Python iterate through an array inside json object - python

bit lost here... trying to iterate through this array in a json object:
{
"NULSBUSD": {
"symbol": "NULSBUSD",
"orderId": 33523092,
"orderListId": -1,
"clientOrderId": "54Re4e4iV0bCkIXKyth4Sc",
"transactTime": 1659875121897,
"price": "0.00000000",
"origQty": "187.00000000",
"executedQty": "187.00000000",
"cummulativeQuoteQty": "50.10100000",
"status": "FILLED",
"timeInForce": "GTC",
"type": "MARKET",
"side": "BUY",
"fills": [
{
"price": "0.26790000",
"qty": "150.00000000",
"commission": "0.00009529",
"commissionAsset": "BNB",
"tradeId": 669893
},
{
"price": "0.26800000",
"qty": "37.00000000",
"commission": "0.00002350",
"commissionAsset": "BNB",
"tradeId": 669894
}
],
"delta": 0,
"tsp": 0.264528
}
}
this code throws
string indices must be integers
qty = 0.0
for coin in order:
for fill in coin['fills']:
qty += float(fill['qty'])
Any ideas how I go about it?
Thanks!

This is what you need:
qty = 0.0
for coin in order:
obj = order[coin]
for fill in obj['fills']:
qty += float(fill['qty'])
print(qty)
You can do this in one line:
print(sum(float(fill['qty']) for coin in order for fill in order[coin]['fills']))
Output:
187.0
If you do: for key in order, key is a string here:)

Here's using dataframe to avoid looping -
import pandas as pd
import json
with open("data.json") as f:
json_data = json.load(f)
for coin in json_data:
df = pd.DataFrame(json_data[coin]["fills"])
df["qty"].astype("float").sum()

Related

Converting Dictionary in list in list to dataframe in python

I am really a newbie. Thanks much.
Dictionary in list from JSON looks like this:
data1= [ [{Code:A, date:XXX}], [{Code:B, date:YYY}]]
How can i convert this into dataframe?
Output I want is:
enter image description here
I tried the following code but it's not working.
fda_df=pd.read_json(json.dumps(data1))
The real data is
[
[
{
"code": "AA.US",
"date": "2022-12-31",
"earningsEstimateAvg": "4.5400",
"earningsEstimateGrowth": "0.0630",
"earningsEstimateHigh": "8.5000",
"earningsEstimateLow": "2.2000",
"earningsEstimateNumberOfAnalysts": "12.0000",
"earningsEstimateYearAgoEps": "4.2700",
"epsRevisionsDownLast30days": "0.0000",
"epsRevisionsUpLast30days": "6.0000",
"epsRevisionsUpLast7days": "1.0000",
"epsTrend30daysAgo": "3.8700",
"epsTrend60daysAgo": "3.8200",
"epsTrend7daysAgo": "4.5200",
"epsTrend90daysAgo": "2.5900",
