I have an array Pe with dimensions (2,3,3). I am importing Pe but then I want the code to calculate for each Pe and give me visited indices. Right now, I have to manually add Pe.Pe[0],Pe.Pe[1] in the line Visited_Indices,timestamps=iterate_array(0,0, Pe.Pe[0], lambda x : x < 150). How do I implement Pe.Pe[i] where i goes from 0 to 1?
Pe array is
import numpy as np
Pe = np.array([[[128.22918457, 168.52413295, 209.72343319],
[129.01598287, 179.03716051, 150.68633749],
[131.00688309, 187.42601593, 193.68172751]],
[[ 87.70103267, 115.2603484 , 143.4381863 ],
[ 88.23915528, 122.45062554, 103.06037156],
[ 89.60081102, 128.18809696, 132.46662659]]])
print([Pe])
The code is
import numpy as np
import time
import Pe
def get_neighbor_indices(position, dimensions):
'''
dimensions is a shape of np.array
'''
i, j = position
indices = [(i+1,j), (i-1,j), (i,j+1), (i,j-1)]
return [
(i,j) for i,j in indices
if i>=0 and i<dimensions[0]
and j>=0 and j<dimensions[1]
]
def iterate_array(init_i, init_j, arr, condition_func):
'''
arr is an instance of np.array
condition_func is a function (value) => boolean
'''
indices_to_check = [(init_i,init_j)]
checked_indices = set()
result = []
t0 = None
t1 = None
timestamps = []
while indices_to_check:
pos = indices_to_check.pop()
if pos in checked_indices:
continue
item = arr[pos]
checked_indices.add(pos)
if condition_func(item):
result.append(item)
t1=time.time()
if(t0==None):
t0=t1
timestamps.append(t1-t0)
indices_to_check.extend(
get_neighbor_indices(pos, arr.shape)
)
return result,timestamps
Visited_Indices,timestamps=iterate_array(0,0, Pe.Pe[0], lambda x : x < 150)
out = list(zip(*np.where(np.isin(Pe, Visited_Indices))))
print("Visited =",[Visited_Indices])
Related
Here is a reproducible example. The numba function "is_in_set_pnb" doesn't work when is imported from "functions.py" script. However, it works just fine when is defined in the same script.
functions.py script
import numpy as np
import numba as nb
import pandas as pd
# corrFilter function
def corrFilter(df, threshold):
corr_matrix = df.corr().abs()
flat_matrix = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
.stack()
.sort_values(ascending=False))
flat_matrix = pd.DataFrame(flat_matrix).reset_index()
flat_matrix.columns=["var1", "var2", "correlation"]
flat_matrix = flat_matrix.reindex(flat_matrix.correlation.sort_values(ascending=False).index).reset_index().drop(["index"],axis=1)
filtered_matrix = flat_matrix[flat_matrix.correlation > threshold]
pairs_to_remove = filtered_matrix[["var1", "var2"]].to_numpy()
return pairs_to_remove
# Numba function / numpy.isin() improved version
#nb.jit(parallel=True)
def is_in_set_pnb(a, b):
shape = a.shape
a = a.ravel()
n = len(a)
result = np.full(n, False)
set_b = set(b)
for i in nb.prange(n):
if a[i] in set_b:
result[i] = True
return result.reshape(shape)
main.py script
from sklearn import datasets
import pandas as pd
import numpy as np
import itertools
from functions import *
# Loading data
iris = datasets.load_iris()
data = iris.data
data = pd.DataFrame(data)
data.columns = ["var1", "var2", "var3", "var4"]
# Get pairs with a correlation higher than 0.5
remove_pairs = corrFilter(data, 0.5)
remove_pairs_check = np.sum(remove_pairs, axis=1)
# Remove triplets with pairs with a higher correlation than 0.5
triplets = [list(k) for k in itertools.combinations(data.columns, 3)]
array_triplets = np.vstack(triplets).astype(object)
n, d = array_triplets.shape
pair1 = np.sum(array_triplets[:,[0,1]], axis=1).reshape(n, 1)
pair2 = np.sum(array_triplets[:,[1,2]], axis=1).reshape(n, 1)
pair3 = np.sum(array_triplets[:,[0,2]], axis=1).reshape(n, 1)
array_triplets_check = np.concatenate((pair1, pair2, pair3), axis =1)
# Check if each pair is in the remove_pairs_check list
array_triplets_check_v1 = np.in1d(array_triplets_check, remove_pairs_check).reshape(n, d)
