2-D laplace heat equation with periodic boundary conditions - python

desired output**I'm trying to implement periodic condition for horizontal direction, I discretized laplace equation bottom temperature is high, at the top temperature is zero and also left and right side **
import numpy as np
import matplotlib.pyplot as plt
# Set maximum iteration
maxIter = 500
lenX = lenY = 20 #we set it rectangular
delta = 1
# Boundary condition
Ttop = 0
Tbottom = 9.75
Tright = 0
Tleft = 0
# Initial guess of interior grid
Tguess = (Ttop + Tbottom)/2
colorinterpolation = 50
colourMap = plt.cm.jet #you can try: colourMap = plt.cm.coolwarm
X, Y = np.meshgrid(np.arange(0, lenX), np.arange(0, lenY))#,indexing='ij')
T = np.empty((lenX, lenY))+ np.random.random((lenX,lenY))
T.fill(Tguess)
T[(lenY-1):, :] = Ttop
T[:1, :] = Tbottom
T[:, (lenX-1):] = Tright
T[:, :1] = Tleft
for iteration in range(0, maxIter):
for i in range(1, lenX-1, delta):
for j in range(1, lenY-1, delta):
T[i, j] = 0.125 * (T[i+1][j] + T[i-1][j] + T[i][j+1] + T[i][j-1] - 4*T[i,j]) + T[i,j]
plt.contourf(X, Y, T, colorinterpolation, cmap=colourMap)
plt.colorbar()
plt.show()
I'm getting this

Related

How to Create 3D Torus from Circle Revolved about x=2r, r is the radius of circle (Python or JULIA)

I need help to create a torus out of a circle by revolving it about x=2r, r is the radius of the circle.
I am open to either JULIA code or Python code. Whichever that can solve my problem the most efficient.
I have Julia code to plot circle and the x=2r as the axis of revolution.
using Plots, LaTeXStrings, Plots.PlotMeasures
gr()
θ = 0:0.1:2.1π
x = 0 .+ 2cos.(θ)
y = 0 .+ 2sin.(θ)
plot(x, y, label=L"x^{2} + y^{2} = a^{2}",
framestyle=:zerolines, legend=:outertop)
plot!([4], seriestype="vline", color=:green, label="x=2a")
I want to create a torus out of it, but unable, meanwhile I have solid of revolution Python code like this:
# Calculate the surface area of y = sqrt(r^2 - x^2)
# revolved about the x-axis
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
x = sy.Symbol("x", nonnegative=True)
r = sy.Symbol("r", nonnegative=True)
def f(x):
return sy.sqrt(r**2 - x**2)
def fd(x):
return sy.simplify(sy.diff(f(x), x))
def f2(x):
return sy.sqrt((1 + (fd(x)**2)))
def vx(x):
return 2*sy.pi*(f(x)*sy.sqrt(1 + (fd(x) ** 2)))
vxi = sy.Integral(vx(x), (x, -r, r))
vxf = vxi.simplify().doit()
vxn = vxf.evalf()
n = 100
fig = plt.figure(figsize=(14, 7))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222, projection='3d')
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224, projection='3d')