"epsTrendCurrent": "4.5400",
"growth": "0.0630",
"period": "+1y",
"revenueEstimateAvg": "11018700000.00",
"revenueEstimateGrowth": "0.0180",
"revenueEstimateHigh": "12927000000.00",
"revenueEstimateLow": "10029900000.00",
"revenueEstimateNumberOfAnalysts": "9.00",
"revenueEstimateYearAgoEps": null
} ],
[
{
"code": "AAIC.US",
"date": "2022-12-31",
"earningsEstimateAvg": "0.2600",
"earningsEstimateGrowth": "0.4440",
"earningsEstimateHigh": "0.3900",
"earningsEstimateLow": "0.1700",
"earningsEstimateNumberOfAnalysts": "3.0000",
"earningsEstimateYearAgoEps": "0.1800",
"epsRevisionsDownLast30days": "0.0000",
"epsRevisionsUpLast30days": "1.0000",
"epsRevisionsUpLast7days": "0.0000",
"epsTrend30daysAgo": "0.2600",
"epsTrend60daysAgo": "0.2100",
"epsTrend7daysAgo": "0.2600",
"epsTrend90daysAgo": "0.2300",
"epsTrendCurrent": "0.2600",
"growth": "0.4440",
"period": "+1y",
"revenueEstimateAvg": "17280000.00",
"revenueEstimateGrowth": "0.1680",
"revenueEstimateHigh": "22110000.00",
"revenueEstimateLow": "12450000.00",
"revenueEstimateNumberOfAnalysts": "2.00",
"revenueEstimateYearAgoEps": null
},
{
"code": "AAIC.US",
"date": "2020-09-30",
"earningsEstimateAvg": "0.0200",
"earningsEstimateGrowth": "-0.8890",
"earningsEstimateHigh": "0.0300",
"earningsEstimateLow": "0.0200",
"earningsEstimateNumberOfAnalysts": "4.0000",
"earningsEstimateYearAgoEps": "0.1800",
"epsRevisionsDownLast30days": "1.0000",
"epsRevisionsUpLast30days": "2.0000",
"epsRevisionsUpLast7days": "1.0000",
"epsTrend30daysAgo": "0.0300",
"epsTrend60daysAgo": "0.0300",
"epsTrend7daysAgo": "0.0300",
"epsTrend90daysAgo": "0.0600",
"epsTrendCurrent": "0.0200",
"growth": "-0.8890",
"period": "0q",
"revenueEstimateAvg": "3890000.00",
"revenueEstimateGrowth": "-0.1710",
"revenueEstimateHigh": "4110000.00",
"revenueEstimateLow": "3780000.00",
"revenueEstimateNumberOfAnalysts": "3.00",
"revenueEstimateYearAgoEps": null
}
] ]
I think pd.DataFrame.from_records(data1) might be what you are looking for
have a look at the documentation
I have done for a sample data. This is what you need
import pandas as pd
data= [[{'Code': 'A', 'date':'XXX', 'name' : 'anil', 'age': 15}], [{'Code':'B', 'date':'YYY', 'name': 'kapoor', 'age': 18}]]
col_name = list(data[0][0].keys())
row_data = []
for i in range(len(data)):
row_data.append(list(data[i][0].values()))
df = pd.DataFrame(row_data, columns =col_name)
print(df)