# Using numba function from "functions.py" script"
# This fails!!
array_triplets_check_v2 = is_in_set_pnb(array_triplets_check, remove_pairs_check)
However, if we define the numba function within the main.py script:
import numba as nb
#nb.jit(parallel=True)
def is_in_set_pnb(a, b):
shape = a.shape
a = a.ravel()
n = len(a)
result = np.full(n, False)
set_b = set(b)
for i in nb.prange(n):
if a[i] in set_b:
result[i] = True
return result.reshape(shape)
# This works properly!!!
array_triplets_check_v2 = is_in_set_pnb(array_triplets_check, remove_pairs_check)
What I am missing?? I am using:
numba 0.50.1 py38h47e9c7a_0
I am working on my first major data science project. I am attempting to match names between a large list of data from one source, to a cleansed dictionary in another. I am using this string matching blog as a guide.
I am attempting to use two different data sets. Unfortunately, I can't seem to get good results and I think I am not applying this appropriately.
Code:
import pandas as pd, numpy as np, re, sparse_dot_topn.sparse_dot_topn as ct
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy.sparse import csr_matrix
df_dirty = {"name":["gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl","gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl"]}
df_clean = {"name":["google","bing","amazon","facebook"]}
print (df_dirty["name"])
print (df_clean["name"])
def ngrams(string, n=3):
string = (re.sub(r'[,-./]|\sBD',r'', string)).upper()
ngrams = zip(*[string[i:] for i in range(n)])
return [''.join(ngram) for ngram in ngrams]
def awesome_cossim_top(A, B, ntop, lower_bound=0):
# force A and B as a CSR matrix.
# If they have already been CSR, there is no overhead
A = A.tocsr()
B = B.tocsr()
M, _ = A.shape
_, N = B.shape
idx_dtype = np.int32
nnz_max = M * ntop
indptr = np.zeros(M + 1, dtype=idx_dtype)
indices = np.zeros(nnz_max, dtype=idx_dtype)
data = np.zeros(nnz_max, dtype=A.dtype)
ct.sparse_dot_topn(
M, N, np.asarray(A.indptr, dtype=idx_dtype),
np.asarray(A.indices, dtype=idx_dtype),
A.data,
np.asarray(B.indptr, dtype=idx_dtype),
np.asarray(B.indices, dtype=idx_dtype),
B.data,
ntop,
lower_bound,
indptr, indices, data)
return csr_matrix((data, indices, indptr), shape=(M, N))
def get_matches_df(sparse_matrix, name_vector, top=5):
non_zeros = sparse_matrix.nonzero()
sparserows = non_zeros[0]
sparsecols = non_zeros[1]
if top:
print (top)
nr_matches = top
else:
print (sparsecols.size)
nr_matches = sparsecols.size
left_side = np.empty([nr_matches], dtype=object)
right_side = np.empty([nr_matches], dtype=object)
similairity = np.zeros(nr_matches)
for index in range(0, nr_matches):
left_side[index] = name_vector[sparserows[index]]
right_side[index] = name_vector[sparsecols[index]]
similairity[index] = sparse_matrix.data[index]
return pd.DataFrame({'left_side': left_side,
'right_side': right_side,
'similairity': similairity})
company_names = df_clean['name']
vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
tf_idf_matrix = vectorizer.fit_transform(company_names)
import time
t1 = time.time()
matches = awesome_cossim_top(tf_idf_matrix, tf_idf_matrix.transpose(), 4, 0.8)
t = time.time()-t1
print("SELFTIMED:", t)
matches_df = get_matches_df(matches, company_names, top=4)
matches_df = matches_df[matches_df['similairity'] < 0.99999] # Remove all exact matches
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(matches_df)
The expected result is as follows:
gogle = google
amazn = amazon
fcbook = facebook
You can import awesome_cossim_top function directly from the sparse_dot_topn lib.
