Gaussian fit for Python with two different function - python

I used the Gaussian fit with 3 gauss to adjust but datai but I utility data that sometimes my curve contains only two Gaussians in it not find the parameter remnants to use and but great an error is what there is a method that but allows to change with curve fit function use if two or three gaussians .
for my function main, i have this code :
FitGWPS = mainCurveFitGWPS(global_ws, period, All_Max_GWPS, DoupleDip)
and my code for fit is :
import numpy as np
from scipy.optimize import curve_fit
#Functions-----------------------------------------
#Gaussian function
def _1gaus(X,C,X_mean,sigma):
return C*np.exp(-(X-X_mean)**2/(2*sigma**2))
def _3gaus(x, amp1,cen1,sigma1, amp2,cen2,sigma2, amp3,cen3,sigma3):
return amp1*np.exp(-(x-cen1)**2/(2*sigma1**2)) +\
amp2*np.exp(-(x-cen2)**2/(2*sigma2**2)) + amp3*np.exp(-(x-
cen3)**2/(2*sigma3**2))
def ParamFit (Gws, P, Max, popt_Firstgauss):
#Calculating the Lorentzian PDF values given Gaussian parameters and random variableX
width=0
Amp = []
cen = []
wid = []
for j in range(len(Max-1)):
Amp.append(0.8 * (Gws[Max[j]])) # Amplitude
cen.append(P[Max[j]]) # Frequency
if j == 0 : wid.append(0.3 + width * 2.) # Width
else : wid.append(0.3 + popt_Firstgauss[2] * 2.)
return Amp,wid,cen
def mainCurveFitGWPS(global_ws_in, period_in, All_Max_GWPS, DoupleDip):
#Calculating the Gaussian PDF values given Gaussian parameters and random variable X
# For the first fit we calculate with function of the max values
mean = sum(period_in*(global_ws_in))/sum((global_ws_in ))
sigma = np.sqrt(sum((global_ws_in)*(period_in-mean)**2)/sum((global_ws_in)))
Cst = 1 / ( 2* np.pi * sigma)
width=0
Amp = 0.8 * (global_ws_in[All_Max_GWPS[0]]) # Amplitude
cen = period_in[All_Max_GWPS[0]] # Frequency
wid = 0.3 + width * 2. #Width
Amp = []
cen = []
wid = []
for j in range(len(All_Max_GWPS-1)):
Amp.append(0.8 * (global_ws_in[All_Max_GWPS[j]])) # Amplitude
cen.append(period_in[All_Max_GWPS[j]]) # Frequency
if j == 0 : wid.append(0.3 + width * 2.)
else : wid.append(0.3 + popt_gauss[2] * 2.)
#do the fit!
popt_gauss, pcov_gauss = curve_fit(_1gaus, period_in, global_ws_in, p0 = [Cst,
mean, sigma])
FitGauss = _1gaus(period_in, *popt_gauss)
#I use the center, amplitude, and sigma values which I used to create the fake
#data
popt_3gauss, pcov_3gauss = curve_fit(_3gaus, period_in, global_ws_in, p0=[Amp[0],
cen[0], wid[0],Amp[1], cen[1], wid[1],Amp[2], cen[2], wid[2]], maxfev =5000)
Fit3Gauss = _3gaus(period_in, *popt_3gauss)
return Fit3Gauss
for example picture :
and

Related

I am trying to take fft and dtft of a grey scale image from first principals(so without using built it fft or dtft functions) using python

I need to write a function that computes the fft and another to compute the dft of a a composite sinusoidal signal and to then plot the phase and magnitude spectrum there of. I then need to use the same functions to compute the fft and dft of a greyscale image. I have the functions and can get the transforms of a composite sine wave but I am not sure how to apply this to an image. I believe that the pixels in an image are stored as a 2D array where as the sine function is only 1D
here is my code:
import numpy as ny
import matplotlib.pyplot as mplot
import time as tm # used to claculate time taken to perform functions