Why does updating a dictionary remove the rest of the dictionaries from my nested array?

I have a json file with players structured as so
[
{
"Player_Name": "Rory McIlroy",
"Tournament": [
{
"Name": "Arnold Palmer Invitational presented by Mastercard",
"Points": "68.10",
"Salary": "12200.00"
},
{
"Name": "World Golf Championships-Mexico Championship",
"Points": "103.30",
"Salary": "12200.00"
},
{
"Name": "The Genesis Invitational",
"Points": "88.60",
"Salary": "12200.00"
},
{
"Name": "Farmers Insurance Open",
"Points": "107.30",
"Salary": "12200.00"
},
{
"Name": "World Golf Championships-HSBC Champions",
"Points": "138.70",
"Salary": "12400.00"
},
{
"Name": "The ZOZO Championship",
"Points": "103.40",
"Salary": "12300.00"
}
]
}]
When I run this code
import json
import numpy as np
import pandas as pd
from itertools import groupby
# using json open the player objects file and set it equal to data
with open('Active_PGA_Player_Objects.json') as json_file:
data = json.load(json_file)
with open('Players_DK.json') as json_file:
Players_DK = json.load(json_file)
results = []
for k,g in groupby(sorted(data, key=lambda x:x['Player_Name']), lambda x:x['Player_Name']):
results.append({'Player_Name':k, 'Tournament':[i['Tournament'][0] for i in g]})
for obj in results:
for x in Players_DK:
if obj['Player_Name'] == x['Name']:
obj['Average'] = x['AvgPointsPerGame']
i = 0
points_results = []
while i < len(results):
j = 0
while j < len(results[i]['Tournament']):
difference = (int(float(results[i]['Tournament'][j]['Points'])) - (results[i]['Average']))
points_results.append(round(difference,2))
j += 1
i += 1
with open('PGA_Player_Objects_w_Average.json', 'w') as my_file:
json.dump(results, my_file)
my list comes back like this
[{
"Player_Name": "Rory McIlroy",
"Tournament": [
{
"Name": "Arnold Palmer Invitational presented by Mastercard",
"Points": "68.10",
"Salary": "12200.00"
}
],
"Average": 96.19
}]
Can someone explain to me why when I update the specific dictionary it deletes all but the first value from the nested Tournament list? My goal here is to add each players average to their corresponding dictionary so that I can take each average and subtract it from each score. When I try to do this though I'm only able to perform it on the one value left in the list.
Just for what it's worth, I'd go back and really think about what each line is really doing. You're also making things harder on yourself by calling variables obj or x. Calculating the average can be done like:
for player in data: # data is poorly named, try players or players_data
player['Average'] = sum(float(tourny['Points']) for tourny in player['Tournament']) / len(player['Tournament'])
for tourny in player['Tournament']:
tourny['Difference'] = float(tourny['Points']) - float(player['Average'])
leaving you with:
{'Player_Name': 'Rory McIlroy',
'Tournament': [{
'Name': 'Arnold Palmer Invitational presented by Mastercard',
'Points': '68.10',
'Salary': '12200.00',
'Difference': -33.46666666666667},
{
'Name': 'World Golf Championships-Mexico Championship',
'Points': '103.30',
'Salary': '12200.00',
'Difference': 1.7333333333333343}, # .....etc
'Average': 101.566666666666666
}
When you use names in your code that describe what they're representing, a huge number of optimizations become immediately obvious. Give it a go!