Change the function get_matches_df with this:
def get_matches_df(sparse_matrix, A, B, top=100):
non_zeros = sparse_matrix.nonzero()
sparserows = non_zeros[0]
sparsecols = non_zeros[1]
if top:
nr_matches = top
else:
nr_matches = sparsecols.size
left_side = np.empty([nr_matches], dtype=object)
right_side = np.empty([nr_matches], dtype=object)
similairity = np.zeros(nr_matches)
for index in range(0, nr_matches):
left_side[index] = A[sparserows[index]]
right_side[index] = B[sparsecols[index]]
similairity[index] = sparse_matrix.data[index]
return pd.DataFrame({'left_side': left_side,
'right_side': right_side,
'similairity': similairity})
Now you can execute your code as below:
df_dirty = {"name":["gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl"]}
df_clean = {"name":["google","bing","amazon","facebook"]}
print (df_dirty["name"])
print (df_clean["name"])
vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
tf_idf_matrix_clean = vectorizer.fit_transform(df_clean['name'])
tf_idf_matrix_dirty = vectorizer.transform(df_dirty['name'])
t1 = time.time()
matches = awesome_cossim_top(tf_idf_matrix_dirty, tf_idf_matrix_clean.transpose(), 1, 0)
t = time.time()-t1
print("SELFTIMED:", t)
matches_df = get_matches_df(matches, df_dirty['name'], df_clean['name'], top=0)
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(matches_df)
Basically the example you found identifies duplicates in its own array and you want to use 2 sources instead of one.
Hope it helps!
Consider I have these lists:
l = [5,6,7,8,9,10,5,15,20]
m = [10,5]
I want to get the index of m in l. I used list comprehension to do that:
[(i,i+1) for i,j in enumerate(l) if m[0] == l[i] and m[1] == l[i+1]]
Output : [(5,6)]
But if I have more numbers in m, I feel its not the right way. So is there any easy approach in Python or with NumPy?
Another example:
l = [5,6,7,8,9,10,5,15,20,50,16,18]
m = [10,5,15,20]
The output should be:
[(5,6,7,8)]
The easiest way (using pure Python) would be to iterate over the items and first only check if the first item matches. This avoids doing sublist comparisons when not needed. Depending on the contents of your l this could outperform even NumPy broadcasting solutions:
def func(haystack, needle): # obviously needs a better name ...
if not needle:
return
# just optimization
lengthneedle = len(needle)
firstneedle = needle[0]
for idx, item in enumerate(haystack):
if item == firstneedle:
if haystack[idx:idx+lengthneedle] == needle:
yield tuple(range(idx, idx+lengthneedle))
>>> list(func(l, m))
[(5, 6, 7, 8)]
In case your interested in speed I checked the performance of the approaches (borrowing from my setup here):
import random
import numpy as np
# strided_app is from https://stackoverflow.com/a/40085052/
def strided_app(a, L, S ): # Window len = L, Stride len/stepsize = S
nrows = ((a.size-L)//S)+1
n = a.strides[0]
return np.lib.stride_tricks.as_strided(a, shape=(nrows,L), strides=(S*n,n))
def pattern_index_broadcasting(all_data, search_data):
n = len(search_data)
all_data = np.asarray(all_data)
all_data_2D = strided_app(np.asarray(all_data), n, S=1)
return np.flatnonzero((all_data_2D == search_data).all(1))
# view1D is from https://stackoverflow.com/a/45313353/
def view1D(a, b): # a, b are arrays
a = np.ascontiguousarray(a)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
def pattern_index_view1D(all_data, search_data):
a = strided_app(np.asarray(all_data), L=len(search_data), S=1)
a0v, b0v = view1D(np.asarray(a), np.asarray(search_data))
return np.flatnonzero(np.in1d(a0v, b0v))
def find_sublist_indices(haystack, needle):
if not needle:
return
# just optimization
lengthneedle = len(needle)
firstneedle = needle[0]
restneedle = needle[1:]
for idx, item in enumerate(haystack):
if item == firstneedle:
if haystack[idx+1:idx+lengthneedle] == restneedle:
yield tuple(range(idx, idx+lengthneedle))
def Divakar1(l, m):
return np.squeeze(pattern_index_broadcasting(l, m)[:,None] + np.arange(len(m)))
def Divakar2(l, m):
return np.squeeze(pattern_index_view1D(l, m)[:,None] + np.arange(len(m)))
def MSeifert(l, m):
return list(find_sublist_indices(l, m))
# Timing setup
timings = {Divakar1: [], Divakar2: [], MSeifert: []}
sizes = [2**i for i in range(5, 20, 2)]
# Timing
for size in sizes:
l = [random.randint(0, 50) for _ in range(size)]
m = [random.randint(0, 50) for _ in range(10)]
larr = np.asarray(l)
marr = np.asarray(m)
for func in timings:
# first timings:
# res = %timeit -o func(l, m)
# second timings:
if func is MSeifert:
res = %timeit -o func(l, m)
else:
res = %timeit -o func(larr, marr)
timings[func].append(res)
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(1)
ax = plt.subplot(111)
for func in timings:
ax.plot(sizes,
[time.best for time in timings[func]],
label=str(func.__name__))
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('size')
ax.set_ylabel('time [seconds]')
ax.grid(which='both')
ax.legend()
plt.tight_layout()
In case your l and m are lists my function outperforms the NumPy solutions for all sizes:
But in case you have these as numpy arrays you'll get faster results for large arrays (size > 1000 elements) when using Divakars NumPy solutions:
You are basically looking for the starting indices of a list in another list.