# 1 is the starting point. The first 3 is the end point.
# The last 200 is the number of discretization points.
# help(np.linspace) to read its documentation.
x = np.linspace(1, 3, 200)
# Plot the circle
y = np.sqrt(2 ** 2 - x ** 2)
t = np.linspace(0, np.pi * 2, n)
xn = np.outer(x, np.cos(t))
yn = np.outer(x, np.sin(t))
zn = np.zeros_like(xn)
for i in range(len(x)):
zn[i:i + 1, :] = np.full_like(zn[0, :], y[i])
ax1.plot(x, y)
ax1.set_title("$f(x)$")
ax2.plot_surface(xn, yn, zn)
ax2.set_title("$f(x)$: Revolution around $y$")
# find the inverse of the function
y_inverse = x
x_inverse = np.power(2 ** 2 - y_inverse ** 2, 1 / 2)
xn_inverse = np.outer(x_inverse, np.cos(t))
yn_inverse = np.outer(x_inverse, np.sin(t))
zn_inverse = np.zeros_like(xn_inverse)
for i in range(len(x_inverse)):
zn_inverse[i:i + 1, :] = np.full_like(zn_inverse[0, :], y_inverse[i])
ax3.plot(x_inverse, y_inverse)
ax3.set_title("Inverse of $f(x)$")
ax4.plot_surface(xn_inverse, yn_inverse, zn_inverse)
ax4.set_title("$f(x)$: Revolution around $x$ \n Surface Area = {}".format(vxn))
plt.tight_layout()
plt.show()
Here is a way that actually allows rotating any figure in the XY plane around the Y axis.
"""
Rotation of a figure in the XY plane about the Y axis:
ϕ = angle of rotation
z' = z * cos(ϕ) - x * sin(ϕ)
x' = z * sin(ϕ) + x * cos(ϕ)
y' = y
"""
using Plots
# OP definition of the circle, but we put center at x, y of 4, 0
# for the torus, otherwise we get a bit of a sphere
θ = 0:0.1:2.1π
x = 4 .+ 2cos.(θ) # center at (s, 0, 0)
y = 0 .+ 2sin.(θ)
# add the original z values as 0
z = zeros(length(x))
plot(x, y, z, color=:red)
# add the rotation axis
ϕ = 0:0.1:π/2 # for full torus use 2π at stop of range
xprime, yprime, zprime = Float64[], Float64[], Float64[]
for a in ϕ, i in eachindex(θ)
push!(zprime, z[i] + z[i] * cos(a) - x[i] * sin(a))
push!(xprime, z[i] * sin(a) + x[i] * cos(a))
push!(yprime, y[i])
end
plot!(xprime, yprime, zprime, alpha=0.3, color=:green)
Here is a way using the Meshes package for the construction of the mesh and the MeshViz package for the visualization. You'll just have to translate to fulfill your desiderata.
using Meshes
using MeshViz
using LinearAlgebra
using GLMakie
# revolution of the polygon defined by (x,y) around the z-axis
# x and y have the same length
function revolution(x, y, n)
u_ = LinRange(0, 2*pi, n+1)[1:n]
j_ = 1:(length(x) - 1) # subtract 1 because of periodicity
function f(u, j)
return [x[j] * sin(u), x[j] * cos(u), y[j]]
end
points = [f(u, j) for u in u_ for j in j_]
topo = GridTopology((length(j_), n), (true, true))
return SimpleMesh(Meshes.Point.(points), topo)
end
# define the section to be rotated: a circle
R = 3 # major radius
r = 1 # minor radius
ntheta = 100
theta_ = LinRange(0, 2*pi, ntheta)
x = [R + r*cos(theta) for theta in theta_]
y = [r*sin(theta) for theta in theta_]
# make mesh
mesh = revolution(x, y, 100)
# visualize mesh
viz(mesh)
EDIT: animation
using Meshes
using MeshViz
using LinearAlgebra
using GLMakie
using Makie
using Printf
function revolutionTorus(R, r, alpha; n1=30, n2=90)
theta_ = LinRange(0, 2, n1+1)[1:n1]
x = [R + r*cospi(theta) for theta in theta_]
y = [r*sinpi(theta) for theta in theta_]
full = alpha == 2
u_ = LinRange(0, alpha, n2 + full)[1:n2]
function f(u, j)
return [x[j] * sinpi(u), x[j] * cospi(u), y[j]]
end
points = [f(u, j) for u in u_ for j in 1:n1]
topo = GridTopology((n1, n2 - !full), (true, full))
return SimpleMesh(Meshes.Point.(points), topo)
end
# generates `nframes` meshes for alpha = 0 -> 2 (alpha is a multiple of pi)
R = 3
r = 1
nframes = 10
alpha_ = LinRange(0, 2, nframes+1)[2:(nframes+1)]
meshes = [revolutionTorus(R, r, alpha) for alpha in alpha_]
# draw and save the frames in a loop
for i in 1:nframes
# make a bounding box in order that all frames have the same aspect
fig, ax, plt =
viz(Meshes.Box(Meshes.Point(-4.5, -4.5, -2.5), Meshes.Point(4.5, 4.5, 2.5)); alpha = 0)
ax.show_axis = false
viz!(meshes[i])
scale!(ax.scene, 1.8, 1.8, 1.8)
png = #sprintf "revolutionTorus%02d.png" i
Makie.save(png, fig)
end
# make GIF with ImageMagick
comm = #cmd "convert -delay 1x2 'revolutionTorus*.png' revolutionTorus.gif"
run(comm)

How to animate this optimization model correctly

I have implemented a simple randomized, population-based optimization method - Grey Wolf optimizer. I am having some trouble with properly capturing the Matplotlib plots at each iteration using the camera package.
