I've prepared a recursive tree-traversal based solution to the "same tree" problem. However, I'm encountering an error on use cases involving None values. Why is my approach incorrect and how should I be altered to handle the use case?
class Solution(object):
def traversal(self,root):
visited = []
if root:
if root.left:
visited.extend(self.traversal(root.left))
visited.append(root.val)
if root.right:
visited.extend(self.traversal(root.right))
return visited
def isSameTree(self, p, q):
"""
:type p: TreeNode
:type q: TreeNode
:rtype: bool
"""
p_path = self.traversal(p)
q_path = self.traversal(q)
print(p_path, q_path)
return p_path == q_path
Use case: input([1,1][1,null,1]), output(true), stdout([1,1], [1,1])
Two different trees can have the same in-order traversal, but different structure, so it's not sufficient to completely rely on "traversal" in your code.
Hint: trees are only the same if they have the same root and (recursively) the same left subtree and (recursively) the same right subtree.
Gave up on the recursive attempt, but an iterative one worked.
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def isSameTree(self, p, q):
"""
:type p: TreeNode
:type q: TreeNode
:rtype: bool
"""
stack = [(p,q)]
while stack:
p_curr, q_curr = stack.pop()
# both p and q exist
if p_curr and q_curr:
# validity check
if p_curr.val != q_curr.val:
return False
# left check
if p_curr.left and q_curr.left:
stack.append((p_curr.left, q_curr.left))
elif p_curr.left and not q_curr.left:
return False
elif not p_curr.left and q_curr.left:
return False
# right check
if p_curr.right and q_curr.right:
stack.append((p_curr.right, q_curr.right))
elif p_curr.right and not q_curr.right:
return False
elif not p_curr.right and q_curr.right:
return False
elif p_curr:
# only p exists, invalid
return False
elif q_curr:
# only q exists, invalid
return False
return True
Related
This is the code I was given and I need to make changes to it. The function looks for the value in the given BST and returns True if target is in the tree. Here's the code:
def member_prim(tnode, target):
"""
Purpose:
Check if target is stored in the binary search tree.
Pre-Conditions:
:param tnode: a treenode with the BST property
:param target: a value
Post-Conditions:
none
Return
:return: True if target is in the tree
"""
if tnode is None:
return False
elif target < tnode.data:
right = tnode.right
return member_prim(right, target)
else:
tnode.right = tnode.left
return member_prim(tnode.right, target)
I made few changes to the code and here's what I did:
if tnode is None:
return False
elif tnode.data is not target:
return False
elif target > tnode.data:
right = tnode.right
return member_prim(right, target)
else:
tnode.right = tnode.left
return member_prim(tnode.right, target)
Still it throws Attribute Error, saying object 'treenode' has no attribute 'data'.
Here's treenode class:
class treenode(object):
def __init__(self, data, left=None, right=None):
"""
Purpose:
Create a new treenode for the given data.
Pre-conditions:
data: Any data value to be stored in the treenode
left, right: Another treenode (or None, by default)
Post-condition:
none
"""
self.data = data
self.left = left
self.right = right
Please let me know where I went wrong and how can I fix it.
class treenode(object):
def __init__(self, data, left=None, right=None):
"""
Purpose:
Create a new treenode for the given data.
Pre-conditions:
data: Any data value to be stored in the treenode
left, right: Another treenode (or None, by default)
Post-condition:
none
"""
self.data = data
self.left = left
self.right = right
def trav(root, target):
if not root:
return False
if root.data == target:
return True
if root.data > target:
return trav(root.left, target)
if root.data < target:
return trav(root.right, target)
This code will find you the if the target value is present or not.
This is the answer for leet code question 270(Find Closest Value in BST) in Python. I could'nt grasp what and how the tree.value in this code works.
def findClosestValueInBst(tree, target):
return findClosestValueInBstHelper(tree, target, closest)
def findClosestValueInBstHelper(tree, target, closest):
if tree is None:
return Closest
if abs(target - closest) > abs(target - tree.value):
closest = tree.value
if target < tree.value:
return findClosestValueInBstHelper(tree.left, target, closest)
elif target > tree.vlaue:
return findClosestValueInBstHelper(tree.right, target, closest)
else:
return closest
There is a class for TreeNode that's defined by LeetCode, and you don't have to add that to the Solution:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
This'd pass through:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def closestValue(self, root, target):
a_value = root.val
child = root.left if target < a_value else root.right
if not child:
return a_value
b_value = self.closestValue(child, target)
return min((b_value, a_value), key=lambda x: abs(target - x))
Also, there is no tree.value, it should be tree.val I guess.