# Variables
sample_rate = 0
sample_period = 0
time = 0 # Total time
T = 0
n = 0
freq = 0
y = 0 # Used to build signal to apply the DTF to
Y = 0 # Signal after the DTF
#***
# Main
sample_rate = 128
sample_period = 1/sample_rate
time = ny.arange(0,2,sample_period) # Sample set up to got from 0 - 2 seconds
# Signal 1
freq = 1
y = ny.sin(2*ny.pi*freq*time)
# Signal 2
freq = 3
y += 2*ny.sin(2*ny.pi*freq*time)
# Signal 3
freq = 5
y += 3*ny.sin(2*ny.pi*freq*time)
# Signal 4
freq = 7
y += 0.5*ny.sin(2*ny.pi*freq*time)
#time domain plot of signal
mplot.figure(figsize = (6,4))
mplot.plot(time, y, 'b')
mplot.title('Plot of signal y')
mplot.xlabel('Time (s)')
mplot.ylabel('Amplitude')
#mplot.show()
#***
# Functions
# Discrete Fourier Transform
def DFT(y):
n = ny.arange(len(y))
k = n.reshape((len(y), 1))
e = ny.exp(-2j * ny.pi * k * n / len(y))
Y = ny.dot(e,y)
return Y
# Fast Fourier Transform
def FFT(y):
length = len(y)
if length == 1:
return y
else:
even = FFT(y[::2])
odd = FFT(y[1::2])
fact = ny.exp(-2j * ny.pi * ny.arange(length) / length)
Y = ny.concatenate(( even + odd*fact[:int(length/2)] , even + odd*fact[int(length/2):] )) # Joining the arrays together
return Y
#***
#get DFT of composite signal
dftstart = tm.time()
Y = DFT(y)
dftend = tm.time()
dfttime = dftend - dftstart
# calculate the frequency
n = ny.arange(len(Y))
T = len(Y)/sample_rate
freq = n/T
#plot magnitude spctrum of DTFT of composite signal
mplot.figure(figsize = (6,4))
mplot.stem(freq, abs(Y), 'r')
mplot.title('Discrete Fourier Transform of signal y')
mplot.xlabel('Frequency (Hz)')
mplot.ylabel('DFT Amplitude |Y(e^jw)|')
#mplot.show()
#plot phase response of DFT
mplot.figure(figsize = (6,4))
mplot.plot(freq, Y/abs(Y), 'r')
mplot.title('phase spectrum of DFT of signal y')
mplot.xlabel('Frequency (Hz)')
mplot.ylabel('Phase(rad/s)')
#get fft of composite signal
fftstart = tm.time()
Y = FFT(y)
fftend = tm.time()
ffttime = fftend - fftstart
# calculate the frequency
length = len(Y)
n = ny.arange(length)
T = len(Y)/sample_rate
freq = n/T
#plot magnitude spectrum of fft of composite signal
mplot.figure(figsize = (6,4))
mplot.stem(freq, abs(Y), 'r')
mplot.title('Fast Fourier Transform of signal y')
mplot.xlabel('Frequency (Hz)')
mplot.ylabel('FFT Amplitude |X(e^jw)|')
#mplot.show()
#plot phase response of fft
mplot.figure(figsize = (6,4))
mplot.plot(freq, Y/abs(Y), 'b')
mplot.title('phase response of FFT of signal y')
mplot.xlabel('Frequency (Hz)')
mplot.ylabel('Phase(rad/s)')
mplot.show()
print("time to execute dft: " + str(dfttime))
print("time to execute fft: " + str(ffttime))
If someone could advise me on how to apply this to a greyscale image it would be greatly appreciated

How to compute nfft

I'm trying to understand how to use the nfft method of Jake Vanderplas' nfft module. The example unfortunately isn't very illustrative as I try to parametrize everything based on just an input list of samples ([(time0, signal0), (time1, signal1), ...]):
import numpy as np
from nfft import nfft
# define evaluation points
x = -0.5 + np.random.rand(1000)
# define Fourier coefficients
N = 10000
k = - N // 2 + np.arange(N)
f_k = np.random.randn(N)
# non-equispaced fast Fourier transform
f = nfft(x, f_k)
I'm trying to compute f_k in an example where the samples are about 10 ms apart with 1 or 2 ms jitter in that interval.