I am running GWO for the objective function f(x,y) = x^2 + y^2. I can only see the candidate solutions converging to the minima, but the contour plot doesn't show up.
Do you have any suggestions, how can I display the contour plot in the background?
GWO Algorithm implementation
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera
import ffmpeg
import pillow
# X : Position vector of the initial population
# n : Initial population size
def gwo(f,max_iterations,LB,UB):
fig = plt.figure()
camera = Camera(fig)
def random_population_uniform(m,a,b):
dims = len(a)
x = [list(a + np.multiply(np.random.rand(dims),b - a)) for i in range(m)]
return np.array(x)
def search_agent_fitness(fitness):
alpha = 0
if fitness[1] < fitness[alpha]:
alpha, beta = 1, alpha
else:
beta = 1
if fitness[2] > fitness[alpha] and fitness[2] < fitness[beta]:
beta, delta = 2, beta
elif fitness[2] < fitness[alpha]:
alpha,beta,delta = 2,alpha,beta
else:
delta = 2
for i in range(3,len(fitness)):
if fitness[i] <= fitness[alpha]:
alpha, beta,delta = i, alpha, beta
elif fitness[i] > fitness[alpha] and fitness[i]<= fitness[beta]:
beta,delta = i,beta
elif fitness[i] > fitness[beta] and fitness[i]<= fitness[delta]:
delta = i
return alpha, beta, delta
def plot_search_agent_positions(f,X,alpha,beta,delta,a,b):
# Plot the positions of search agents
x = X[:,0]
y = X[:,1]
s = plt.scatter(x,y,c='gray',zorder=1)
s = plt.scatter(x[alpha],y[alpha],c='red',zorder=1)
s = plt.scatter(x[beta],y[beta],c='blue',zorder=1)
s = plt.scatter(x[delta],y[delta],c='green',zorder=1)
camera.snap()
# Initialize the position of the search agents
X = random_population_uniform(50,np.array(LB),np.array(UB))
n = len(X)
l = 1
# Plot the first image on screen
x = np.linspace(LB[0],LB[1],1000)
y = np.linspace(LB[0],UB[1],1000)
X1,X2 = np.meshgrid(x,y)
Z = f(X1,X2)
cont = plt.contour(X1,X2,Z,20,linewidths=0.75)
while (l < max_iterations):
# Take the x,y coordinates of the initial population
x = X[:,0]
y = X[:,1]
# Calculate the objective function for each search agent
fitness = list(map(f,x,y))
# Update alpha, beta and delta
alpha,beta,delta = search_agent_fitness(fitness)
# Plot search agent positions
plot_search_agent_positions(f,X,alpha,beta,delta,LB,UB)
# a decreases linearly from 2 to 0
a = 2 - l *(2 / max_iterations)
# Update the position of search agents including the Omegas
for i in range(n):
x_prey = X[alpha]
r1 = np.random.rand(2) #r1 is a random vector in [0,1] x [0,1]
r2 = np.random.rand(2) #r2 is a random vector in [0,1] x [0,1]
A1 = 2*a*r1 - a
C1 = 2*r2
D_alpha = np.abs(C1 * x_prey - X[i])
X_1 = x_prey - A1*D_alpha
x_prey = X[beta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A2 = 2*a*r1 - a
C2 = 2*r2
D_beta = np.abs(C2 * x_prey - X[i])
X_2 = x_prey - A2*D_beta
x_prey = X[delta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A3 = 2*a*r1 - a
C3 = 2*r2
D_delta = np.abs(C3 * x_prey - X[i])
X_3 = x_prey - A3*D_delta
X[i] = (X_1 + X_2 + X_3)/3
l = l + 1
return X[alpha],camera
Function call
# define the objective function
def f(x,y):
return x**2 + y**2
minimizer,camera = gwo(f,7,[-10,-10],[10,10])
