
scipy.linalg.solve has an argument to make it assume a symmetric matrix:
x = scipy.linalg.solve(A, b, assume_a="sym")
If you know your matrix is not just symmetric but positive definite you can give this stronger assumption instead, as "pos".
I am trying to optimise my computation for the eigenvalue/vectors of a tridiagonal matrix. My code currently takes about 30s to run and I need it to run much faster, at around 1s. I am currently using the scipy.sparse.linalg.eigsh method for finding the eigenvalue/vectors but I believe that there should be other ways which are much faster. I will post my code below so it is a little easier to see what I am trying to do. Any suggestions are greatly welcome and if there is anything unclear please let me know.
H = (dx**-2)*diags([-1, 2, -1], [-1, 0, 1], shape=(N, N))
H = sp.lil_matrix(H)
H[0,0]=0.5*H[0,0]
H[N-1,N-1]=0.5*H[N-1,N-1]
lam, phi = eigsh(H, 400, which="SM")
You're unlikely to find a simple way to speed up this calculation by 30x. As you can see from the timings in this post, even Google's impressively optimized jax library only manages a bit less than a 3x speedup over the base SVD implementation in scipy. Since SVD is equivalent to eigsh for symmetric matrices, we can expect that the speedup for eigsh will be about the same at best.
So even Google can't speed this calculation up that much, at least in the traditional way.
However, for very large, sparse matrices, there are specialized stochastic algorithms that can speed things up by much larger factors under the right circumstances. One of them has an sklearn implementation: sklearn.utils.extmath.randomized_svd. (I believe it's based on the algorithm described here, and it may also be the same as sklearn.decomposition.TruncatedSVD when algorithm='randomized'.)
Here's a slightly modified version of your example, showing how to use it:
from scipy.sparse import diags, lil_matrix
from scipy.sparse.linalg import eigsh
from sklearn.utils.extmath import randomized_svd
N = 3200
k = 400
dx = 1.0
H = (dx**-2)*diags([-1, 2, -1], [-1, 0, 1], shape=(N, N))
H = lil_matrix(H)
H[0, 0] = 0.5*H[0, 0]
H[N-1, N-1] = 0.5*H[N-1, N-1]
# lam, phi = eigsh(H, k, which="SM")
U, s, V = randomized_svd(H, k)
Here, s contains the singular values (equivalent here to eigenvalues), and U and V contain the singular vectors (equivalent here to eigenvectors). In theory, if H is a symmetric matrix, U should be the same as V.T. I didn't find that to be the case for this example, which puzzles me a bit... but I'm going ahead and posting this anyway, because this does in fact run in about a second, and so might be a solution for you.
However, there is still one more big caveat. You're passing which="SM" to eigsh, which as I understand it means you are asking for the 400 smallest eigenvalues. Is that really what you want? In almost all applications I am aware of, you'd want the 400 largest eigenvalues. If in fact you really do want the 400 smallest eigenvalues, then this won't work, because it relies on the fact that the largest eigenvalues are easier to coax out using random matrix projections.
The upshot is, you will want to test this to see if it actually gives results you can use. But it's an interesting possible solution, given what you've said so far about your problem.
I need to solve a set of simultaneous equations of the form Ax = B for x. I've used the numpy.linalg.solve function, inputting A and B, but I get the error 'LinAlgError: Last 2 dimensions of the array must be square'. How do I fix this?
Here's my code:
A = matrix([[v1x, v2x], [v1y, v2y], [v1z, v2z]])
print A
B = [(p2x-p1x-nmag[0]), (p2y-p1y-nmag[1]), (p2z-p1z-nmag[2])]
print B
x = numpy.linalg.solve(A, B)
The values of the matrix/vector are calculated earlier in the code and this works fine, but the values are:
A =
(-0.56666301, -0.52472909)
(0.44034147, 0.46768087)
(0.69641397, 0.71129036)
B =
(-0.38038602567630364, -24.092279373295057, 0.0)
x should have the form (x1,x2,0)
In case you still haven't found an answer, or in case someone in the future has this question.
To solve Ax=b:
numpy.linalg.solve uses LAPACK gesv. As mentioned in the documentation of LAPACK, gesv requires A to be square:
LA_GESV computes the solution to a real or complex linear system of equations AX = B, where A is a square matrix and X and B are rectangular matrices or vectors. Gaussian elimination with row interchanges is used to factor A as A = PL*U , where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the above system.