References
For additional details, you can see the Discussion Board. There are plenty of accepted solutions with a variety of languages and explanations, efficient algorithms, as well as asymptotic time/space complexity analysis1, 2 in there.
I have been working on trying to implement the function all_bigger below but I am not sure if there are flaws in my logic. To my understanding, BST's are organized having the smallest values on the left side so I would only need to check the left side of the BST. Is there a better way of writing this or is my code incorrect?
class BSTNode:
"""A node is a BST """
def __init__(self: 'BSTNode', item, left, right):
self.item, self.left, self.right = item, left, right
def all_bigger(self, value):
"""
>>> bst = BSTNode(5, BSTNode(4), BSTNode(6))
>>> all_bigger(bst, 2)
True
"""
while self.left:
if self.left > value:
self.value = self.left:
else:
return False
return True
Your code is almost correct, with some minor bugs. Corrected code:
class BSTNode:
"""A node is a BST """
def __init__(self, item, left = None, right = None):
self.item, self.left, self.right = item, left, right
def all_bigger(self, value):
"""
>>> bst = BSTNode(5, BSTNode(4), BSTNode(6))
>>> all_bigger(bst, 2)
True
"""
root = self
while(root!=None):
if root.item > value:
root = root.left
else:
return False
return True
bst = BSTNode(5, BSTNode(4,BSTNode(1, None, None),None), BSTNode(6,None,None)) # Returns False
print(bst.all_bigger(2))
IIUC your question is to see if all the nodes in the BST are bigger than a certain value.
A simple way to do is to find the node with the minimum value in the BST and compare it with the other value. The smallest node is going to be the left-most node.
A typical BST node looks like this
# A binary tree node
class Node:
# Constructor to create a new node
def __init__(self, key):
self.data = key
self.left = None
self.right = None
And yes, you're right. The tree does not need to be searched fully, ie, the right subtrees can be skipped. This is how you find the node with the minimum value.
def minValue(node):
current = node
# loop down to find the lefmost leaf
while(current.left is not None):
current = current.left
return current.data
This can be slightly tweaked to solve your problem
def all_bigger(node, val):
current = node
# loop down to find the lefmost leaf
while(current.left is not None):
current = current.left
# Check if the current node value is smaller than val
if current.data < val:
return False
return True
You need to update the node after every comparison. Kindly check the below code:
class BSTNode:
"""A node is a BST """
def __init__(self: 'BSTNode', item, left, right):
self.item, self.left, self.right = item, left, right
def all_bigger(self, value):
"""
>>> bst = BSTNode(5, BSTNode(4), BSTNode(6))
>>> all_bigger(bst, 2)
True
"""
while self.item:
if self.left > value:
self.item = self.left:
else:
return False
return True
All values in a subtree are greater than X if and only if
The value in the node is greater than X, and
All values in its left subtree (if it exists) are greater than X
Assuming an empty tree is None:
def all_bigger(self, value):
return self.value > value and self.left and self.left.all_bigger(value)
I have the task to perform some basic operations on Binary Search Trees and I'm not sure what is the clever way to do it.
I know that the usual way would be to write a class for the nodes and one for the tree so that I can build up my tree from given values and perform certain tasks on it. The thing is, I'm already getting the tree as a list and since BSTs are not unique, there won't come any good from it if I take each value and build the tree myself.
So... I'm getting a list like this:
11 9 2 13 _, 4 18 2 14 _, 2 10 _ 11 4, 14 16 4 _ _, 13 0 11 _ _ | 10 | 7
which means:
key value parent left right, ... | value1 | value2
So as you see the BST is given explicitly. My tasks are to do a level-print of the tree, return the path from root to value1, do a rotate-right operation on the subtree that has value1, then delete value1 and then insert value2.
What would be an efficient way to tackle this problem?
Here is one possible way of implementing the tree. Hope it helps. Though this contains insertions and popular traversals, not rotations or deletions.
Reference: http://www.thelearningpoint.net/computer-science/learning-python-programming-and-data-structures/learning-python-programming-and-data-structures--tutorial-20--graphs-breadth-and-depth-first-search-bfsdfs-dijkstra-algorithm-topological-search
'''
Binary Search Tree is a binary tree(that is every node has two branches),
in which the values contained in the left subtree is always less than the
root of that subtree, and the values contained in the right subtree is
always greater than the value of the root of the right subtree.