animation = camera.animate(interval = 1000, repeat = True,
repeat_delay = 500)
Is it possible that the line x = np.linspace(LB[0],LB[1],1000) should be x = np.linspace(LB[0],UB[1],1000) instead? With your current definition of x, x is an array only filled with the value -10 which means that you are unlikely to find a contour.
Another thing that you might want to do is to move the cont = plt.contour(X1,X2,Z,20,linewidths=0.75) line inside of your plot_search_agent_positions function to ensure that the contour is plotted at each iteration of the animation.
Once you make those changes, the code looks like that:
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera
import ffmpeg
import PIL
from matplotlib import animation, rc
from IPython.display import HTML, Image # For GIF
from scipy.interpolate import griddata
rc('animation', html='html5')
# X : Position vector of the initial population
# n : Initial population size
def gwo(f,max_iterations,LB,UB):
fig = plt.figure()
fig.gca(aspect='equal')
camera = Camera(fig)
def random_population_uniform(m,a,b):
dims = len(a)
x = [list(a + np.multiply(np.random.rand(dims),b - a)) for i in range(m)]
return np.array(x)
def search_agent_fitness(fitness):
alpha = 0
if fitness[1] < fitness[alpha]:
alpha, beta = 1, alpha
else:
beta = 1
if fitness[2] > fitness[alpha] and fitness[2] < fitness[beta]:
beta, delta = 2, beta
elif fitness[2] < fitness[alpha]:
alpha,beta,delta = 2,alpha,beta
else:
delta = 2
for i in range(3,len(fitness)):
if fitness[i] <= fitness[alpha]:
alpha, beta,delta = i, alpha, beta
elif fitness[i] > fitness[alpha] and fitness[i]<= fitness[beta]:
beta,delta = i,beta
elif fitness[i] > fitness[beta] and fitness[i]<= fitness[delta]:
delta = i
return alpha, beta, delta
def plot_search_agent_positions(f,X,alpha,beta,delta,a,b,X1,X2,Z):
# Plot the positions of search agents
x = X[:,0]
y = X[:,1]
s = plt.scatter(x,y,c='gray',zorder=1)
s = plt.scatter(x[alpha],y[alpha],c='red',zorder=1)
s = plt.scatter(x[beta],y[beta],c='blue',zorder=1)
s = plt.scatter(x[delta],y[delta],c='green',zorder=1)
Z=f(X1,X2)
cont=plt.contour(X1,X2,Z,levels=20,colors='k',norm=True)
plt.clabel(cont, cont.levels, inline=True, fontsize=10)
camera.snap()
# Initialize the position of the search agents
X = random_population_uniform(50,np.array(LB),np.array(UB))
n = len(X)
l = 1
# Plot the first image on screen
x = np.linspace(LB[0],UB[1],1000)
y = np.linspace(LB[0],UB[1],1000)
X1,X2 = np.meshgrid(x,y)
Z=f(X1,X2)
while (l < max_iterations):
# Take the x,y coordinates of the initial population
x = X[:,0]
y = X[:,1]
# Calculate the objective function for each search agent
fitness = list(map(f,x,y))
# Update alpha, beta and delta
alpha,beta,delta = search_agent_fitness(fitness)
# Plot search agent positions
plot_search_agent_positions(f,X,alpha,beta,delta,LB,UB,X1,X2,Z)
# a decreases linearly from 2 to 0
a = 2 - l *(2 / max_iterations)
# Update the position of search agents including the Omegas
for i in range(n):
x_prey = X[alpha]
r1 = np.random.rand(2) #r1 is a random vector in [0,1] x [0,1]
r2 = np.random.rand(2) #r2 is a random vector in [0,1] x [0,1]
