connection to two RabbitMQ servers - python

I'm using python with pika, and have the following two similar use cases:
Connect to RabbitMQ server A and server B (at different IP addrs with different credentials), listen on exchange A1 on server A; when a message arrives, process it and send to an exchange on server B
Open an HTTP listener and connect to RabbitMQ server B; when a specific HTTP request arrives, process it and send to an exchange on server B
Alas, in both these cases using my usual techniques, by the time I get to sending to server B the connection throws ConnectionClosed or ChannelClosed.
I assume this is the cause: while waiting on the incoming messages, the connection to server B (its "driver") is starved of CPU cycles, and it never gets a chance to service is connection socket, thus it can't respond to heartbeats from server B, thus the servers shuts down the connection.
But I can't noodle out the fix. My current work around is lame: I catch the ConnectionClosed, reopen a connection to server B, and retry sending my message.
But what is the "right" way to do this? I've considered these, but don't really feel I have all the parts to solve this:
Don't just sit forever in server A's basic_consume (my usual pattern), but rather, use a timeout, and when I catch the timeout somehow "service" heartbeats on server B's driver, before returning to a "consume with timeout"... but how do I do that? How do I "let service B's connection driver service its heartbeats"?
I know the socket library's select() call can wait for messages on several sockets and once, then service the socket who has packets waiting. So maybe this is what pika's SelectConnection is for? a) I'm not sure, this is just a hunch. b) Even if right, while I can find examples of how to create this connection, I can't find examples of how to use it to solve my multiconnection case.
Set up the the two server connections in different processes... and use Python interprocess queues to get the processed message from one process to the next. The concept is "two different RabbitMQ connections in two different processes should thus then be able to independently service their heartbeats". Except... I think this has a fatal flaw: the process with "server B" is, instead, going to be "stuck" waiting on the interprocess queue, and the same "starvation" is going to happen.
I've checked StackOverflow and Googled this for an hour last night: I can't for the life of me find a blog post or sample code for this.
Any input? Thanks a million!

I managed to work it out, basing my solution on the documentation and an answer in the pika-python Google group.
First of all, your assumption is correct — the client process that's connected to server B, responsible for publishing, cannot reply to heartbeats if it's already blocking on something else, like waiting a message from server A or blocking on an internal communication queue.
The crux of the solution is that the publisher should run as a separate thread and use BlockingConnection.process_data_events to service heartbeats and such. It looks like that method is supposed to be called in a loop that checks if the publisher still needs to run:
def run(self):
while self.is_running:
# Block at most 1 second before returning and re-checking
self.connection.process_data_events(time_limit=1)
Proof of concept
Since proving the full solution requires having two separate RabbitMQ instances running, I have put together a Git repo with an appropriate docker-compose.yml, the application code and comments to test this solution.
https://github.com/karls/rabbitmq-two-connections
Solution outline
Below is a sketch of the solution, minus imports and such. Some notable things:
Publisher runs as a separate thread
The only "work" that the publisher does is servicing heartbeats and such, via Connection.process_data_events
The publisher registers a callback whenever the consumer wants to publish a message, using Connection.add_callback_threadsafe
The consumer takes the publisher as a constructor argument so it can publish the messages it receives, but it can work via any other mechanism as long as you have a reference to an instance of Publisher
The code is taken from the linked Git repo, which is why certain details are hardcoded, e.g the queue name etc. It will work with any RabbitMQ setup needed (direct-to-queue, topic exchange, fanout, etc).
class Publisher(threading.Thread):
def __init__(
self,
connection_params: ConnectionParameters,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.daemon = True
self.is_running = True
self.name = "Publisher"
self.queue = "downstream_queue"
self.connection = BlockingConnection(connection_params)
self.channel = self.connection.channel()
self.channel.queue_declare(queue=self.queue, auto_delete=True)
self.channel.confirm_delivery()
def run(self):
while self.is_running:
self.connection.process_data_events(time_limit=1)
def _publish(self, message):
logger.info("Calling '_publish'")
self.channel.basic_publish("", self.queue, body=message.encode())
def publish(self, message):
logger.info("Calling 'publish'")
self.connection.add_callback_threadsafe(lambda: self._publish(message))
def stop(self):
logger.info("Stopping...")
self.is_running = False
# Call .process_data_events one more time to block
# and allow the while-loop in .run() to break.
# Otherwise the connection might be closed too early.
#
self.connection.process_data_events(time_limit=1)
if self.connection.is_open:
self.connection.close()
logger.info("Connection closed")
logger.info("Stopped")
class Consumer:
def __init__(
self,
connection_params: ConnectionParameters,
publisher: Optional["Publisher"] = None,
):
self.publisher = publisher
self.queue = "upstream_queue"
self.connection = BlockingConnection(connection_params)
self.channel = self.connection.channel()
self.channel.queue_declare(queue=self.queue, auto_delete=True)
self.channel.basic_qos(prefetch_count=1)
def start(self):
self.channel.basic_consume(
queue=self.queue, on_message_callback=self.on_message
)
try:
self.channel.start_consuming()
except KeyboardInterrupt:
logger.info("Warm shutdown requested...")
except Exception:
traceback.print_exception(*sys.exc_info())
finally:
self.stop()
def on_message(self, _channel: Channel, m, _properties, body):
try:
message = body.decode()
logger.info(f"Got: {message!r}")
if self.publisher:
self.publisher.publish(message)
else:
logger.info(f"No publisher provided, printing message: {message!r}")
self.channel.basic_ack(delivery_tag=m.delivery_tag)
except Exception:
traceback.print_exception(*sys.exc_info())
self.channel.basic_nack(delivery_tag=m.delivery_tag, requeue=False)
def stop(self):
logger.info("Stopping consuming...")
if self.connection.is_open:
logger.info("Closing connection...")
self.connection.close()
if self.publisher:
self.publisher.stop()
logger.info("Stopped")