Approach #1 : One approach to solve it would be to create sliding windows of the elements in list in which we are searching, giving us a 2D array and then simply use NumPy broadcasting to perform broadcasted comparison against the search list against each row of the 2D sliding window version obtained earlier. Thus, one method would be -
# strided_app is from https://stackoverflow.com/a/40085052/
def strided_app(a, L, S ): # Window len = L, Stride len/stepsize = S
nrows = ((a.size-L)//S)+1
n = a.strides[0]
return np.lib.stride_tricks.as_strided(a, shape=(nrows,L), strides=(S*n,n))
def pattern_index_broadcasting(all_data, search_data):
n = len(search_data)
all_data = np.asarray(all_data)
all_data_2D = strided_app(np.asarray(all_data), n, S=1)
return np.flatnonzero((all_data_2D == search_data).all(1))
out = np.squeeze(pattern_index_broadcasting(l, m)[:,None] + np.arange(len(m)))
Sample runs -
In [340]: l = [5,6,7,8,9,10,5,15,20,50,16,18]
...: m = [10,5,15,20]
...:
In [341]: np.squeeze(pattern_index_broadcasting(l, m)[:,None] + np.arange(len(m)))
Out[341]: array([5, 6, 7, 8])
In [342]: l = [5,6,7,8,9,10,5,15,20,50,16,18,10,5,15,20]
...: m = [10,5,15,20]
...:
In [343]: np.squeeze(pattern_index_broadcasting(l, m)[:,None] + np.arange(len(m)))
Out[343]:
array([[ 5, 6, 7, 8],
[12, 13, 14, 15]])
Approach #2 : Another method would be to get the sliding window and then get the row-wise scalar view into the data to be search data and the data to be search for, giving us 1D data to work with, like so -
# view1D is from https://stackoverflow.com/a/45313353/
def view1D(a, b): # a, b are arrays
a = np.ascontiguousarray(a)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
def pattern_index_view1D(all_data, search_data):
a = strided_app(np.asarray(all_data), L=len(search_data), S=1)
a0v, b0v = view1D(np.asarray(a), np.asarray(search_data))
return np.flatnonzero(np.in1d(a0v, b0v))
out = np.squeeze(pattern_index_view1D(l, m)[:,None] + np.arange(len(m)))
2020 Versions
In search of more easy/compact approaches, we could look into scikit-image's view_as_windows for getting sliding windows with a built-in. I am assuming arrays as inputs for less messy code. For lists as input, we have to use np.asarray() as shown earlier.
Approach #3 : Basically a derivative of pattern_index_broadcasting with view_as_windows for a one-liner with a as the larger data and b is the array to be searched -
from skimage.util import view_as_windows
np.flatnonzero((view_as_windows(a,len(b))==b).all(1))[:,None]+np.arange(len(b))
Approach #4 : For a small number of matches from b in a, we could optimize, by looking for first element match from b to reduce the dataset size for searches -
mask = a[:-len(b)+1]==b[0]
mask[mask] = (view_as_windows(a,len(b))[mask]).all(1)
out = np.flatnonzero(mask)[:,None]+np.arange(len(b))
Approach #5 : For a small sized b, we could simply run a loop for each of the elements in b and perform bitwise and-reduction -
mask = np.bitwise_and.reduce([a[i:len(a)-len(b)+1+i]==b[i] for i in range(len(b))])
out = np.flatnonzero(mask)[:,None]+np.arange(len(b))
Just making the point that #MSeifert's approach can, of course, also be implemented in numpy:
def pp(h,n):
nn = len(n)
NN = len(h)
c = (h[:NN-nn+1]==n[0]).nonzero()[0]
if c.size==0: return
for i,l in enumerate(n[1:].tolist(),1):
c = c[h[i:][c]==l]
if c.size==0: return
return np.arange(c[0],c[0]+nn)
def get_data(l1,l2):
d=defaultdict(list)
[d[item].append(index) for index,item in enumerate(l1)]
print(d)
Using defaultdict to store indices of elements from other list.
