NotFoundError using BERT Preprocessing from TFHub - python

I'm trying to use the pre-trained BERT models on TensorFlow Hub to do some simple NLP. I'm on a 2021 MacBook Pro (Apple Silicon) with Python 3.9.13 and TensorFlow v2.9.2. However, preprocessing any amount of text returns a "NotFoundError" that I can't seem to resolve. The link to the preprocessing model is here: (https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3) and I have pasted my code/error messages below. Does anyone know why this is happening and how I can fix it? Thanks in advance.
Code
bert_preprocess = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3")
bert_encoder = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4")
print(bert_preprocess(["test"]))
Output
Output exceeds the size limit. Open the full output data in a text editor
---------------------------------------------------------------------------
NotFoundError Traceback (most recent call last)
Cell In [42], line 3
1 bert_preprocess = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3")
2 bert_encoder = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4")
----> 3 print(bert_preprocess(["test"]))
File ~/miniforge3/envs/tfenv/lib/python3.9/site-packages/keras/utils/traceback_utils.py:67, in filter_traceback.<locals>.error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
File ~/miniforge3/envs/tfenv/lib/python3.9/site-packages/tensorflow_hub/keras_layer.py:237, in KerasLayer.call(self, inputs, training)
234 else:
235 # Behave like BatchNormalization. (Dropout is different, b/181839368.)
236 training = False
--> 237 result = smart_cond.smart_cond(training,
238 lambda: f(training=True),
239 lambda: f(training=False))
241 # Unwrap dicts returned by signatures.
242 if self._output_key:
File ~/miniforge3/envs/tfenv/lib/python3.9/site-packages/tensorflow_hub/keras_layer.py:239, in KerasLayer.call.<locals>.<lambda>()
...
[[StatefulPartitionedCall/StatefulPartitionedCall/bert_pack_inputs/PartitionedCall/RaggedConcat/ArithmeticOptimizer/AddOpsRewrite_Leaf_0_add_2]] [Op:__inference_restored_function_body_209194]
Call arguments received by layer "keras_layer_6" (type KerasLayer):
• inputs=["'test'"]
• training=None

Update: While using BERT preprocessing from TFHub, Tensorflow and tensorflow_text versions should be same so please make sure that installed both versions are same. It happens because you're using latest version for tensorflow_text but you're using other versions for python and tensorflow but there is internal dependancy with versions for Tensorflow and tensorflow_text which should be same.
!pip install -U tensorflow
!pip install -U tensorflow-text
import tensorflow as tf
import tensorflow_text as text
# Or install with a specific Version
!pip install -U tensorflow==2.11.*
!pip install -U tensorflow-text==2.11.*
import tensorflow as tf
import tensorflow_text as text
I have executed below lines of code in Google Colab and It's working fine,
bert_preprocess = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3")
bert_encoder = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4")
print(bert_preprocess(["test"]))
Here is output:
{'input_type_ids': <tf.Tensor: shape=(1, 128), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>, 'input_mask': <tf.Tensor: shape=(1, 128), dtype=int32, numpy=
array([[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>, 'input_word_ids': <tf.Tensor: shape=(1, 128), dtype=int32, numpy=
array([[ 101, 3231, 102, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
I hope it will help you to resolve your issue, Thank You!

Related

What model to use to predict rare occurances? For example, when someone takes medicine

I've tried to build a prediction model that would give me a probability of a person taking medicine given certain conditions. What I'm most interested about is that the model would relatively accurately be able to predict when someone takes medicine. I have a dataframe that has 1400 rows, where about 134 rows are those where the user takes medicine. I have a df that looks somewhat like the example below.
df = pd.DataFrame({'time_hour': ['6', '12', '18'],
'weekday': [6, 1, 3],
'previous_action': ['eat', 'sleep', 'eat'],
'take_medicine': [0, 1, 1]})
I've tried solving this with logistic regression and bernoulli naive bayes, but each of them only bet on the most common outcome, which is the person not taking medicine. I've tried googling how to solve this without success.
I've looked at the data and the person takes medicine daily at 12 and 18, so I'm curious why the results are so bad. Is there another model that would suit this kind of problem better or should I be doing something differently?
Here is an example what I've done previously
predictors = ['time_hour', 'weekday', 'previous_action']
X = df[predictors]
y = df['take_medicine']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)
from sklearn.naive_bayes import BernoulliNB
bert = BernoulliNB()
bert.fit(X_train, y_train)
y_pred = bert.predict(X_test)
y_pred
Which returns
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Predicting rare occurrences is called anomaly detection, you can look it up, there are many models that might be useful in your case such as isolation forest that is present in the sklearn library.

why input_mask is all the same number in BERT language model?

For a text classification task I applied Bert(fine tune) and the output that I got is as below:
Why input_mask is all 1 ?
#to_feature_map is a function.
to_feature_map("hi how are you doing",0)
({'input_mask': <tf.Tensor: shape=(64,), dtype=int32, numpy=
array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
dtype=int32)>,
'input_type_ids': <tf.Tensor: shape=(64,), dtype=int32, numpy=
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
dtype=int32)>,
'input_word_ids': <tf.Tensor: shape=(64,), dtype=int32, numpy=
array([ 101, 7632, 2129, 2024, 2017, 2725, 102, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)>},
<tf.Tensor: shape=(), dtype=int32, numpy=0>)```
The input masks — allows the model to cleanly differentiate between the content and the padding. The mask has the same shape as the input ids, and contains 1 anywhere the the input ids is not padding.