The implementation documentation:
def nfft(x, f_hat, sigma=3, tol=1E-8, m=None, kernel='gaussian',
use_fft=True, truncated=True):
"""Compute the non-equispaced fast Fourier transform
f_j = \sum_{-N/2 \le k < N/2} \hat{f}_k \exp(-2 \pi i k x_j)
Parameters
----------
x : array_like, shape=(M,)
The locations of the data points. Each value in x should lie
in the range [-1/2, 1/2).
f_hat : array_like, shape=(N,)
The amplitudes at each wave number k = range(-N/2, N/2).
Where I'm stuck:
import numpy as np
from nfft import nfft
def compute_nfft(sample_instants, sample_values):
"""
:param sample_instants: `numpy.ndarray` of sample times in milliseconds
:param sample_values: `numpy.ndarray` of samples values
:return: Horizontal and vertical plot components as `numpy.ndarray`s
"""
N = len(sample_instants)
T = sample_instants[-1] - sample_instants[0]
x = np.linspace(0.0, 1.0 / (2.0 * T), N // 2)
y = 2.0 / N * np.abs(y[0:N // 2])
y = nfft(x, y)
return (x, y)
The example defines a variable f_k which is passed as nfft's f_hat argument.
According to the definition
f_j = \sum_{-N/2 \le k < N/2} \hat{f}_k \exp(-2 \pi i k x_j)
given, f_hat represents the time-domain signal at the specified sampling instants. In your case this simply corresponds to sample_values.
The other argument x of nfft are the actual time instants of those samples. You'd need to also provide those separately:
def compute_nfft(sample_instants, sample_values):
N = len(sample_instants)
T = sample_instants[-1] - sample_instants[0]
x = np.linspace(0.0, 1.0 / (2.0 * T), N // 2)
y = nfft(sample_instants, sample_values)
y = 2.0 / N * np.abs(y[0:N // 2])
return (x, y)

Simple DFT Coefficients => Amplitude/Frequencies => Plot

Im trying on DFT and FFT in Python with numpy and pyplot.
My Sample Vector is
x = np.array([1,2,4,3]
The DFT coefficients for that vector are
K = [10+0j, -3+1j, 0+0j, -3-1j]
so basically we have 10, -3+i, 0 and -3-1i as DFT coefficients.
My problem now is to get a combination of sin and cos to fit all 4 points.
Let's assume we have a sample Rate of 1hz.
This is my code :
from matplotlib import pyplot as plt
import numpy as np
x = np.array([1,2,4,3])
fft = np.fft.fft(x)
space = np.linspace(0,4,50)
values = np.array([1,2,3,4])
cos0 = fft[0].real * np.cos(0 * space)
cos1 = fft[1].real * np.cos(1/4 * np.pi * space)
sin1 = fft[1].imag * np.sin(1/4 * np.pi * space)
res = cos0 + cos1 + sin1
plt.scatter(values, x, label="original")
plt.plot(space, cos0, label="cos0")
plt.plot(space, cos1, label="cos1")
plt.plot(space, sin1, label="sin1")
plt.plot(space, res, label="combined")
plt.legend()
As result i get the plot:
(source: heeser-it.de)
Why isnt the final curve hitting any point?
I would appreciate your help. Thanks!