Related

Rabbit MQ StreamLostError with python pika library

When I listen my queue with python pika library, I always get StreamLostError and my code crushes.
In my code, I must listen the queue forever without exception and I must get messages 1 by 1.
Here is my code(I simplified it).
def callback(ch, method, properties, body):
ch.basic_ack(delivery_tag = method.delivery_tag)
#doing work here, it gets minimum 5 minutes, sometimes maximum 1 hour
credentials = pika.PlainCredentials(username, password)
parameters = pika.ConnectionParameters(ip, port, '/', credentials)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()
channel.basic_qos(prefetch_count=1)
channel.queue_declare(queue=queuename, durable=True)
channel.basic_consume(queue=queuename, on_message_callback=callback, auto_ack=False)
channel.start_consuming()
try to set connection_attempts and retry_delay parameters in the request if you are using pika URLParameters. Look down the below link for more information.In my case I added ?connection_attempts=20&retry_delay=1 after the AMPQ https://pika.readthedocs.io/en/stable/modules/parameters.html#urlparameters
The problem is that your work takes too long and blocks Pika's I/O loop. This causes heartbeats to be missed, and RabbitMQ thinks your connection is dead.
Please see this code for one correct way to do long-running work:
https://github.com/pika/pika/blob/master/examples/basic_consumer_threaded.py
NOTE: the RabbitMQ team monitors the rabbitmq-users mailing list and only sometimes answers questions on StackOverflow.