A1 = 2*a*r1 - a
C1 = 2*r2
D_alpha = np.abs(C1 * x_prey - X[i])
X_1 = x_prey - A1*D_alpha
x_prey = X[beta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A2 = 2*a*r1 - a
C2 = 2*r2
D_beta = np.abs(C2 * x_prey - X[i])
X_2 = x_prey - A2*D_beta
x_prey = X[delta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A3 = 2*a*r1 - a
C3 = 2*r2
D_delta = np.abs(C3 * x_prey - X[i])
X_3 = x_prey - A3*D_delta
X[i] = (X_1 + X_2 + X_3)/3
l = l + 1
return X[alpha],camera
# define the objective function
def f(x,y):
return x**2 + y**2
minimizer,camera = gwo(f,7,[-10,-10],[10,10])
animation = camera.animate(interval = 1000, repeat = True,repeat_delay = 500)
And the output gives:

Random coordinates generator

I want to generate random coordinates for spheres in a box geometry. I'm using while loop and i have 2 condition. First one is the distance of coordinates. General distance formula was used so that the coordinates do not overlap. Second one is the porosity. When porosity is less than 0.45 generating should stop. My code is working correctly but when i reduce porosity condition less than 0.80 the algorithm stucks. It cannot reach that porosity even after hours. How can I improve it to generate coordinates faster? Any suggestions are appreciated.
#dist = math.sqrt(((x2-x1)**2) + ((y2-y1)**2) + ((z2-z1)**2))
import math
import random
import numpy as np
import matplotlib.pyplot as plt
A = 0.04 # x border.
B = 0.04 # y border.
C = 0.125 # z border.
V_total = A*B*C # volume
r = 0.006 # min distance of spheres.
radius = 0.003 # radius of spheres.
wall_distance = 0.003
Porosity = 1.0
coordinates = np.array([])
while Porosity >= 0.90:
# coordinates
x = random.uniform(wall_distance, A-wall_distance)
y = random.uniform(wall_distance, B-wall_distance)
z = random.uniform(wall_distance, C-wall_distance)
coord1 = (x,y,z)
if coordinates.shape[0] == 0: # add first one without condition
coordinates = np.array([coord1])
else:
coordinates = np.vstack((coordinates, coord1))
# seperate x,y,z and convert list for control
d_x = coordinates[:,0]
x = d_x.tolist()
d_y = coordinates[:,1]
y = d_y.tolist()
d_z = coordinates[:,2]
z = d_z.tolist()
for j in range(len(y)):
for k in range(j+1, len(z)):
dist = math.sqrt(((x[j]-x[k])**2) + ((y[j]-y[k])**2) + ((z[j]-z[k])**2))
if dist <= r:
coordinates = coordinates[:-1, :] # if distance is less than r, remove last coordinate
# check porosity
V_spheres = (4/3) * (np.pi) * (radius**3) * len(coordinates)
V_void = V_total - V_spheres
Porosity = V_void / V_total
print("Porosity: {}".format(Porosity))
print("Number of spheres: {}".format(len(coordinates)))
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.set_xlim([0, A])
ax.set_ylim([0, B])
ax.set_zlim([0, C])
ax.set_title('Coordinates for spheres')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
p = ax.scatter(coordinates[:,0], coordinates[:,1], coordinates[:,2])
fig.colorbar(p)
plt.show()
There are a number of things you can do to improve your performance here. See my modified code below, with explanations
import math
import random
import numpy as np
import matplotlib.pyplot as plt
A = 0.04 # x border.