Convert multiple string stored in a variable into a single list in python

I hope everyone is doing well.
I need a little help where I need to get all the strings from a variable and need to store into a single list in python.
For example -
I have json file from where I am getting ids and all the ids are getting stored into a variable called id as below when I run print(id)
17298626-991c-e490-bae6-47079c6e2202
17298496-19bd-2f89-7b5f-881921abc632
17298698-3e17-7a9b-b337-aacfd9483b1b
172986ac-d91d-c4ea-2e50-d53700480dd0
172986d0-18aa-6f51-9c62-6cb087ad31e5
172986f4-80f0-5c21-3aee-12f22a5f4322
17298712-a4ac-7b36-08e9-8512fa8322dd
17298747-8cc6-d9d0-8d05-50adf228c029
1729875c-050f-9a99-4850-bb0e6ad35fb0
1729875f-0d50-dc94-5515-b4891c40d81c
17298761-c26b-3ce5-e77e-db412c38a5b4
172987c8-2b5d-0d94-c365-e8407b0a8860
1729881a-e583-2b54-3a52-d092020d9c1d
1729881c-64a2-67cf-d561-6e5e38ed14cb
172987ec-7a20-7eb6-3ebe-a9fb621bb566
17298813-7ac4-258b-d6f9-aaf43f9147b1
17298813-f1ef-d28a-0817-5f3b86c3cf23
17298828-b62b-9ee6-248b-521b0663226e
17298825-7449-2fcb-378e-13671cb4688a
I want these all values to be stored into a single list.
Can some please help me out with this.
Below is the code I am using:
import json
with open('requests.json') as f:
data = json.load(f)
print(type(data))
for i in data:
if 'traceId' in i:
id = i['traceId']
newid = id.split()
#print(type(newid))
print(newid)
And below is my json file looks like:
[
{
"id": "376287298-hjd8-jfjb-khkf-6479280283e9",
"submittedTime": 1591692502558,
"traceId": "17298626-991c-e490-bae6-47079c6e2202",
"userName": "ABC",
"onlyChanged": true,
"description": "Not Required",
"startTime": 1591694487929,
"result": "NONE",
"state": "EXECUTING",
"paused": false,
"application": {
"id": "16b22a09-a840-f4d9-f42a-64fd73fece57",
"name": "XYZ"
},
"applicationProcess": {
"id": "dihihdosfj9279278yrie8ue",
"name": "Deploy",
"version": 12
},
"environment": {
"id": "fkjdshkjdshglkjdshgldshldsh03r937837",
"name": "DEV"
},
"snapshot": {
"id": "djnglkfdglki98478yhgjh48yr844h",
"name": "DEV_snapshot"
},
},
{
"id": "17298495-f060-3e9d-7097-1f86d5160789",
"submittedTime": 1591692844597,
"traceId": "17298496-19bd-2f89-7b5f-881921abc632",
"userName": "UYT,
"onlyChanged": true,
"startTime": 1591692845543,
"result": "NONE",
"state": "EXECUTING",
"paused": false,
"application": {
"id": "osfodsho883793hgjbv98r3098w",
"name": "QA"
},
"applicationProcess": {
"id": "owjfoew028r2uoieroiehojehfoef",
"name": "EDC",
"version": 5
},
"environment": {
"id": "16cf69c5-4194-e557-707d-0663afdbceba",
"name": "DTESTU"
},
}
]
From where I am trying to get the traceId.
you could use simple split method like the follwing:
ids = '''17298626-991c-e490-bae6-47079c6e2202 17298496-19bd-2f89-7b5f-881921abc632 17298698-3e17-7a9b-b337-aacfd9483b1b 172986ac-d91d-c4ea-2e50-d53700480dd0 172986d0-18aa-6f51-9c62-6cb087ad31e5 172986f4-80f0-5c21-3aee-12f22a5f4322 17298712-a4ac-7b36-08e9-8512fa8322dd 17298747-8cc6-d9d0-8d05-50adf228c029 1729875c-050f-9a99-4850-bb0e6ad35fb0 1729875f-0d50-dc94-5515-b4891c40d81c 17298761-c26b-3ce5-e77e-db412c38a5b4 172987c8-2b5d-0d94-c365-e8407b0a8860 1729881a-e583-2b54-3a52-d092020d9c1d 1729881c-64a2-67cf-d561-6e5e38ed14cb 172987ec-7a20-7eb6-3ebe-a9fb621bb566 17298813-7ac4-258b-d6f9-aaf43f9147b1 17298813-f1ef-d28a-0817-5f3b86c3cf23 17298828-b62b-9ee6-248b-521b0663226e 17298825-7449-2fcb-378e-13671cb4688a'''
