Diagonalizing Matrix A without using any libraries - python

How can I create Matrix P consisting of three eigenvector columns by using a double nested loop.
from sympy.matrices import Matrix, zeros
from sympy import pprint
A = Matrix([[6,2,6], [2,6,6], [6,6,2]])
ew_A = A.eigenvals()
ev_A = A.eigenvects()
pprint(ew_A)
pprint(ev_A)
# Matrix P
(n,m) = A.shape
P = TODO # Initialising
# "filling Matrix P with ...
for i in TODO:
for j in TODO:
P[:,i+j] = TODO
## Calculating Diagonalmatrix
D= P**-1*P*A
Thanks so much in Advance

Finding the eigenvalues of a matrix, or diagonalizing it, is equivalent to finding the zeros of a polynomial with a degree equal to the size of the matrix. So in your case diagonalizing a 3x3 matrix is equivalent to finding the zeros of a 3rd degree polynomial. Maybe there is a simple algorithm for that, but mathematicians always go for the general case.
And in the general case you can show that there is no terminating algorithm for finding the zeros of a 5th-or-higher degree polynomial (that is called Galois theory), so there is also no simple "triple loop" algorithm for matrices of size 5x5 and higher. Eigenvalue software works by an iterative approximation algorithm, so that is a "while" loop around some finite loops.
This means that your question has no answer in the general case. In the 3x3 case maybe, but even that is not going to be terribly simple.

Related

Generating invertible matrices in numpy/tensorflow

I would like to generate invertible matrices (specifically those from GL(n), a general linear group of size n) using Tensorflow and/or Numpy for use with my neural network.
How can this be done and what would be the best way of doing so?
I understand there is a way to generate symmetric invertible matrices by computing (A + A.T)/2 for arbitrary square matrices A, however, I would like mine to not just be symmetric.
I happened to have found one way which I believe can generate a large variety of random invertible matrices using diagonal dominance.
The theorem is that given an nxn matrix, if the abs of the diagonal element is larger than the sum of the abs of all the row elements with respect to the row the diagonal element is in, and this holds true for all rows, then the underlying matrix is invertible. (here is the corresponding wikipedia article: https://en.wikipedia.org/wiki/Diagonally_dominant_matrix)
Therefore the following code snippet generates an arbitrary invertible matrix.
n = 5 # size of invertible matrix I wish to generate
m = np.random.rand(n, n)
mx = np.sum(np.abs(m), axis=1)
np.fill_diagonal(m, mx)

numpy and solving symmetric systems

Suppose I have a symmetric matrix A and a vector b and want to find A^(-1) b. Now, this is well-known to be doable in time O(N^2) (where N is the dimension of the vector\matrix), and I believe that in MATLAB this can be done as b\A. But all I can find in python is numpy.linalg.solve() which will do Gaussian elimination, which is O(N^3). I must not be looking in the right place...
scipy.linalg.solve has an argument to make it assume a symmetric matrix:
x = scipy.linalg.solve(A, b, assume_a="sym")
If you know your matrix is not just symmetric but positive definite you can give this stronger assumption instead, as "pos".