For more information about binary search trees, refer to :
http://en.wikipedia.org/wiki/Binary_search_tree
'''
#Only for use in Python 2.6.0a2 and later
from __future__ import print_function
class Node:
# Constructor to initialize data
# If data is not given by user,its taken as None
def __init__(self, data=None, left=None, right=None):
self.data = data
self.left = left
self.right = right
# __str__ returns string equivalent of Object
def __str__(self):
return "Node[Data = %s]" % (self.data,)
class BinarySearchTree:
def __init__(self):
self.root = None
'''
While inserting values in a binary search tree, we first check
whether the value is greater than, lesser than or equal to the
root of the tree.
We initialize current node as the root.
If the value is greater than the current node value, then we know that
its right location will be in the right subtree. So we make the current
element as the right node.
If the value is lesser than the current node value, then we know that
its right location will be in the left subtree. So we make the current
element as the left node.
If the value is equal to the current node value, then we know that the
value is already contained in the tree and doesn't need to be reinserted.
So we break from the loop.
'''
def insert(self, val):
if (self.root == None):
self.root = Node(val)
else:
current = self.root
while 1:
if (current.data > val):
if (current.left == None):
current.left = Node(val)
break
else:
current = current.left
elif (current.data < val):
if (current.right == None):
current.right = Node(val)
break
else:
current = current.right
else:
break
'''
In preorder traversal, we first print the current element, then
move on to the left subtree and finally to the right subree.
'''
def preorder(self, node):
if (node == None):
return
else:
print(node.data, end=" ")
self.preorder(node.left)
self.preorder(node.right)
'''
In inorder traversal, we first move to the left subtree, then print
the current element and finally move to the right subtree.
'''
#Important : Inorder traversal returns the elements in sorted form.
def inorder(self, node):
if (node == None):
return
else:
self.inorder(node.left)
print(node.data, end=" ")
self.inorder(node.right)
'''
In postorder traversal, we first move to the left subtree, then to the
right subtree and finally print the current element.
'''
def postorder(self, node):
if (node == None):
return
else:
self.postorder(node.left)
self.postorder(node.right)
print(node.data, end=" ")
tree = BinarySearchTree()
tree.insert(1)
tree.insert(9)
tree.insert(4)
tree.insert(3)
tree.insert(5)
tree.insert(7)
tree.insert(10)
tree.insert(0)
print ("Preorder Printing")
tree.preorder(tree.root)
print("\n\nInorder Printing")
tree.inorder(tree.root)
print("\n\nPostOrder Printing")
tree.postorder(tree.root)
Here is the implementation of Binary Search Tree with it's basic operations like insert node, find node
class Node:
def __init__(self,data):
self.left = None
self.right = None
self.data = data
class BST:
def __init__(self):
self.root = None
def set_root(self,data):
self.root = Node(data)
def insert_node(self,data):
if self.root is None:
self.set_root(data)
else:
n = Node(data)
troot = self.root
while troot:
if data < troot.data:
if troot.left:
troot = troot.left
else:
troot.left = n
break
else:
if troot.right:
troot = troot.right
else:
troot.right = n
break
def search_node(self,data):
if self.root is None:
return "Not found"
else:
troot = self.root
while troot:
if data < troot.data:
if troot.left:
troot = troot.left
if troot.data == data:
return "Found"
else:
return "Not found"
elif data > troot.data:
if troot.right:
troot = troot.right
if troot.data == data:
return "Found"
else:
return "Not found"
else:
return "Found"
tree = BST()
tree.insert_node(10)
tree.insert_node(5)
tree.insert_node(20)
tree.insert_node(7)
print(tree.root.data)
print(tree.root.left.data)
print(tree.root.right.data)
print(tree.root.left.right.data)
print(tree.search_node(10))
print(tree.search_node(5))
print(tree.search_node(20))
print(tree.search_node(7))
print(tree.search_node(12))
print(tree.search_node(15))
Output:
10
5
20
7
Found
Found
Found
Found
Not found
Not found
In this specific case I had success using a dictionary as a datatype to store the graph. The key is the node_key and the value is a list with the attributes of the node. In this way it is rather fast to find the needed nodes and all its attributes.
I'm just not sure if there is a way to make it reasonably faster.
Please help me to understand trees in Python. This is an example of tree implementation I found in the Internet.
from collections import deque
class EmptyTree(object):
"""Represents an empty tree."""
# Supported methods
def isEmpty(self):
return True
def __str__(self):
return ""
def __iter__(self):
"""Iterator for the tree."""
return iter([])
def preorder(self, lyst):
return
def inorder(self, lyst):
return
def postorder(self, lyst):
return
class BinaryTree(object):
"""Represents a nonempty binary tree."""