B = 0.04 # y border.
C = 0.125 # z border.
V_total = A*B*C # volume
r = 0.006 # min distance of spheres.
radius = 0.003 # radius of spheres.
wall_distance = 0.003
Porosity = 1.0
coordinates = np.empty((0,3)) # initialize array with correct shape
while Porosity >= 0.70:
# coordinates
x = random.uniform(wall_distance, A-wall_distance)
y = random.uniform(wall_distance, B-wall_distance)
z = random.uniform(wall_distance, C-wall_distance)
is_invalid = (True in [
math.sqrt(((x - coordinates[i_coor,0])**2) +
((y - coordinates[i_coor,1])**2) +
((z - coordinates[i_coor,2])**2)) <= r
for i_coor in range(coordinates.shape[0]) ])
if not is_invalid:
coordinates = np.append(coordinates,[[x,y,z]], axis = 0)
else:
continue
V_spheres = (4/3) * (np.pi) * (radius**3) * len(coordinates)
V_void = V_total - V_spheres
Porosity = V_void / V_total
print(f"placed coord {len(coordinates)}, por = {Porosity}")
print("Porosity: {}".format(Porosity))
print("Number of spheres: {}".format(len(coordinates)))
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.set_xlim([0, A])
ax.set_ylim([0, B])
ax.set_zlim([0, C])
ax.set_title('Coordinates for spheres')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
p = ax.scatter(coordinates[:,0], coordinates[:,1], coordinates[:,2])
np.savetxt('out.csv', coordinates)
fig.colorbar(p)
plt.show()
the main thing I changed is this double for loop
for j in range(len(y)):
for k in range(j+1, len(z)):
dist = math.sqrt(((x[j]-x[k])**2) + ((y[j]-y[k])**2) + ((z[j]-z[k])**2))
This was checking every pair of points for overlap EACH TIME YOU ADD A SINGLE POINT. That took unnecessarily long. By only checking if the new point intersects with the old points, you reduce your runtime from O(n^3) to O(n^2). I was able to pretty quickly run this with 0.5 perosity.

Mean Square Displacement as a Function of Time in Python

I have been assigned the following:
"...Plot your final MSD as a function of δt. Include errorbars σ = std(MSD)/√N,
where std(MSD) is the standard deviation among the different runs and N is the
number of runs. N.B.: This is the formula for the error of the mean for statistically
independent, normally distributed time series.
You should find that your curve resembles
MSD(δt) = Dδt,
i. e., it is linear as a function of time in spite of being the square distance the
particle goes. That means that the particle undergoes diffusive motion where it
advanced only proportional to the square root of time. Compute your diffusion
constant D from the curve, and check that D = ∆."
However, I am struggling with this as I am not very proficient at coding, as well as the fact that I am not sure I totally understand the calculation involved.