EDIT:
N = 1000
dataPoints = np.linspace(0, np.pi, N)
function = np.sin(dataPoints)
fft = np.fft.fft(function)
F = np.zeros((N,))
for i in range(0, N):
F[i] = (2 * np.pi * i) / N
F_sin = np.zeros((N,N))
F_cos = np.zeros((N,N))
res = 0
for i in range(0, N):
F_sin[i] = fft[i].imag / 500 * np.sin(dataPoints * F[i])
F_cos[i] = fft[i].real / 500* np.cos(dataPoints * F[i])
res = res + F_sin[i] + F_cos[i]
plt.plot(dataPoints, function)
plt.plot(dataPoints, res)
my plot looks like:
(source: heeser-it.de)
where do i fail?
Your testing vector x looks bit like a sawtooth because it rises linearly and then starts to decrease but with that few datapoints it's hard to tell what signal it is. This has an infinite FFT series, which means it has lot of higher harmonic frequency components in it. So to describe it with DTF coefficients and get close to original points, you would have to use
higher sample rate, to get information about higher frequencies (you should learn about nyquist theorem)
more data points (samples), so you can extract more precise information about frequencies in your signal) This means you have to have more items in your array 'x'.
Also you could try to fit some simpler signal. What about you try to fit a sine signal for start? Generate 1000 data points of low frequency sine (1Hz or one cycle per 1000 samples) and then run DTF on it to check if your code works.
There are a few mistakes:
The xs you assigned to the original values are off by one
The frequency you assigned to fft[1] is incorrect
The coefficients are incorrectly scaled
This one works:
from matplotlib import pyplot as plt
import numpy as np
x = np.array([1,2,4,3])
fft = np.fft.fft(x)
space = np.linspace(0,4,50)
values = np.array([0,1,2,3])
cos0 = fft[0].real * np.cos(0 * space)/4
cos1 = fft[1].real * np.cos(1/2 * np.pi * space)/2
sin1 = -fft[1].imag * np.sin(1/2 * np.pi * space)/2
res = cos0 + cos1 + sin1
plt.scatter(values, x, label="original")
plt.plot(space, cos0, label="cos0")
plt.plot(space, cos1, label="cos1")
plt.plot(space, sin1, label="sin1")
plt.plot(space, res, label="combined")
plt.legend()
plt.show()

Calculating mean value of a 2D array as a function of distance from the center in Python

I'm trying to calculate the mean value of a quantity(in the form of a 2D array) as a function of its distance from the center of a 2D grid. I understand that the idea is that I identify all the array elements that are at a distance R from the center, and then add them up and divide by the number of elements. However, I'm having trouble actually identifying an algorithm to go about doing this.
I have attached a working example of the code to generate the 2d array below. The code is for calculating some quantities that are resultant from gravitational lensing, so the way the array is made is irrelevant to this problem, but I have attached the entire code so that you could create the output array for testing.
import numpy as np
import multiprocessing
import matplotlib.pyplot as plt
n = 100 # grid size
c = 3e8
G = 6.67e-11
M_sun = 1.989e30
pc = 3.086e16 # parsec
Dds = 625e6*pc
Ds = 1726e6*pc #z=2
Dd = 1651e6*pc #z=1
FOV_arcsec = 0.0001
FOV_arcmin = FOV_arcsec/60.
pix2rad = ((FOV_arcmin/60.)/float(n))*np.pi/180.