# Singleton for all empty tree objects
THE_EMPTY_TREE = EmptyTree()
def __init__(self, item):
"""Creates a tree with
the given item at the root."""
self._root = item
self._left = BinaryTree.THE_EMPTY_TREE
self._right = BinaryTree.THE_EMPTY_TREE
def isEmpty(self):
return False
def getRoot(self):
return self._root
def getLeft(self):
return self._left
def getRight(self):
return self._right
def setRoot(self, item):
self._root = item
def setLeft(self, tree):
self._left = tree
def setRight(self, tree):
self._right = tree
def removeLeft(self):
left = self._left
self._left = BinaryTree.THE_EMPTY_TREE
return left
def removeRight(self):
right = self._right
self._right = BinaryTree.THE_EMPTY_TREE
return right
def __str__(self):
"""Returns a string representation of the tree
rotated 90 degrees to the left."""
def strHelper(tree, level):
result = ""
if not tree.isEmpty():
result += strHelper(tree.getRight(), level + 1)
result += " " * level
result += str(tree.getRoot()) + "\n"
result += strHelper(tree.getLeft(), level + 1)
return result
return strHelper(self, 0)
def __iter__(self):
"""Iterator for the tree."""
lyst = []
self.inorder(lyst)
return iter(lyst)
def preorder(self, lyst):
"""Adds items to lyst during
a preorder traversal."""
lyst.append(self.getRoot())
self.getLeft().preorder(lyst)
self.getRight().preorder(lyst)
def inorder(self, lyst):
"""Adds items to lyst during
an inorder traversal."""
self.getLeft().inorder(lyst)
lyst.append(self.getRoot())
self.getRight().inorder(lyst)
def postorder(self, lyst):
"""Adds items to lystduring
a postorder traversal."""
self.getLeft().postorder(lyst)
self.getRight().postorder(lyst)
lyst.append(self.getRoot())
def levelorder(self, lyst):
"""Adds items to lyst during
a levelorder traversal."""
# levelsQueue = LinkedQueue()
levelsQueue = deque ([])
levelsQueue.append(self)
while levelsQueue != deque():
node = levelsQueue.popleft()
lyst.append(node.getRoot())
left = node.getLeft()
right = node.getRight()
if not left.isEmpty():
levelsQueue.append(left)
if not right.isEmpty():
levelsQueue.append(right)
This is programm that makes the small tree.
"""
File: testbinarytree.py
Builds a full binary tree with 7 nodes.
"""
from binarytree import BinaryTree
lst = ["5", "+", "2"]
for i in range(len(lst)):
b = BinaryTree(lst[0])
d = BinaryTree(lst[1])
f = BinaryTree(lst[2])
# Build the tree from the bottom up, where
# d is the root node of the entire tree
d.setLeft(b)
d.setRight(f)
def size(tree):
if tree.isEmpty():
return 0
else:
return 1 + size(tree.getLeft()) + size(tree.getRight())
def frontier(tree):
"""Returns a list containing the leaf nodes
of tree."""
if tree.isEmpty():
return []
elif tree.getLeft().isEmpty() and tree.getRight().isEmpty():
return [tree.getRoot()]
else:
return frontier(tree.getLeft()) + frontier(tree.getRight())
print ("Size:", size(d))
print ("String:")
print (d)
How can I make a class that will count the value of the expression, such that the answer = 7 (5+2). I really want to understand the concept with a small example.
It sounds like your problem isn't trees, which are a much more general (and simple) concept, but in how to properly populate and/or evaluate an expression tree.
If you have your operators specified in post-fix order, it becomes a lot easier.
See this wikipedia article on how to deal with infix notation when parsing input to a desktop calculator. It is called the shunting-yard algorithm.
You should do function that walks a tree in depth first order, calculating value of each node, either just taking value of it (if it is "5" for example), or making calculation (if it is "+" for example) - by walking the tree in depth first order you are sure that all subnodes of given node will be calculated when you are calculating that node (for example "5" and "2" will be calculated when you are calculating "+").
Then, at the root of the tree you'll get the result of the whole tree.
First of all, I'm not going to give much detail in case this is homework, which it sounds a bit like.
You need a method on your tree class that evaluates the tree. I suppose it'll assume that the "root" value of each tree node is a number (when the node is a leaf, i.e. when it has no children) or the name of an operator (When the node has children).
Your method will be recursive: the value of a tree-node with children is determined by (1) the value of its left subtree, (2) the value of its right subtree, and (3) the operator in its "root".
You'll probably want a table -- maybe stored in a dict -- mapping operator names like "+" to actual functions like operator.add (or, if you prefer, lambda x,y: x+y).