How to clean up connections after KeyboardInterrupt in python-trio

My class when is connected to the server should immediately send sign in string, afterwards when the session is over it should send out the sign out string and clean up the sockets. Below is my code.
import trio
class test:
_buffer = 8192
_max_retry = 4
def __init__(self, host='127.0.0.1', port=12345, usr='user', pwd='secret'):
self.host = str(host)
self.port = int(port)
self.usr = str(usr)
self.pwd = str(pwd)
self._nl = b'\r\n'
self._attempt = 0
self._queue = trio.Queue(30)
self._connected = trio.Event()
self._end_session = trio.Event()
#property
def connected(self):
return self._connected.is_set()
async def _sender(self, client_stream, nursery):
print('## sender: started!')
q = self._queue
while True:
cmd = await q.get()
print('## sending to the server:\n{!r}\n'.format(cmd))
if self._end_session.is_set():
nursery.cancel_scope.shield = True
with trio.move_on_after(1):
await client_stream.send_all(cmd)
nursery.cancel_scope.shield = False
await client_stream.send_all(cmd)
async def _receiver(self, client_stream, nursery):
print('## receiver: started!')
buff = self._buffer
while True:
data = await client_stream.receive_some(buff)
if not data:
print('## receiver: connection closed')
self._end_session.set()
break
print('## got data from the server:\n{!r}'.format(data))
async def _watchdog(self, nursery):
await self._end_session.wait()
await self._queue.put(self._logoff)
self._connected.clear()
nursery.cancel_scope.cancel()
#property
def _login(self, *a, **kw):
nl = self._nl
usr, pwd = self.usr, self.pwd
return nl.join(x.encode() for x in ['Login', usr,pwd]) + 2*nl
#property
def _logoff(self, *a, **kw):
nl = self._nl
return nl.join(x.encode() for x in ['Logoff']) + 2*nl
async def _connect(self):
host, port = self.host, self.port
print('## connecting to {}:{}'.format(host, port))
try:
client_stream = await trio.open_tcp_stream(host, port)
except OSError as err:
print('##', err)
else:
async with client_stream:
self._end_session.clear()
self._connected.set()
self._attempt = 0
# Sign in as soon as connected
await self._queue.put(self._login)
async with trio.open_nursery() as nursery:
print("## spawning watchdog...")
nursery.start_soon(self._watchdog, nursery)
print("## spawning sender...")
nursery.start_soon(self._sender, client_stream, nursery)
print("## spawning receiver...")
nursery.start_soon(self._receiver, client_stream, nursery)
def connect(self):
while self._attempt <= self._max_retry:
try:
trio.run(self._connect)
trio.run(trio.sleep, 1)
self._attempt += 1
except KeyboardInterrupt:
self._end_session.set()
print('Bye bye...')
break
tst = test()
tst.connect()
My logic doesn't quite work. Well it works if I kill the netcat listener, so then my session looks like the following:
## connecting to 127.0.0.1:12345
## spawning watchdog...
## spawning sender...
## spawning receiver...
## receiver: started!
## sender: started!
## sending to the server:
b'Login\r\nuser\r\nsecret\r\n\r\n'
## receiver: connection closed
## sending to the server:
b'Logoff\r\n\r\n'
Note that Logoff string has been sent out, although it doesn't make sense in here as connection is already broken by that time.
However my goal is to Logoff when user KeyboardInterrupt. In this case my session looks similar to this:
## connecting to 127.0.0.1:12345
## spawning watchdog...
## spawning sender...
## spawning receiver...
## receiver: started!
## sender: started!
## sending to the server:
b'Login\r\nuser\r\nsecret\r\n\r\n'
Bye bye...
Note that Logoff hasn't been sent off.
Any ideas?
Here your call tree looks something like:
connect
|
+- _connect*
|
+- _watchdog*
|
+- _sender*
|
+- _receiver*
The *s indicate the 4 trio tasks. The _connect task is sitting at the end of the nursery block, waiting for the child tasks to complete. The _watchdog task is blocked in await self._end_session.wait(), the _sender task is blocked in await q.get(), and the _receiver task is blocked in await client_stream.receive_some(...).
When you hit control-C, then the standard Python semantics are that whatever bit of Python code is running suddenly raises KeyboardInterrupt. In this case, you have 4 different tasks running, so one of those blocked operations gets picked at random [1], and raises a KeyboardInterrupt. This means a few different things might happen:
If _watchdog's wait call raises KeyboardInterrupt, then the _watchdog method immediately exits, so it never even tries to send logout. Then as part of unwinding the stack, trio cancels all the other tasks, and once they've exited then the KeyboardInterrupt keeps propagating up until it reaches your finally block in connect. At this point you try to notify the watchdog task using self._end_session.set(), but it's not running anymore, so it doesn't notice.
If _sender's q.get() call raises KeyboardInterrupt, then the _sender method immediately exits, so even if the _watchdog did ask it to send a logoff message, it won't be there to notice. And in any case, trio then proceeds to cancel the watchdog and receiver tasks anyway, and things proceed as above.
If _receiver's receive_all call raises KeyboardInterrupt... same thing happens.
Minor subtlety: _connect can also receive the KeyboardInterrupt, which does the same thing: cancels all the children, and then waits for them to stop before allowing the KeyboardInterrupt to keep propagating.
If you want to reliably catch control-C and then do something with it, then this business of it being raised at some random point is quite a nuisance. The simplest way to do this is to use Trio's support for catching signals to catch the signal.SIGINT signal, which is the thing that Python normally converts into a KeyboardInterrupt. (The "INT" stands for "interrupt".) Something like:
async def _control_c_watcher(self):
# This API is currently a little cumbersome, sorry, see
# https://github.com/python-trio/trio/issues/354
with trio.catch_signals({signal.SIGINT}) as batched_signal_aiter:
async for _ in batched_signal_aiter:
self._end_session.set()
# We exit the loop, restoring the normal behavior of
# control-C. This way hitting control-C once will try to
# do a polite shutdown, but if that gets stuck the user
# can hit control-C again to raise KeyboardInterrupt and
# force things to exit.
break
and then start this running alongside your other tasks.
You also have the problem that in your _watchdog method, it puts the logoff request into the queue – thus scheduling a message to be sent later, by the _sender task – and then immediately cancels all the tasks, so that the _sender task probably won't get a chance to see the message and react to it! In general, I find my code works nicer when I use tasks only when necessary. Instead of having a sender task and then putting messages in a queue when you want to send them, why not have the code that wants to send a message call stream.send_all directly? The one thing you have to watch out for is if you have multiple tasks that might send things simultaneously, you might want to use a trio.Lock() to make sure they don't bump into each other by calling send_all at the same time:
async def send_all(self, data):
async with self.send_lock:
await self.send_stream.send_all(data)
async def do_logoff(self):
# First send the message
await self.send_all(b"Logoff\r\n\r\n")
# And then, *after* the message has been sent, cancel the tasks
self.nursery.cancel()
If you do it this way, you might be able to get rid of the watchdog task and the _end_session event entirely.
A few other notes about your code while I'm here:
Calling trio.run multiple times like this is unusual. The normal style is to call it once at the top of your program, and put all your real code inside it. Once you exit trio.run, all of trio's state is lost, you're definitely not running any concurrent tasks (so there's no way anything could possibly be listening and notice your call to _end_session.set()!). And in general, almost all Trio functions assume that you're already inside a call to trio.run. It turns out that right now you can call trio.Queue() before starting trio without getting an exception, but that's basically just a coincidence.
The use of shielding inside _sender looks odd to me. Shielding is generally an advanced feature that you almost never want to use, and I don't think this is an exception.
Hope that helps! And if you want to talk more about style/design issues like this but are worried they might be too vague for stack overflow ("is this program designed well?"), then feel free to drop by the trio chat channel.
[1] Well, actually trio probably picks the main task for various reasons, but that's not guaranteed and in any case it doesn't make a difference here.