Deep Learning Model to Predict Clicks from Keywords

I have a dataset of keywords and clicks.
I'm trying to build a model where it takes in a phrase of keyword ( not more than 5 words, eg: mechanical engineer ) and outputs a value (like clicks, eg: 56). I'm using the bag of words approach which resulted in about 40% accuracy which is not good enough. Can I get some opinions on what approach you would take to improve the accuracy?
Or perhaps my approach is wrong ?
After cleaning,
Here's my code:
words = []
for row in df['Keyword']:
row = nltk.word_tokenize(row)
for i in row:
words.append(i)
words = sorted(list(set(words)))
training = []
for x in df['Keyword']:
bag = []
wrds = nltk.word_tokenize(x)
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
training.append(bag)
model = keras.Sequential()
inputs = keras.Input(shape=(858,))
x = layers.Embedding(858, 8, input_length=5)(inputs)
x = layers.Flatten()(x)
outputs = layers.Dense(1, activation='relu')(x)
model = keras.Model(inputs=inputs, outputs=outputs, name='my_model')
model.compile(optimizer='adam',loss='mean_squared_error',metrics=['accuracy'])
history = model.fit(X_train, Y_train,
batch_size=50,
epochs=20,
validation_split=0.2,
verbose = 1)
Here's a sample output of my X_train and Y_train.
X_train:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Y_train:
257.43
I have about 330k samples.
Any input in appreciated. Thanks
This seems to be a regression problem, not a classification problem.
What does the accuracy of 40% tell you? It tells you that in 40% of the test cases, the network did predict the exact number of clicks, in all the other cases, it did not, even if the number of clicks it predicted is around the right number of clicks. Have a look at this question.
Instead, you should use the error as metric. It tells you how exactly your model can predict the number of clicks, whereas accuracy tells you how often your model predicted the exact number of clicks.
With this in mind, an accuracy of 40% seems pretty high. If you insist of accuracy as a metric, have a look at this.

LSTM, multiple binary array input and overfitting handling

Now I'm working on a space environment model that predicts the maximum Kp index of tomorrow using last 3-days coronal hole information. (Total amount of data is around 4300 days.)
For the input, 3 arrays with 136 elements are used (one array for a day, so 3 days data). For example,
inputArray_day1 = [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
inputArray_day2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]
inputArray_day3 = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
The output is single one-hot vector of length 28 which indicates maximum Kp index of day4. I use dictionaries below to convert between Kp index and one-hot vector easily.
kp2idx = {0.0:0, 0.3:1, 0.7:2, 1.0:3, 1.3:4, 1.7:5, 2.0:6, 2.3:7, 2.7:8, 3.0:9, 3.3:10, 3.7:11, 4.0:12, 4.3:13,
4.7:14, 5.0:15, 5.3:16, 5.7:17, 6.0:18, 6.3:19, 6.7:20, 7.0:21, 7.3:22, 7.7:23, 8.0:24, 8.3:25, 8.7:26, 9.0:27}
idx2kp = {0:0.0, 1:0.3, 2:0.7, 3:1.0, 4:1.3, 5:1.7, 6:2.0, 7:2.3, 8:2.7, 9:3.0, 10:3.3, 11:3.7, 12:4.0, 13:4.3,
14:4.7, 15:5.0, 16:5.3, 17:5.7, 18:6.0, 19:6.3, 20:6.7, 21:7.0, 22:7.3, 23:7.7, 24:8.0, 25:8.3, 26:8.7, 27:9.0}
The model contains two LSTM layers with dropout.
def fit_lstm2(X,Y,Xv,Yv, n_batch, nb_epoch, n_neu1, n_neu2, dropout):
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(n_neu1, batch_input_shape = (n_batch,X.shape[1],X.shape[2]), return_sequences=True))
model.add(tf.keras.layers.Dropout(dropout))
model.add(tf.keras.layers.LSTM(n_neu2))
model.add(tf.keras.layers.Dropout(dropout))
model.add(tf.keras.layers.Dense(28,activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy','mse'])
for i in range(nb_epoch):
print('epochs : ' + str(i))
model.fit(X,Y, epochs=1, batch_size = n_batch, verbose=1, shuffle=False,callbacks=[custom_hist], validation_data = (Xv,Yv))
model.reset_states()
return model
I tried various neuron number and dropout rate such as
n_batch = 1
nb_epochs = 100
n_neu1 = [128,64,32,16]
n_neu2 = [64,32,16,8]
n_dropout = [0.2,0.4,0.6,0.8]
for dropout in n_dropout:
for i in range(len(n_neu1)):
model = fit_lstm2(x_train,y_train,x_val,y_val,n_batch, nb_epochs,n_neu1[i],n_neu2[i],dropout)
The problem is that the prediction accuracy never goes up more than 10% and over-fitting starts pretty soon after intializing training.
Here are some images of the training histories. (Sorry for the location of the legends)
n_neu1,n_neu2,dropout=(64,32,0.2)
n_neu1,n_neu2,dropout=(32,16,0.2)
n_neu1,n_neu2,dropout=(16,8,0.2)
Honestly, I have no idea why the validation accuracy never goes up and the over-fitting starts so quickly.. Is there better way to use the input data? I mean, should I normalize or standardize the input?
Please help me, any comments and suggestions will be greatly appreciated.

create_dataset error- Object dtype dtype('O') has no native HDF5 equivalent

I have a large np array that I am using to create a dataset. 0th and 1st index of this array look like this-
arr[0]= [122, 954, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
arr[1]= [122, 17, 377, 1808, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
....
Then I am creating a dataset using this array-
f.create_dataset("init", data=arr),
However it runs into this error
Object dtype dtype('O') has no native HDF5 equivalent
What could be the reasons behind this error? I am very new to python programming. Any ideas would be helpful. Thanks!

Categories