l = ids.split(" ")
print(l)
This will give the following result, I assumed that the separator needed is simple space you can adjust properly:
['17298626-991c-e490-bae6-47079c6e2202', '17298496-19bd-2f89-7b5f-881921abc632', '17298698-3e17-7a9b-b337-aacfd9483b1b', '172986ac-d91d-c4ea-2e50-d53700480dd0', '172986d0-18aa-6f51-9c62-6cb087ad31e5', '172986f4-80f0-5c21-3aee-12f22a5f4322', '17298712-a4ac-7b36-08e9-8512fa8322dd', '17298747-8cc6-d9d0-8d05-50adf228c029', '1729875c-050f-9a99-4850-bb0e6ad35fb0', '1729875f-0d50-dc94-5515-b4891c40d81c', '17298761-c26b-3ce5-e77e-db412c38a5b4', '172987c8-2b5d-0d94-c365-e8407b0a8860', '1729881a-e583-2b54-3a52-d092020d9c1d', '1729881c-64a2-67cf-d561-6e5e38ed14cb', '172987ec-7a20-7eb6-3ebe-a9fb621bb566', '17298813-7ac4-258b-d6f9-aaf43f9147b1', '17298813-f1ef-d28a-0817-5f3b86c3cf23', '17298828-b62b-9ee6-248b-521b0663226e', '17298825-7449-2fcb-378e-13671cb4688a']
Edit
You get list of lists because each iteration you read only 1 id, so what you need to do is to initiate an empty list and append each id to it in the following way:
l = []
for i in data
if 'traceId' in i:
id = i['traceId']
l.append(id)
you can append the ids variable to the list such as,
#list declaration
l1=[]
#this must be in your loop
l1.append(ids)
I'm assuming you get the id as a str type value. Using id.split() will return a list of all ids in one single Python list, as each id is separated by space here in your example.
id = """17298626-991c-e490-bae6-47079c6e2202 17298496-19bd-2f89-7b5f-881921abc632
17298698-3e17-7a9b-b337-aacfd9483b1b 172986ac-d91d-c4ea-2e50-d53700480dd0
172986d0-18aa-6f51-9c62-6cb087ad31e5 172986f4-80f0-5c21-3aee-12f22a5f4322
17298712-a4ac-7b36-08e9-8512fa8322dd 17298747-8cc6-d9d0-8d05-50adf228c029
1729875c-050f-9a99-4850-bb0e6ad35fb0 1729875f-0d50-dc94-5515-b4891c40d81c
17298761-c26b-3ce5-e77e-db412c38a5b4 172987c8-2b5d-0d94-c365-e8407b0a8860
1729881a-e583-2b54-3a52-d092020d9c1d 1729881c-64a2-67cf-d561-6e5e38ed14cb
172987ec-7a20-7eb6-3ebe-a9fb621bb566 17298813-7ac4-258b-d6f9-aaf43f9147b1
17298813-f1ef-d28a-0817-5f3b86c3cf23 17298828-b62b-9ee6-248b-521b0663226e
17298825-7449-2fcb-378e-13671cb4688a"""
id_list = id.split()
print(id_list)
Output:
['17298626-991c-e490-bae6-47079c6e2202', '17298496-19bd-2f89-7b5f-881921abc632',
'17298698-3e17-7a9b-b337-aacfd9483b1b', '172986ac-d91d-c4ea-2e50-d53700480dd0',
'172986d0-18aa-6f51-9c62-6cb087ad31e5', '172986f4-80f0-5c21-3aee-12f22a5f4322',
'17298712-a4ac-7b36-08e9-8512fa8322dd', '17298747-8cc6-d9d0-8d05-50adf228c029',
'1729875c-050f-9a99-4850-bb0e6ad35fb0', '1729875f-0d50-dc94-5515-b4891c40d81c',
'17298761-c26b-3ce5-e77e-db412c38a5b4', '172987c8-2b5d-0d94-c365-e8407b0a8860',
'1729881a-e583-2b54-3a52-d092020d9c1d', '1729881c-64a2-67cf-d561-6e5e38ed14cb',
'172987ec-7a20-7eb6-3ebe-a9fb621bb566', '17298813-7ac4-258b-d6f9-aaf43f9147b1',
'17298813-f1ef-d28a-0817-5f3b86c3cf23', '17298828-b62b-9ee6-248b-521b0663226e',
'17298825-7449-2fcb-378e-13671cb4688a']
split() splits by default with space as a separator. You can use the sep argument to use any other separator if needed.