rad2pix = 1./pix2rad
Renorm = (4*G*M_sun/c**2)*(Dds/(Dd*Ds))
#stretch = [10, 2]
# To create a random distribution of points
def randdist(PDF, x, n):
#Create a distribution following PDF(x). PDF and x
#must be of the same length. n is the number of samples
fp = np.random.rand(n,)
CDF = np.cumsum(PDF)
return np.interp(fp, CDF, x)
def get_alpha(args):
zeta_list_part, M_list_part, X, Y = args
alpha_x = 0
alpha_y = 0
for key in range(len(M_list_part)):
z_m_z_x = (X - zeta_list_part[key][0])*pix2rad
z_m_z_y = (Y - zeta_list_part[key][1])*pix2rad
alpha_x += M_list_part[key] * z_m_z_x / (z_m_z_x**2 + z_m_z_y**2)
alpha_y += M_list_part[key] * z_m_z_y / (z_m_z_x**2 + z_m_z_y**2)
return (alpha_x, alpha_y)
if __name__ == '__main__':
# number of processes, scale accordingly
num_processes = 1 # Number of CPUs to be used
pool = multiprocessing.Pool(processes=num_processes)
num = 100 # The number of points/microlenses
r = np.linspace(-n, n, n)
PDF = np.abs(1/r)
PDF = PDF/np.sum(PDF) # PDF should be normalized
R = randdist(PDF, r, num)
Theta = 2*np.pi*np.random.rand(num,)
x1= [R[k]*np.cos(Theta[k])*1 for k in range(num)]
y1 = [R[k]*np.sin(Theta[k])*1 for k in range(num)]
# Uniform distribution
#R = np.random.uniform(-n,n,num)
#x1= np.random.uniform(-n,n,num)
#y1 = np.random.uniform(-n,n,num)
zeta_list = np.column_stack((np.array(x1), np.array(y1))) # List of coordinates for the microlenses
x = np.linspace(-n,n,n)
y = np.linspace(-n,n,n)
X, Y = np.meshgrid(x,y)
M_list = np.array([0.1 for i in range(num)])
# split zeta_list, M_list, X, and Y
zeta_list_split = np.array_split(zeta_list, num_processes, axis=0)
M_list_split = np.array_split(M_list, num_processes)
X_list = [X for e in range(num_processes)]
Y_list = [Y for e in range(num_processes)]
alpha_list = pool.map(
get_alpha, zip(zeta_list_split, M_list_split, X_list, Y_list))
alpha_x = 0
alpha_y = 0
for e in alpha_list:
alpha_x += e[0]
alpha_y += e[1]
alpha_x_y = 0
alpha_x_x = 0
alpha_y_y = 0
alpha_y_x = 0
alpha_x_y, alpha_x_x = np.gradient(alpha_x*rad2pix*Renorm,edge_order=2)
alpha_y_y, alpha_y_x = np.gradient(alpha_y*rad2pix*Renorm,edge_order=2)
det_A = 1 - alpha_y_y - alpha_x_x + (alpha_x_x)*(alpha_y_y) - (alpha_x_y)*(alpha_y_x)
abs = np.absolute(det_A)
I = abs**(-1.)
O = np.log10(I+1)
plt.contourf(X,Y,O,100)
The array of interest is O, and I have attached a plot of how it should look like. It can be different based on the random distribution of points.
What I'm trying to do is to plot the mean values of O as a function of radius from the center of the grid. In the end, I want to be able to plot the average O as a function of distance from center in a 2d line graph. So I suppose the first step is to define circles of radius R, based on X and Y.
def circle(x,y):
r = np.sqrt(x**2 + y**2)
return r
Now I just have to figure out a way to find all the values of O, that have the same indices as equivalent values of R. Kinda confused on this part and would appreciate any help.
You can find the geometric coordinates of a circle with center (0,0) and radius R as such:
phi = np.linspace(0, 1, 50)
x = R*np.cos(2*np.pi*phi)
y = R*np.sin(2*np.pi*phi)
these values however will not fall on the regular pixel grid but in between.
In order to use them as sampling points you can either round the values and use them as indexes or interpolate the values from the near pixels.
Attention: The pixel indexes and the x, y are not the same. In your example (0,0) is at the picture location (50,50).

Make a total vector for three vectors in python

We have a class that have three functions called(Bdisk, Bhalo,and BX).
all of these functions accept arrays (e.g. shape (1000))not matrices (e.g. shape (2,1000)).