Here is the code I am working on, note that the final plot is unfinished as this is the part I am struggling with:
#%% Brownian Motion
import math
import matplotlib.pyplot as plt
import numpy as np
import random
P_dis = []
N = 10
# N = the number of iterations (i.e. the number of iterations of the loop below)
for j in range(N):
T = 10000
# T = time steps i.e. the number of jumps the particle makes
x_pos = [0]
y_pos = [0]
# initally empty lists that will be appended below
for i in range(1,T):
A = random.uniform(0 , 1)
B = A * 2 * math.pi
current_x = x_pos[i-1]
current_y = y_pos[i-1]
next_x = current_x + math.cos(B)
# takes previous xpos and applies
next_y = current_y + math.sin(B)
x_pos = x_pos + [next_x]
# appends the next x list with xpos and stores
y_pos = y_pos + [next_y]
dis = np.sqrt((0 - x_pos[T - 1])**2 + (0 - y_pos[T - 1])**2)
P_dis.append(dis)
print(j)
plt.figure()
plt.plot(x_pos , y_pos , "0.65")
plt.plot((x_pos[0] , x_pos[-1]) , (y_pos[0] , y_pos[-1]) , "r" , label = ("Particle displacement =", dis))
plt.plot(x_pos[0] , y_pos[0] , 'ob' , label = "start" )
plt.plot(x_pos[-1] , y_pos[-1] , 'oc' , label = "end")
plt.legend(loc = "upper left")
plt.xlabel("x position")
plt.ylabel("y position")
plt.title("Brownian Motion of a particle in 2 dimensions")
plt.grid(True)
#MSD
MSD = np.mean(P_dis)
print("Mean Square Distance is", MSD , "over" , N , "iterations")
plt.figure()
plt.plot(, [P_dis] , "r")
Any help on the matter would be greatly appreciated.
Let's define:
T = 1000 # Number of time steps
N = 10 # Number of particles
step_size = 1 # Length of one step
I precompute most of the data with numpy and add everything up to get the motion of the random walk:
import numpy as np
import matplotlib.pyplot as plt
# Random direction for the N particles for T time_steps
rnd_angles = np.random.random((N, T))*2*np.pi
# Initialize the positions for each particle to (0, 0)
pos = np.zeros((N, T, 2))
for t in range(1, T):
# Calculate the position at time t for all N particles
# by adding a step in a random direction to the position at time t-1
pos[:, t, 0] = pos[:, t-1, 0] + np.cos(rnd_angles[:, t]) * step_size
pos[:, t, 1] = pos[:, t-1, 1] + np.sin(rnd_angles[:, t]) * step_size
# Calculate the distance to the center (0, 0) for all particles and all times
distance = np.linalg.norm(pos, axis=-1)
# Plot the trajectory of one particle
idx_particle = 7 # Choose from range(0, N)
x_pos = pos[idx_particle, : ,0]
y_pos = pos[idx_particle, : ,1]
dis = distance[idx_particle, -1] # Get the distance at the last time step
plt.figure()
plt.plot(x_pos , y_pos , "0.65")
plt.plot((x_pos[0] , x_pos[-1]) , (y_pos[0] , y_pos[-1]) , "r" ,
label=("Particle displacement =", dis))
plt.plot(x_pos[0] , y_pos[0] , 'ob' , label = "start" )
plt.plot(x_pos[-1] , y_pos[-1] , 'oc' , label = "end")
plt.legend(loc = "upper left")
plt.xlabel("x position")
plt.ylabel("y position")
plt.title("Brownian Motion of a particle in 2 dimensions")
plt.grid(True)
You can get an idea of what is happening and how 'slow' the expansion is moving on by looking at the positions over the time:
for i in np.linspace(0, T-1, 10, dtype=int):
plt.figure()
plt.scatter(pos[:, i, 0] , pos[:, i, 1])
You are interested in the mean squared distance from the start point (0, 0) with respect to the time:
squared_distance = (distance ** 2)
msd = squared_distance.mean(axis=0)
std_msd = squared_distance.std(axis=0)
sigma = std_msd / np.sqrt(N)
plt.errorbar(x=np.arange(T), y=msd, yerr=sigma)
You can chance T, N and step_size to look at the influence on msd.