Dictionary length is equal to 3 but when trying to access an index receiving KeyError

I am attempting to parse a json response that looks like this:
{
"links": {
"next": "http://www.neowsapp.com/rest/v1/feed?start_date=2015-09-08&end_date=2015-09-09&detailed=false&api_key=xxx",
"prev": "http://www.neowsapp.com/rest/v1/feed?start_date=2015-09-06&end_date=2015-09-07&detailed=false&api_key=xxx",
"self": "http://www.neowsapp.com/rest/v1/feed?start_date=2015-09-07&end_date=2015-09-08&detailed=false&api_key=xxx"
},
"element_count": 22,
"near_earth_objects": {
"2015-09-08": [
{
"links": {
"self": "http://www.neowsapp.com/rest/v1/neo/3726710?api_key=xxx"
},
"id": "3726710",
"neo_reference_id": "3726710",
"name": "(2015 RC)",
"nasa_jpl_url": "http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=3726710",
"absolute_magnitude_h": 24.3,
"estimated_diameter": {
"kilometers": {
"estimated_diameter_min": 0.0366906138,
"estimated_diameter_max": 0.0820427065
},
"meters": {
"estimated_diameter_min": 36.6906137531,
"estimated_diameter_max": 82.0427064882
},
"miles": {
"estimated_diameter_min": 0.0227984834,
"estimated_diameter_max": 0.0509789586
},
"feet": {
"estimated_diameter_min": 120.3760332259,
"estimated_diameter_max": 269.1689931548
}
},
"is_potentially_hazardous_asteroid": false,
"close_approach_data": [
{
"close_approach_date": "2015-09-08",
"close_approach_date_full": "2015-Sep-08 09:45",
"epoch_date_close_approach": 1441705500000,
"relative_velocity": {
"kilometers_per_second": "19.4850295284",
"kilometers_per_hour": "70146.106302123",
"miles_per_hour": "43586.0625520053"
},
"miss_distance": {
"astronomical": "0.0269230459",
"lunar": "10.4730648551",
"kilometers": "4027630.320552233",
"miles": "2502653.4316094954"
},
"orbiting_body": "Earth"
}
],
"is_sentry_object": false
},
}
I am trying to figure out how to parse through to get "miss_distance" dictionary values ? I am unable to wrap my head around it.
Here is what I have been able to do so far:
After I get a Response object from request.get()
response = request.get(url
I convert the response object to json object
data = response.json() #this returns dictionary object
I try to parse the first level of the dictionary:
for i in data:
if i == "near_earth_objects":
dataset1 = data["near_earth_objects"]["2015-09-08"]
#this returns the next object which is of type list
Please someone can explain me :
1. How to decipher this response in the first place.
2. How can I move forward in parsing the response object and get to miss_distance dictionary ?
Please any pointers/help is appreciated.
Thank you
Your data will will have multiple dictionaries for the each date, near earth object, and close approach:
near_earth_objects = data['near_earth_objects']
for date in near_earth_objects:
objects = near_earth_objects[date]
for object in objects:
close_approach_data = object['close_approach_data']
for close_approach in close_approach_data:
print(close_approach['miss_distance'])
The code below gives you a table of date, miss_distances for every object for every date
import json
raw_json = '''
{
"near_earth_objects": {
"2015-09-08": [
{
"close_approach_data": [
{
"miss_distance": {
"astronomical": "0.0269230459",
"lunar": "10.4730648551",
"kilometers": "4027630.320552233",
"miles": "2502653.4316094954"
},
"orbiting_body": "Earth"
}
]
}
]
}
}
'''
if __name__ == "__main__":
parsed = json.loads(raw_json)
# assuming this json includes more than one near_earch_object spread across dates
near_objects = []
for date, near_objs in parsed['near_earth_objects'].items():
for obj in near_objs:
for appr in obj['close_approach_data']:
o = {
'date': date,
'miss_distances': appr['miss_distance']
}
near_objects.append(o)
print(near_objects)
output:
[
{'date': '2015-09-08',
'miss_distances': {
'astronomical': '0.0269230459',
'lunar': '10.4730648551',
'kilometers': '4027630.320552233',
'miles': '2502653.4316094954'
}
}
]

How to sum integers stored in json

How can I sum the count values? My json data is as following.
{
"note":"This file contains the sample data for testing",
"comments":[
{
"name":"Romina",
"count":97
},
{
"name":"Laurie",
"count":97
},
{
"name":"Bayli",
"count":90
}
]
}
This is how i did it eventually.
import urllib
import json
mysumcnt = 0
input = urllib.urlopen('url').read()
info = json.loads(input)
myinfo = info['comments']
for item in myinfo:
mycnt = item['count']
mysumcnt += mycnt
print mysumcnt
Using a sum, map and a lambda function
import json
data = '''
{
"note": "This file contains the sample data for testing",
"comments": [
{
"name": "Romina",
"count": 97
},
{
"name": "Laurie",
"count": 97
},
{
"name": "Bayli",
"count": 90
}
]
}
'''
count = sum(map(lambda x: int(x['count']), json.loads(data)['comments']))
print(count)
If the JSON is currently a string and not been loaded into a python object you'll need to:
import json
loaded_json = json.loads(json_string)
comments = loaded_json['comments']
sum(c['count'] for c in comments)

Categories