How to stop a websocket client without stopping reactor

I have an app similar to a chat-room writing in python that intends to do the following things:
A prompt for user to input websocket server address.
Then create a websocket client that connects to server and send/receive messages. Disable the ability to create a websocket client.
After receiving "close" from server (NOT a close frame), client should drop connecting and re-enable the app to create a client. Go back to 1.
If user exits the app, it exit the websocket client if there is one running.
My approach for this is using a main thread to deal with user input. When user hits enter, a thread is created for WebSocketClient using AutoBahn's twisted module and pass a Queue to it. Check if the reactor is running or not and start it if it's not.
Overwrite on message method to put a closing flag into the Queue when getting "close". The main thread will be busy checking the Queue until receiving the flag and go back to start. The code looks like following.
Main thread.
def main_thread():
while True:
text = raw_input("Input server url or exit")
if text == "exit":
if myreactor:
myreactor.stop()
break
msgq = Queue.Queue()
threading.Thread(target=wsthread, args=(text, msgq)).start()
is_close = False
while True:
if msgq.empty() is False:
msg = msgq.get()
if msg == "close":
is_close = True
else:
print msg
if is_close:
break
print 'Websocket client closed!'
Factory and Protocol.
class MyProtocol(WebSocketClientProtocol):
def onMessage(self, payload, isBinary):
msg = payload.decode('utf-8')
self.Factory.q.put(msg)
if msg == 'close':
self.dropConnection(abort=True)
class WebSocketClientFactoryWithQ(WebSocketClientFactory):
def __init__(self, *args, **kwargs):
self.queue = kwargs.pop('queue', None)
WebSocketClientFactory.__init__(self, *args, **kwargs)
Client thread.
def wsthread(url, q):
factory = WebSocketClientFactoryWithQ(url=url, queue=q)
factory.protocol = MyProtocol
connectWS(Factory)
if myreactor is None:
myreactor = reactor
reactor.run()
print 'Done'
Now I got a problem. It seems that my client thread never stops. Even if I receive "close", it seems still running and every time I try to recreate a new client, it creates a new thread. I understand the first thread won't stop since reactor.run() will run forever, but from the 2nd thread and on, it should be non-blocking since I'm not starting it anymore. How can I change that?
EDIT:
I end up solving it with
Adding stopFactory() after disconnect.
Make protocol functions with reactor.callFromThread().
Start the reactor in the first thread and put clients in other threads and use reactor.callInThread() to create them.
Your main_thread creates new threads running wsthread. wsthread uses Twisted APIs. The first wsthread becomes the reactor thread. All subsequent threads are different and it is undefined what happens if you use a Twisted API from them.
You should almost certainly remove the use of threads from your application. For dealing with console input in a Twisted-based application, take a look at twisted.conch.stdio (not the best documented part of Twisted, alas, but just what you want).