To plot the MSE with its std with as little changes to your code as possible, you can do the following,
import math
import matplotlib.pyplot as plt
import numpy as np
import random
P_dis = []
N = 10
# N = the number of iterations i.e. the number of iterations of the loop
# below
T = 100
allx = np.array([]).reshape(0,T)
ally = np.array([]).reshape(0,T)
allD = np.array([]).reshape(0,T)
for j in range(N):
# T = time steps i.e. the number of jumps the particle makes
x_pos = [0]
y_pos = [0]
# initally empty lists that will be appended below
for i in range(1,T):
A = random.uniform(0 , 1)
B = A * 2 * math.pi
current_x = x_pos[i-1]
current_y = y_pos[i-1]
next_x = current_x + math.cos(B)
# takes previous xpos and applies
next_y = current_y + math.sin(B)
x_pos = x_pos + [next_x]
# appends the next x list with xpos and stores
y_pos = y_pos + [next_y]
dis = np.sqrt((0 - x_pos[T - 1])**2 + (0 - y_pos[T - 1])**2)
dis = np.sqrt((0 - np.array(x_pos))**2 + (0 - np.array(y_pos))**2)
allD = np.vstack([allD,dis])
allx = np.vstack([allx,np.array(x_pos)])
ally = np.vstack([ally,np.array(y_pos)])
P_dis.append(dis)
print(j)
plt.figure()
plt.plot(np.mean(allx,0) , np.mean(ally,0) , "0.65")
plt.figure()
plt.plot(np.arange(0,T),np.mean(allD,0),'b')
plt.plot(np.arange(0,T),np.mean(allD,0)+np.std(allD,0)/np.sqrt(N),'r')
plt.plot(np.arange(0,T),np.mean(allD,0)-np.std(allD,0)/np.sqrt(N),'r')

Barabasi-Albert model, wrong degree exponent

I'm trying to generate a scale-free network using the Barabasi-Albert model. The model predicts a degree distribution that follows p(k) ~ k^-3 but mine shows k^-2.
The algorithm was taken from Barabasi's book at this URL: http://barabasi.com/networksciencebook,
here is the relevant paragraph:
Barabasi's algorithm
Here is my code, could someone please help me figure out what is wrong?
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
plt.rcParams["figure.figsize"] = (15,6)
#initialize values
N = 10000
k = 2
m = int(k / 2)
#initialize matrices
adjacency = np.zeros((N,N))
degrees = np.zeros(N)
#add links
for i in range(N):
degrees[i] = m
for c in range(m):
# choose a node with probability proportional to it's degree
j = np.random.choice(N, p = degrees / (2 * m * i + m + c))
degrees[j] += 1
adjacency[i][j] += 1
adjacency[j][i] += 1
def get_binned_data(labels, values, num):
min_label, max_label = min(labels), max(labels)
base = (max_label / min_label) ** (1 / num)
bins = [base**i for i in range(int(np.log(max_label) / np.log(base)) + 1)]
binned_values, binned_labels = [], []
counter = 0
for b in bins:
bin_size = 0
bin_sum = 0
while counter < len(labels) and labels[counter] <= b:
bin_size += values[counter]
bin_sum += values[counter] * labels[counter]
counter += 1
if(bin_size):
binned_values.append(bin_size)
binned_labels.append(bin_sum / bin_size)
return binned_labels, binned_values
labels, values = zip(*sorted(Counter(degrees).items(), key = lambda pair:
pair[0]))
binned_labels, binned_values = get_binned_data(labels, values, 15)
fig, (ax1, ax2) = plt.subplots(ncols = 2, nrows = 1)
fig.suptitle('Barabasi-Albert Model',fontsize = 25)
ax1.loglog(binned_labels, binned_values, basex = 10, basey = 10, linestyle =
'None', marker = 'o', color = 'red')
ax1.set(xlabel = 'degree', ylabel = '# of nodes')
ax1.set_title('log-log scale (log-binned)',{'fontsize':'15'})
ax2.plot(labels, values, 'ro')
ax2.set(xlabel = 'degree', ylabel = '# of nodes')
ax2.set_title('linear scale',{'fontsize':'15'})
plt.show()
Your code does not run (probabilities in np.random.choice do not sum to 1). Why not p = degrees/np.sum(degrees)?
According to Wikipedia, you need to start with some already connected nodes, whereas you start from nothing. Also, you should probably put degrees[i] = m after the inner loop to avoid forming links from node i to itself.
This might help, but it's not clear to me how you generate your degree plot, so I can't verify it.

Categories