If A matrix is not square, it means that you either have more variables than your equations or the other way around. In these situations, you can have the cases of no solution or infinite number of solutions. What determines the solution space is the rank of the matrix compared to the number of columns. Therefore, you first have to check the rank of the matrix.
That being said, you can use another method to solve your system of linear equations. I suggest having a look at factorization methods like LU or QR or even SVD. In LAPACK you can use getrs, in Python you can different things:
first do the factorization like QR and then feed the resulting matrices to a method like scipy.linalg.solve_triangular
solve the least-squares using numpy.linalg.lstsq
Also have a look here where a simple example is formulated and solved.
A square matrix is a matrix with the same number of rows and columns. The matrix you are doing is a 3 by 2. Add a column of zeroes to fix this problem.
Suppose I have two dense matrices U (10000x50) and V(50x10000), and one sparse matrix A(10000x10000). Each element in A is either 1 or 0. I hope to find A*(UV), noting that '*' is element-wise multiplication. To solve the problem, Scipy/numpy will calculate a dense matrix UV first. But UV is dense and large (10000x10000) so it's very slow.
Because I only need a few elements of UV indicated by A, it should save a lot of time if only necessary elements are calculated instead of calculating all elements then filtering using A. Is there a way to instruct scipy to do this?
BTW, I used Matlab to solve this problem and Matlab is smart enough to find what I'm trying to do and works efficiently.
Update:
I found Matlab calculated UV fully as scipy does. My scipy installation is simply too slow...
Here's a test script and possible speedup. The basic idea is to use the nonzero coordinates of A to select rows and columns of U and V, and then use einsum to perform a subset of the possible dot products.
import numpy as np
from scipy import sparse
#M,N,d = 10,5,.1
#M,N,d = 1000,50,.1
M,N,d = 5000,50,.01 # about the limit for my memory
A=sparse.rand(M,M,d)
A.data[:] = 1 # a sparse 0,1 array
U=(np.arange(M*N)/(M*N)).reshape(M,N)
V=(np.arange(M*N)/(M*N)).reshape(N,M)
A1=A.multiply(U.dot(V)) # the direct solution
A2=np.einsum('ij,ik,kj->ij',A.A,U,V)
print(np.allclose(A1,A2))
def foo(A,U,V):
# use A to select elements of U and V
A3=A.copy()
U1=U[A.row,:]
V1=V[:,A.col]
A3.data[:]=np.einsum('ij,ji->i',U1,V1)
return A3
A3 = foo(A,U,V)
print(np.allclose(A1,A3.A))
The 3 solutions match. For large arrays, foo is about 2x faster than the direct solution. For small size, the pure einsum is competitive, but bogs down for large arrays.
The use of dot in foo would have computed too many products, ij,jk->ik as opposed to ij,ji->i.
I have a matrix B that is square and dense, and a matrix A that is rectangular and sparse.
Is there a way to efficiently compute the product B^-1 * A?
So far, I use (in numpy)
tmp = B.inv()
return tmp * A
which, I believe, makes us of A's sparsity. I was thinking about using the sparse method
numpy.sparse.linalg.spsolve, but this requires B, and not A, to be sparse.
Is there another way to speed things up?
Since the matrix to be inverted is dense, spsolve is not the tool you want. In addition, it is bad numerical practice to calculate the inverse of a matrix and multiply it by another - you are much better off using LU decomposition, which is supported by scipy.
Another point is that unless you are using the matrix class (I think that the ndarray class is better, this is something of a question of taste), you need to use dot instead of the multiplication operator. And if you want to efficiently multiply a sparse matrix by a dense matrix, you need to use the dot method of the sparse matrix. Unfortunately this only works if the first matrix is sparse, so you need to use the trick which Anycorn suggested of taking the transpose to swap the order of operations.
Here is a lazy implementation which doesn't use the LU decomposition, but which should otherwise be efficient:
B_inv = scipy.linalg.inv(B)
C = (A.transpose().dot(B_inv.transpose())).transpose()
Doing it properly with the LU decomposition involves finding a way to efficiently multiply a triangular matrix by a sparse matrix, which currently eludes me.