I want to get the total of all these functions( total= Bdisk + Bhalo+BX), total these all functions give the magnetic field in all three components (B_r, B_phi, B_z) for thousand coordinate points (r, phi, z).
the code is here:
import numpy as np
import logging
import warnings
import gmf
signum = lambda x: (x < 0.) * -1. + (x >= 0) * 1.
pi = np.pi
#Class with analytical functions that describe the GMF according to the model of JF12
class GMF(object):
def __init__(self): # self:is automatically set to reference the newly created object that needs to be initialized
self.Rsun = -8.5 # position of the sun along the x axis in kpc
############################################################################
# Disk Parameters
############################################################################
self.bring, self.bring_unc = 0.1,0.1 # floats, field strength in ring at 3 kpc < r < 5 kpc
self.hdisk, self.hdisk_unc = 0.4, 0.03 # float, disk/halo transition height
self.wdisk, self.wdisk_unc = 0.27,0.08 # floats, transition width
self.b = np.array([0.1,3.,-0.9,-0.8,-2.0,-4.2,0.,2.7]) # (8,1)-dim np.arrays, field strength of spiral arms at 5 kpc
self.b_unc = np.array([1.8,0.6,0.8,0.3,0.1,0.5,1.8,1.8]) # uncertainty
self.rx = np.array([5.1,6.3,7.1,8.3,9.8,11.4,12.7,15.5])# (8,1)-dim np.array,dividing lines of spiral lines coordinates of neg. x-axes that intersect with arm
self.idisk = 11.5 * pi/180. # float, spiral arms pitch angle
#############################################################################
# Halo Parameters
#############################################################################
self.Bn, self.Bn_unc = 1.4,0.1 # floats, field strength northern halo
self.Bs, self.Bs_unc = -1.1,0.1 # floats, field strength southern halo
self.rn, self.rn_unc = 9.22,0.08 # floats, transition radius south, lower limit
self.rs, self.rs_unc = 16.7,0. # transition radius south, lower limit
self.whalo, self.whalo_unc = 0.2,0.12 # floats, transition width
self.z0, self.z0_unc = 5.3, 1.6 # floats, vertical scale height
##############################################################################
# Out of plaxe or "X" component Parameters
##############################################################################
self.BX0, self.BX_unc = 4.6,0.3 # floats, field strength at origin
self.ThetaX0, self.ThetaX0_unc = 49. * pi/180., pi/180. # elev. angle at z = 0, r > rXc
self.rXc, self.rXc_unc = 4.8, 0.2 # floats, radius where thetaX = thetaX0
self.rX, self.rX_unc = 2.9, 0.1 # floats, exponential scale length
# striated field
self.gamma, self.gamma_unc = 2.92,0.14 # striation and/or rel. elec. number dens. rescaling
return
##################################################################################
##################################################################################
# Transition function given by logistic function eq.5
##################################################################################
def L(self,z,h,w):
if np.isscalar(z):
z = np.array([z]) # scalar or numpy array with positions (height above disk, z; distance from center, r)
ones = np.ones(z.shape[0])
return 1./(ones + np.exp(-2. *(np.abs(z)- h)/w))
####################################################################################
# return distance from center for angle phi of logarithmic spiral
# r(phi) = rx * exp(b * phi) as np.array
####################################################################################
def r_log_spiral(self,phi):
if np.isscalar(phi): #Returns True if the type of num is a scalar type.
phi = np.array([phi])
ones = np.ones(phi.shape[0])