Main Problem
What is the better/pythonic way of retrieving elements in a particular array that are not found in a different array. This is what I have;
idata = [np.column_stack(data[k]) for k in range(len(data)) if data[k] not in final]
idata = np.vstack(idata)
My interest is in performance. My data is an (X,Y,Z) array of size (7000 x 3) and my gdata is an (X,Y) array of (11000 x 2)
Preamble
I am working on an octant search to find the n-number(e.g. 8) of points (+) closest to my circular point (o) in each octant. This would mean that my points (+) are reduced to only 64 (8 per octant). Then for each gdata I would save the elements that are not found in data.
import tkinter as tk
from tkinter import filedialog
import pandas as pd
import numpy as np
from scipy.spatial.distance import cdist
from collections import defaultdict
root = tk.Tk()
root.withdraw()
file_path = filedialog.askopenfilename()
data = pd.read_excel(file_path)
data = np.array(data, dtype=np.float)
nrow, cols = data.shape
file_path1 = filedialog.askopenfilename()
gdata = pd.read_excel(file_path1)
gdata = np.array(gdata, dtype=np.float)
gnrow, gcols = gdata.shape
N=8
delta = gdata - data[:,:2]
angles = np.arctan2(delta[:,1], delta[:,0])
bins = np.linspace(-np.pi, np.pi, 9)
bins[-1] = np.inf # handle edge case
octantsort = []
for j in range(gnrow):
delta = gdata[j, ::] - data[:, :2]
angles = np.arctan2(delta[:, 1], delta[:, 0])
octantsort = []
for i in range(8):
data_i = data[(bins[i] <= angles) & (angles < bins[i+1])]
if data_i.size > 0:
dist_order = np.argsort(cdist(data_i[:, :2], gdata[j, ::][np.newaxis]), axis=0)
if dist_order.size < npoint_per_octant+1:
[octantsort.append(data_i[dist_order[:npoint_per_octant][j]]) for j in range(dist_order.size)]
else:
[octantsort.append(data_i[dist_order[:npoint_per_octant][j]]) for j in range(npoint_per_octant)]
final = np.vstack(octantsort)
idata = [np.column_stack(data[k]) for k in range(len(data)) if data[k] not in final]
idata = np.vstack(idata)
Is there an efficient and pythonic way of doing this do increase performance in the last two lines of the code?
If I understand your code correctly, then I see the following potential savings:
dedent the final = ... line
don't use arctan it's expensive; since you only want octants compare the coordinates to zero and to each other
don't do a full argsort, use argpartition instead
make your octantsort an "octantargsort", i.e. store the indices into data, not the data points themselves; this would save you the search in the last but one line and allow you to use np.delete for removing
don't use append inside a list comprehension. This will produce a list of Nones that is immediately discarded. You can use list.extend outside the comprehension instead
besides, these list comprehensions look like a convoluted way of converting data_i[dist_order[:npoint_per_octant]] into a list, why not simply cast, or even keep as an array, since you want to vstack in the end?
Here is some sample code illustrating these ideas:
import numpy as np
def discard_nearest_in_each_octant(eater, eaten, n_eaten_p_eater):
# build octants
# start with quadrants ...
top, left = (eaten < eater).T
quadrants = [np.where(v&h)[0] for v in (top, ~top) for h in (left, ~left)]
dcoord2 = (eaten - eater)**2
dc2quadrant = [dcoord2[q] for q in quadrants]
# ... and split them
oct4158 = [q[:, 0] < q [:, 1] for q in dc2quadrant]
# main loop
dc2octants = [[q[o], q[~o]] for q, o in zip (dc2quadrant, oct4158)]
reloap = [[
np.argpartition(o.sum(-1), n_eaten_p_eater)[:n_eaten_p_eater]
if o.shape[0] > n_eaten_p_eater else None
for o in opair] for opair in dc2octants]
# translate indices
octantargpartition = [q[so] if oap is None else q[np.where(so)[0][oap]]
for q, o, oaps in zip(quadrants, oct4158, reloap)
for so, oap in zip([o, ~o], oaps)]
octantargpartition = np.concatenate(octantargpartition)
return np.delete(eaten, octantargpartition, axis=0)
I need to create an 2D array.
import numpy as np
self.col = 10
self.row = 5
...
matrix = np.array(self.row, self.col) # NOT WORKING
What is the right syntax please
i also need to fill it with random binary data
Generate a random matrix with binary values:
import numpy as np
row, col = 10, 5
matrix = np.random.randint(2, size=(row,col))
import numpy as np
def toBit(x):
if x<= 0:
x = 0
else:
x = 1
return x
VtoBit = np.vectorize(toBit)
arr1 = np.random.randn(6,10)
arr2 = VtoBit(arr1)
print(arr2)