I have a numpy array that looks like this
[
[[1,2,3], [4,5,6]],
[[3,8,9], [2,9,4]],
[[7,1,3], [1,3,6]]
]
I want it like this after deleting first column
[
[[2,3], [5,6]],
[[8,9], [9,4]],
[[1,3], [3,6]]
]
so currently the dimension is 3*3*3, after removing the first column it should be 3*3*2
You can slice it as so, where 1: signifies that you only want the second and all remaining columns from the inner most array (i.e. you 'delete' its first column).
>>> a[:, :, 1:]
array([[[2, 3],
[5, 6]],
[[8, 9],
[9, 4]],
[[1, 3],
[3, 6]]])
Since you are using numpy I'll mention numpy way of doing this. First of all, the dimension you have specified for the question seems wrong. See below
x = np.array([
[[1,2,3], [4,5,6]],
[[3,8,9], [2,9,4]],
[[7,1,3], [1,3,6]]
])
The shape of x is
x.shape
(3, 2, 3)
You can use numpy.delete to remove a column as shown below
a = np.delete(x, 0, 2)
a
array([[[2, 3],
[5, 6]],
[[8, 9],
[9, 4]],
[[1, 3],
[3, 6]]])
To find the shape of a
a.shape
(3, 2, 2)
Related
I have 4 numpy arrays, each of shape (5,5). I would like to stack them such that I get a new array of shape (5,5,4). I tried using:
N = np.stack((a, b, c, d))
but, as I am new to using numpy, I cannot understand why that is giving a shape of (4, 5, 5) instead of (5, 5, 4). Is there another method I should be using? dstack works but changes my arrays, I think it transposes them.
For example, 4 arrays
[[1,2]
[3,4]]
[[1,2]
[3,4]]
[[1,2]
[3,4]]
[[1,2]
[3,4]]
when stacked I am expecting:
[[[1,2]
[3,4]]
[[1,2]
[3,4]]
[[1,2]
[3,4]]
[[1,2]
[3,4]]]
This is working as expected with stack but would give a shape of (4,2,2) instead of (2,2,4). From my understanding, shape is (rows, columns, depth) Am I wrong in this?
I believe you could concatenate the arrays, and reshape into a 3D array as:
l = [a,b,c,d]
np.concatenate(l).reshape(len(l), *a.shape)
Or if you want to avoid creating that list and know the amount of arrays beforehand:
np.concatenate((a,b,c,d)).reshape(4, *a.shape)
Checking on the shared example:
a = [[1, 2], [3, 4]]
d = c = b = a
np.concatenate((a,b,c,d)).reshape(4, *np.array(a).shape)
array([[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]]])
In [10]: arr = np.arange(1,5).reshape(2,2)
In [11]: np.stack((arr,arr,arr))
Out[11]:
array([[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]]])
In [12]: _.shape
Out[12]: (3, 2, 2)
Default stack joins the arrays on a new first axis, the same as np.array((arr,arr,arr)).shape
If given an axis parameter it can join them as:
In [13]: np.stack((arr,arr,arr), axis=2)
Out[13]:
array([[[1, 1, 1],
[2, 2, 2]],
[[3, 3, 3],
[4, 4, 4]]])
In [14]: _.shape
Out[14]: (2, 2, 3)
np.dstack does the same thing, where d stands for 'depth`'.
The last dimension (here 3) is displayed as the innermost columns.
Selecting one 'channel' produces a 2d array:
In [17]: np.stack((arr,arr,arr), axis=2)[:,:,0]
Out[17]:
array([[1, 2],
[3, 4]])
For 3 dimensions, the first dimension is blocks or planes, and the middle rows. Those names are conveniences, helping us visualize the action, but don't have inherent means in numpy. For images the last dimension often is called colors or channels, and has size 3 or 4. A 4d array of images could described as
(batches, height, width, color)
But the actual meanings depend on how you are processing the array.
When using a numpy array as a matrix, in which order are rows and columns?
For example:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
Is [1, 2, 3] the first row or the first column?
I cannot find this information in the documentation, perhaps because the answer is too obvious.
[1, 2, 3] is the first row.
The examples in numpy ndarray documentation actually gives you some hints:
>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> # The element of x in the *second* row, *third* column, namely, 6.
>>> x[1, 2] ```
I've tried and searched for a few days, I've come closer but need your help.
I have a 3d array in python,
shape(files)
>> (31,2049,2)
which corresponds to 31 input files with 2 columns of data with 2048 rows and a header.
I'd like to sort this array based on the header, which is a number, in each file.
I tried to follow NumPy: sorting 3D array but keeping 2nd dimension assigned to first , but i'm incredibly confused.
First I try to setup get my headers for the argsort, I thought I could do
sortval=files[:][0][0]
but this does not work..
Then I simply did a for loop to iterate and get my headers
for i in xrange(shape(files)[0]:
sortval.append([i][0][0])
Then
sortedIdx = np.argsort(sortval)
This works, however I dont understand whats happening in the last line..
files = files[np.arange(len(deck))[:,np.newaxis],sortedIdx]
Help would be appreciated.