LinAlgError: Last 2 dimensions of the array must be square

I need to solve a set of simultaneous equations of the form Ax = B for x. I've used the numpy.linalg.solve function, inputting A and B, but I get the error 'LinAlgError: Last 2 dimensions of the array must be square'. How do I fix this?
Here's my code:
A = matrix([[v1x, v2x], [v1y, v2y], [v1z, v2z]])
print A
B = [(p2x-p1x-nmag[0]), (p2y-p1y-nmag[1]), (p2z-p1z-nmag[2])]
print B
x = numpy.linalg.solve(A, B)
The values of the matrix/vector are calculated earlier in the code and this works fine, but the values are:
A =
(-0.56666301, -0.52472909)
(0.44034147, 0.46768087)
(0.69641397, 0.71129036)
B =
(-0.38038602567630364, -24.092279373295057, 0.0)
x should have the form (x1,x2,0)
In case you still haven't found an answer, or in case someone in the future has this question.
To solve Ax=b:
numpy.linalg.solve uses LAPACK gesv. As mentioned in the documentation of LAPACK, gesv requires A to be square:
LA_GESV computes the solution to a real or complex linear system of equations AX = B, where A is a square matrix and X and B are rectangular matrices or vectors. Gaussian elimination with row interchanges is used to factor A as A = PL*U , where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the above system.
If A matrix is not square, it means that you either have more variables than your equations or the other way around. In these situations, you can have the cases of no solution or infinite number of solutions. What determines the solution space is the rank of the matrix compared to the number of columns. Therefore, you first have to check the rank of the matrix.
That being said, you can use another method to solve your system of linear equations. I suggest having a look at factorization methods like LU or QR or even SVD. In LAPACK you can use getrs, in Python you can different things:
first do the factorization like QR and then feed the resulting matrices to a method like scipy.linalg.solve_triangular
solve the least-squares using numpy.linalg.lstsq
Also have a look here where a simple example is formulated and solved.
A square matrix is a matrix with the same number of rows and columns. The matrix you are doing is a 3 by 2. Add a column of zeroes to fix this problem.

python hcluster, distance matrix and condensed distance matrix

I'm using the module hcluster to calculate a dendrogram from a distance matrix. My distance matrix is an array of arrays generated like this:
import hcluster
import numpy as np
mols = (..a list of molecules)
distMatrix = np.zeros((10, 10))
for i in range(0,10):
for j in range(0,10):
sim = OETanimoto(mols[i],mols[j]) # a function to calculate similarity between molecules
distMatrix[i][j] = 1 - sim
I then use the command distVec = hcluster.squareform(distMatrix) to convert the matrix into a condensed vector and calculate the linkage matrix with vecLink = hcluster.linkage(distVec).
All this works fine but if I calculate the linkage matrix using the distance matrix and not the condensed vector matLink = hcluster.linkage(distMatrix) I get a different linkage matrix (the distances between the nodes are a lot larger and topology is slightly different)
Now I'm not sure whether this is because hcluster only works with condensed vectors or whether I'm making mistakes on the way there.
Thanks for your help!
I knocked up a quick random example similar to yours and experienced the same problem.
In the docstring it does say :
Performs hierarchical/agglomerative clustering on the
condensed distance matrix y. y must be a :math:{n \choose 2} sized
vector where n is the number of original observations paired
in the distance matrix.
However, having had a quick look at the code, it seems like the intent is for it to both work with vector shaped and matrix shaped code:
In hierachy.py there is a switch based upon the shape of the matrix.
It seems however that the key bit of info is in the function linkage's docstring:
- Q : ndarray
A condensed or redundant distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
``pdist`` returns. Alternatively, a collection of
:math:`m` observation vectors in n dimensions may be passed as
a :math:`m` by :math:`n` array.
So I think that the interface doesn't allow the passing of a distance matrix.
Instead it thinks you are passing it m observation vectors in n dimensions .
Hence the difference in result?
Does that seem reasonable?
Else just take a look at the code itself I'm sure you'll be able to debug it and figure out why your examples are different.
Cheers
Matt