How to kill a socket in unit tests for reconnect test

I'm trying to test some code that reconnects to a server after a disconnect. This works perfectly fine outside the tests, but it fails to acknowledge that the socket has disconnected when running the tests.
I'm using a Gevent Stream Server to mock a real listening server:
import gevent.server
from gevent import queue
class TestServer(gevent.server.StreamServer):
def __init__(self, *args, **kwargs):
super(TestServer, self).__init__(*args, **kwargs)
self.sockets = {}
def handle(self, socket, address):
self.sockets[address] = (socket, queue.Queue())
socket.sendall('testing the connection\r\n')
gevent.spawn(self.recv, address)
def recv(self, address):
socket = self.sockets[address][0]
queue = self.sockets[address][1]
print 'Connection accepted %s:%d' % address
try:
for data in socket.recv(1024):
queue.put(data)
except:
pass
def murder(self):
self.stop()
for sock in self.sockets.iteritems():
print sock
sock[1][0].shutdown(socket.SHUT_RDWR)
sock[1][0].close()
self.sockets = {}
def run_server():
test_server = TestServer(('127.0.0.1', 10666))
test_server.start()
return test_server
And my test looks like this:
def test_can_reconnect(self):
test_server = run_server()
client_config = {'host': '127.0.0.1', 'port': 10666}
client = Connection('test client', client_config, get_config())
client.connect()
assert client.socket_connected
test_server.murder()
#time.sleep(4) #tried sleeping. no dice.
assert not client.socket_connected
assert client.server_disconnect
test_server = run_server()
client.reconnect()
assert client.socket_connected
It fails at assert not client.socket_connected.
I detect for "not data" during recv. If it's None, then I set some variables so that other code can decide whether or not to reconnect (don't reconnect if it was a user_disconnect and so on). This behavior works and has always worked for me in the past, I've just never tried to make a test for it until now. Is there something odd with socket connections and local function scopes or something? it's like the connection still exists even after stopping the server.
The code I'm trying to test is open: https://github.com/kyleterry/tenyks.git
If you run the tests, you will see the one I'm trying to fix fail.
Trying to run a unit test with a real socket is a tough row to hoe. It's going to be tricky as only one set of tests can run at a time, as the server port will be used, and it's going to be slow as the sockets get set up and torn down. To top it off if this is really a unit test you don't want to test the socket, just the code that's using the socket.
If you mock the socket calls you can throw exceptions willy nilly from the mocked code and ensure that the code making use of the socket does the right thing. You don't need a real socket to ensure that the class under test does the right thing, you can fake it if you can wrap the socket calls in an object. Pass in a reference to the socket object when constructing your class and you're ready to go.
My suggestion is to wrap the socket calls in a class that supports sendall, recv, and all the methods you call on the socket. Then you can swap out the actual Socket class with a TestReconnectSocket (or whatever) and run your tests.
Take a look at mox, a python mocking framework.
Vague response, but my immediate reaction would be that your recv() call is blocking and keeping the socket alive - have you tried making the socket non-blocking, and catching the error on close instead?
One thing to keep in mind when testing sockets like this, is that operating systems don't like to reopen a socket soon after it has been in use. You can set a socket option to tell it to go ahead and reuse it anyways. Right after you create the socket set the socket's option:
mysocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
Hopefully this will fix your issue. You may have to do it on both the server and client side depending on which one is giving you the problems.
you are calling shutdown(socket.SHUT_RDWR) so this doesn't seem like a problem with recv blocking.
however, you are using gevent.socket.socket.recv, so please check your gevent version, there is an issue with recv() that causes it to block if the underlying file descriptor is closed (version < v0.13.0)
you may still need gevent.sleep() to do cooperative yield and give the client an opportunity to exit the recv() call.