# self.rx.shape = 8
# phi.shape = p
# then result is given as (8,p)-dim array, each row stands for one rx
# vstack : Take a sequence of arrays and stack them vertically to make a single array
# tensordot(a, b, axes=2):Compute tensor dot product along specified axes for arrays >=1D.
result = np.tensordot(self.rx , np.exp((phi - 3.*pi*ones) / np.tan(pi/2. - self.idisk)),axes = 0)
result = np.vstack((result, np.tensordot(self.rx , np.exp((phi - pi*ones) / np.tan(pi/2. - self.idisk)),axes = 0) ))
result = np.vstack((result, np.tensordot(self.rx , np.exp((phi + pi*ones) / np.tan(pi/2. - self.idisk)),axes = 0) ))
return np.vstack((result, np.tensordot(self.rx , np.exp((phi + 3.*pi*ones) / np.tan(pi/2. - self.idisk)),axes = 0) ))
#############################################################################################
# Disk component in galactocentric cylindrical coordinates (r,phi,z)
#############################################################################################
def Bdisk(self,r,phi,z):
# Bdisk is purely azimuthal (toroidal) with the field strength b_ring
"""
r: N-dim np.array, distance from origin in GC cylindrical coordinates, is in kpc
z: N-dim np.array, height in kpc in GC cylindrical coordinates
phi:N-dim np.array, polar angle in GC cylindircal coordinates, in radian
Bdisk: (3,N)-dim np.array with (r,phi,z) components of disk field for each coordinate tuple
|Bdisk|: N-dim np.array, absolute value of Bdisk for each coordinate tuple
"""
if (not r.shape[0] == phi.shape[0]) and (not z.shape[0] == phi.shape[0]):
warnings.warn("List do not have equal shape! returning -1", RuntimeWarning)
return -1
# Return a new array of given shape and type, filled with zeros.
Bdisk = np.zeros((3,r.shape[0])) # Bdisk vector in r, phi, z
ones = np.ones(r.shape[0])
r_center = (r >= 3.) & (r < 5.1)
r_disk = (r >= 5.1) & (r <= 20.)
Bdisk[1,r_center] = self.bring
# Determine in which arm we are
# this is done for each coordinate individually
if np.sum(r_disk):
rls = self.r_log_spiral(phi[r_disk])
rls = np.abs(rls - r[r_disk])
arms = np.argmin(rls, axis = 0) % 8
# The magnetic spiral defined at r=5 kpc and fulls off as 1/r ,the field direction is given by:
Bdisk[0,r_disk] = np.sin(self.idisk)* self.b[arms] * (5. / r[r_disk])
Bdisk[1,r_disk] = np.cos(self.idisk)* self.b[arms] * (5. / r[r_disk])
Bdisk *= (ones - self.L(z,self.hdisk,self.wdisk)) # multiplied by L
return Bdisk, np.sqrt(np.sum(Bdisk**2.,axis = 0)) # the Bdisk, the normalization
# axis=0 : sum over index 0(row)
# axis=1 : sum over index 1(columns)
##############################################################################################
# Halo component
###############################################################################################
def Bhalo(self,r,z):
# Bhalo is purely azimuthal (toroidal), i.e. has only a phi component
if (not r.shape[0] == z.shape[0]):
warnings.warn("List do not have equal shape! returning -1", RuntimeWarning)
return -1
Bhalo = np.zeros((3,r.shape[0])) # Bhalo vector in r, phi, z rows: r, phi and z component
ones = np.ones(r.shape[0])
m = ( z != 0. )
# SEE equation 6.
Bhalo[1,m] = np.exp(-np.abs(z[m])/self.z0) * self.L(z[m], self.hdisk, self.wdisk) * \
( self.Bn * (ones[m] - self.L(r[m], self.rn, self.whalo)) * (z[m] > 0.) \
+ self.Bs * (ones[m] - self.L(r[m], self.rs, self.whalo)) * (z[m] < 0.) )
return Bhalo , np.sqrt(np.sum(Bhalo**2.,axis = 0))
##############################################################################################
# BX component (OUT OF THE PLANE)
###############################################################################################
def BX(self,r,z):
#BX is purely ASS and poloidal, i.e. phi component = 0
if (not r.shape[0] == z.shape[0]):
warnings.warn("List do not have equal shape! returning -1", RuntimeWarning)
return -1
BX= np.zeros((3,r.shape[0])) # BX vector in r, phi, z rows: r, phi and z component
m = np.sqrt(r**2. + z**2.) >= 1.