Another way to do this is with np.take
header = a[:,0,0]
sorted = np.take(a, np.argsort(header), axis=0)
Here we can use a simple example to demonstrate what your code is doing:
First we create a random 3D numpy matrix:
a = (np.random.rand(3,3,2)*10).astype(int)
array([[[3, 1],
[3, 7],
[0, 3]],
[[2, 9],
[1, 0],
[9, 2]],
[[9, 2],
[8, 8],
[8, 0]]])
Then a[:] will gives a itself, and a[:][0][0] is just the first row in first 2D array in a, which is:
a[:][0]
# array([[3, 1],
# [3, 7],
# [0, 3]])
a[:][0][0]
# array([3, 1])
What you want is the header which are 3,2,9 in this example, so we can use a[:, 0, 0] to extract them:
a[:,0,0]
# array([3, 2, 9])
Now we sort the above list and get an index array:
np.argsort(a[:,0,0])
# array([1, 0, 2])
In order to rearrange the entire 3D array, we need to slice the array with correct order. And np.arange(len(a))[:,np.newaxis] is equal to np.arange(len(a)).reshape(-1,1) which creates a sequential 2D index array:
np.arange(len(a))[:,np.newaxis]
# array([[0],
# [1],
# [2]])
Without the 2D array, we will slice the array to 2 dimension
a[np.arange(3), np.argsort(a[:,0,0])]
# array([[3, 7],
# [2, 9],
# [8, 0]])
With the 2D array, we can perform 3D slicing and keeps the shape:
a[np.arange(3).reshape(-1,1), np.argsort(a[:,0,0])]
array([[[3, 7],
[3, 1],
[0, 3]],
[[1, 0],
[2, 9],
[9, 2]],
[[8, 8],
[9, 2],
[8, 0]]])
And above is the final result you want.
Edit:
To arange the 2D arrays:, one could use:
a[np.argsort(a[:,0,0])]
array([[[2, 9],
[1, 0],
[9, 2]],
[[3, 1],
[3, 7],
[0, 3]],
[[9, 2],
[8, 8],
[8, 0]]])
I have a 3 dimensional numpy array similar to this:
a = np.array([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]],
[[9, 10],
[11, 12]]])
What I'd like to do is intersperse each 2D array contained inside the outer array to produce this result:
t = np.array([[[1, 2], [5, 6], [9, 10]],
[[3, 4], [7, 8], [11, 12]]])
I could do this in Python like this, but I'm hoping there's a more efficient, numpy version:
t = np.empty((a.shape[1], a.shape[0], a.shape[2]), a.dtype)
for i, x in np.ndenumerate(a):
t[i[1], i[0], i[2]] = x
As #UdayrajDeshmukh said, you can use the transpose method (which, despite the name that evokes the "transpose" operator in linear algebra, is better understood as "permuting the axes"):
>>> t = a.transpose(1, 0, 2)
>>> t
array([[[ 1, 2],
[ 5, 6],
[ 9, 10]],
[[ 3, 4],
[ 7, 8],
[11, 12]]])
The newly created object t is a shallow array looking into a's data with a different permutation of indices. To replicate your own example, you need to copy it, e.g. t = a.transpose(1, 0, 2).copy()
Try the transpose function. You simply change the first two axes.
t = np.transpose(a, axes=(1, 0, 2))
I'm very new to Python & Numpy and am trying to accomplish the following:
Given, 3D Array:
arr_3d = [[[1,2,3],[4,5,6],[0,0,0],[0,0,0]],
[[3,2,1],[0,0,0],[0,0,0],[0,0,0]]
[[1,2,3],[4,5,6],[7,8,9],[0,0,0]]]
arr_3d = np.array(arr_3d)
Get the indices where [0,0,0] appears in the given 3D array.
Slice the given 3D array from where [0,0,0] appears first.
In other words, I'm trying to remove the padding (In this case: [0,0,0]) from the given 3D array.
Here is what I have tried,
arr_zero = np.zeros(3)
for index in range(0, len(arr_3d)):
rows, cols = np.where(arr_3d[index] == arr_zero)
arr_3d[index] = np.array(arr_3d[0][:rows[0]])
But doing this, I keep getting the following error:
Could not broadcast input array from shape ... into shape ...
I'm expecting something like this:
[[[1,2,3],[4,5,6]],
[[3,2,1]]
[[1,2,3],[4,5,6],[7,8,9]]]
Any help would be appreciated.
Get the first occurance of those indices with all() reduction alongwith argmax() and then slice each 2D slice off the 3D array -
In [106]: idx = (arr_3d == [0,0,0]).all(-1).argmax(-1)
# Output as list of arrays
In [107]: [a[:i] for a,i in zip(arr_3d,idx)]
Out[107]:
[array([[1, 2, 3],
[4, 5, 6]]), array([[3, 2, 1]]), array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])]
# Output as list of lists
In [108]: [a[:i].tolist() for a,i in zip(arr_3d,idx)]
Out[108]: [[[1, 2, 3], [4, 5, 6]], [[3, 2, 1]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]]]