Python Inverse of a Matrix

How do I get the inverse of a matrix in python? I've implemented it myself, but it's pure python, and I suspect there are faster modules out there to do it.
You should have a look at numpy if you do matrix manipulation. This is a module mainly written in C, which will be much faster than programming in pure python. Here is an example of how to invert a matrix, and do other matrix manipulation.
from numpy import matrix
from numpy import linalg
A = matrix( [[1,2,3],[11,12,13],[21,22,23]]) # Creates a matrix.
x = matrix( [[1],[2],[3]] ) # Creates a matrix (like a column vector).
y = matrix( [[1,2,3]] ) # Creates a matrix (like a row vector).
print A.T # Transpose of A.
print A*x # Matrix multiplication of A and x.
print A.I # Inverse of A.
print linalg.solve(A, x) # Solve the linear equation system.
You can also have a look at the array module, which is a much more efficient implementation of lists when you have to deal with only one data type.
Make sure you really need to invert the matrix. This is often unnecessary and can be numerically unstable. When most people ask how to invert a matrix, they really want to know how to solve Ax = b where A is a matrix and x and b are vectors. It's more efficient and more accurate to use code that solves the equation Ax = b for x directly than to calculate A inverse then multiply the inverse by B. Even if you need to solve Ax = b for many b values, it's not a good idea to invert A. If you have to solve the system for multiple b values, save the Cholesky factorization of A, but don't invert it.
See Don't invert that matrix.
It is a pity that the chosen matrix, repeated here again, is either singular or badly conditioned:
A = matrix( [[1,2,3],[11,12,13],[21,22,23]])
By definition, the inverse of A when multiplied by the matrix A itself must give a unit matrix. The A chosen in the much praised explanation does not do that. In fact just looking at the inverse gives a clue that the inversion did not work correctly. Look at the magnitude of the individual terms - they are very, very big compared with the terms of the original A matrix...
It is remarkable that the humans when picking an example of a matrix so often manage to pick a singular matrix!
I did have a problem with the solution, so looked into it further. On the ubuntu-kubuntu platform, the debian package numpy does not have the matrix and the linalg sub-packages, so in addition to import of numpy, scipy needs to be imported also.
If the diagonal terms of A are multiplied by a large enough factor, say 2, the matrix will most likely cease to be singular or near singular. So
A = matrix( [[2,2,3],[11,24,13],[21,22,46]])
becomes neither singular nor nearly singular and the example gives meaningful results... When dealing with floating numbers one must be watchful for the effects of inavoidable round off errors.
For those like me, who were looking for a pure Python solution without pandas or numpy involved, check out the following GitHub project: https://github.com/ThomIves/MatrixInverse.
It generously provides a very good explanation of how the process looks like "behind the scenes". The author has nicely described the step-by-step approach and presented some practical examples, all easy to follow.
This is just a little code snippet from there to illustrate the approach very briefly (AM is the source matrix, IM is the identity matrix of the same size):
def invert_matrix(AM, IM):
for fd in range(len(AM)):
fdScaler = 1.0 / AM[fd][fd]
for j in range(len(AM)):
AM[fd][j] *= fdScaler
IM[fd][j] *= fdScaler
for i in list(range(len(AM)))[0:fd] + list(range(len(AM)))[fd+1:]:
crScaler = AM[i][fd]
for j in range(len(AM)):
AM[i][j] = AM[i][j] - crScaler * AM[fd][j]
IM[i][j] = IM[i][j] - crScaler * IM[fd][j]
return IM
But please do follow the entire thing, you'll learn a lot more than just copy-pasting this code! There's a Jupyter notebook as well, btw.
Hope that helps someone, I personally found it extremely useful for my very particular task (Absorbing Markov Chain) where I wasn't able to use any non-standard packages.
You could calculate the determinant of the matrix which is recursive
and then form the adjoined matrix
Here is a short tutorial
I think this only works for square matrices
Another way of computing these involves gram-schmidt orthogonalization and then transposing the matrix, the transpose of an orthogonalized matrix is its inverse!
Numpy will be suitable for most people, but you can also do matrices in Sympy
Try running these commands at http://live.sympy.org/
M = Matrix([[1, 3], [-2, 3]])
M
M**-1
For fun, try M**(1/2)
If you hate numpy, get out RPy and your local copy of R, and use it instead.
(I would also echo to make you you really need to invert the matrix. In R, for example, linalg.solve and the solve() function don't actually do a full inversion, since it is unnecessary.)

Categories