Redis pub/sub adding additional channels mid subscription

Is it possible to add additional subscriptions to a Redis connection? I have a listening thread but it appears not to be influenced by new SUBSCRIBE commands.
If this is the expected behavior, what is the pattern that should be used if users add a stock ticker feed to their interests or join chatroom?
I would like to implement a Python class similar to:
import threading
import redis
class RedisPubSub(object):
def __init__(self):
self._redis_pub = redis.Redis(host='localhost', port=6379, db=0)
self._redis_sub = redis.Redis(host='localhost', port=6379, db=0)
self._sub_thread = threading.Thread(target=self._listen)
self._sub_thread.setDaemon(True)
self._sub_thread.start()
def publish(self, channel, message):
self._redis_pub.publish(channel, message)
def subscribe(self, channel):
self._redis_sub.subscribe(channel)
def _listen(self):
for message in self._redis_sub.listen():
print message
The python-redis Redis and ConnectionPool classes inherit from threading.local, and this is producing the "magical" effects you're seeing.
Summary: your main thread and worker threads' self._redis_sub clients end up using two different connections to the server, but only the main thread's connection has issued the SUBSCRIBE command.
Details: Since the main thread is creating the self._redis_sub, that client ends up being placed into main's thread-local storage. Next I presume the main thread does a client.subscribe(channel) call. Now the main thread's client is subscribed on connection 1. Next you start the self._sub_thread worker thread which ends up having its own self._redis_sub attribute set to a new instance of redis.Client which constructs a new connection pool and establishes a new connection to the redis server.
This new connection has not yet been subscribed to your channel, so listen() returns immediately. So with python-redis you cannot pass an established connection with outstanding subscriptions (or any other stateful commands) between threads.
Depending on how you plan to implement your app you may need to switch to using a different client, or come up with some other way to communicate subscription state to the worker threads, e.g. send subscription commands through a queue.
One other issue is that python-redis uses blocking sockets, which prevents your listening thread from doing other work while waiting for messages, and it cannot signal it wishes to unsubscribe unless it does so immediately after receiving a message.
Async way:
Twisted framework and the plug txredisapi
Example code (Subscribe:
import txredisapi as redis
from twisted.application import internet
from twisted.application import service
class myProtocol(redis.SubscriberProtocol):
def connectionMade(self):
print "waiting for messages..."
print "use the redis client to send messages:"
print "$ redis-cli publish chat test"
print "$ redis-cli publish foo.bar hello world"
self.subscribe("chat")
self.psubscribe("foo.*")
reactor.callLater(10, self.unsubscribe, "chat")
reactor.callLater(15, self.punsubscribe, "foo.*")
# self.continueTrying = False
# self.transport.loseConnection()
def messageReceived(self, pattern, channel, message):
print "pattern=%s, channel=%s message=%s" % (pattern, channel, message)
def connectionLost(self, reason):
print "lost connection:", reason
class myFactory(redis.SubscriberFactory):
# SubscriberFactory is a wapper for the ReconnectingClientFactory
maxDelay = 120
continueTrying = True
protocol = myProtocol
application = service.Application("subscriber")
srv = internet.TCPClient("127.0.0.1", 6379, myFactory())
srv.setServiceParent(application)
Only one thread, no headache :)
Depends on what kind of app u coding of course. In networking case go twisted.

Categories