bx = lambda r_p: self.BX0 * np.exp(-r_p / self.rX) # eq.7
thetaX = lambda r,z,r_p: np.arctan(np.abs(z)/(r - r_p)) # eq.10
r_p = r[m] *self.rXc/(self.rXc + np.abs(z[m] ) / np.tan(self.ThetaX0)) # eq 9
m_r_b = r_p > self.rXc # region with constant elevation angle
m_r_l = r_p <= self.rXc # region with varying elevation angle
theta = np.zeros(z[m].shape[0])
b = np.zeros(z[m].shape[0])
r_p0 = (r[m])[m_r_b] - np.abs( (z[m])[m_r_b] ) / np.tan(self.ThetaX0) # eq.8
b[m_r_b] = bx(r_p0) * r_p0/ (r[m])[m_r_b] # the field strength in the constant elevation angle (b_x(r_p)r_p/r)
theta[m_r_b] = self.ThetaX0 * np.ones(theta.shape[0])[m_r_b]
b[m_r_l] = bx(r_p[m_r_l]) * (r_p[m_r_l]/(r[m])[m_r_l] )**2. # the field strength with varying elevation angle (b_x(r_p)(r_p/r)**2)
theta[m_r_l] = thetaX((r[m])[m_r_l] ,(z[m])[m_r_l] ,r_p[m_r_l])
mz = (z[m] == 0.)
theta[mz] = np.pi/2.
BX[0,m] = b * (np.cos(theta) * (z[m] >= 0) + np.cos(pi*np.ones(theta.shape[0]) - theta) * (z[m] < 0))
BX[2,m] = b * (np.sin(theta) * (z[m] >= 0) + np.sin(pi*np.ones(theta.shape[0]) - theta) * (z[m] < 0))
return BX, np.sqrt(np.sum(BX**2.,axis=0))
then, I create three arrays, one for r, one for phi, one for z. Each of these arrays has (e.g: thousand elements). like this:
import gmf
gmfm = gmf.GMF()
x = np.linspace(-20.,20.,100)
y = np.linspace(-20.,20.,100)
z = np.linspace(-1.,1.,x.shape[0])
xx,yy = np.meshgrid(x,y)
rr = np.sqrt(xx**2. + yy**2.)
theta = np.arctan2(yy,xx)
for i,r in enumerate(rr[:]):
Bdisk, Babs_d = gmfm.Bdisk(r,theta[i],z)
Bhalo, Babs_h = gmfm.Bhalo(r,z)
BX, Babs_x = gmfm.BX(r,z)
Btotal = Bdisk + Bhalo + BX
but I am getting when I make the addition of the three functions Btotal= Bdisk + Bhalo+BX) in 2d matrix with 3 rows and 100 columns.
My question is how can I add these three functions together to get Btotal in shape (n,) e.g( shape(100,)
because as I said in the beginning the three functions accept accept arrays (e.g. shape (1000) )then when we adding the three functions together we have to get the total also in the same shape (shape (n,)?
I do not know how can I do it, could you please tell me how can I make it.
thank you for your cooperation.
You need to correct the indention, for example in the def Bdisk method.
More importantly in
for i,r in enumerate(rr[:]):
Bdisk, Babs_d = gmfm.Bdisk(r,theta[i],z)
Bhalo, Babs_h = gmfm.Bhalo(r,z)
BX, Babs_x = gmfm.BX(r,z)
Btotal = Bdisk + Bhalo + BX
are you doing this addition for each iteration, or once at the end of the loop? You aren't accumulating any values over iterations. You are just throwing away the old ones, leaving you with the final iteration.
As for adding the array - it appears that all your arrays are initialed like:
Bdisk = np.zeros((3,r.shape[0]))
If that's what the method returns, then
Bdisk + Bhalo + BX
will just sum the corresponding elements of each array, resulting in a Btotal with the same shape. If you don't not like the shape of Btotal then change how Bdisk is calculated, because it has the same shape.

Categories