I am trying to solve this math problem in python, and I'm not sure what it is called:
The answer X is always 100
Given a list of 5 integers, their sum would equal X
Each integer has to be between 1 and 25
The integers can appear one or more times in the list
I want to find all the possible unique lists of 5 integers that match.
These would match:
20,20,20,20,20
25,25,25,20,5
10,25,19,21,25
along with many more.
I looked at itertools.permutations, but I don't think that handles duplicate integers in the list. I'm thinking there must be a standard math algorithm for this, but my search queries must be poor.
Only other thing to mention is if it matters that the list size could change from 10 integers to some other length (6, 24, etc).
This is a constraint satisfaction problem. These can often be solved by a method called linear programming: You fix one part of the solution and then solve the remaining subproblem. In Python, we can implement this approach with a recursive function:
def csp_solutions(target_sum, n, i_min=1, i_max=25):
domain = range(i_min, i_max + 1)
if n == 1:
if target_sum in domain:
return [[target_sum]]
else:
return []
solutions = []
for i in domain:
# Check if a solution is still possible when i is picked:
if (n - 1) * i_min <= target_sum - i <= (n - 1) * i_max:
# Construct solutions recursively:
solutions.extend([[i] + sol
for sol in csp_solutions(target_sum - i, n - 1)])
return solutions
all_solutions = csp_solutions(100, 5)
This yields 23746 solutions, in agreement with the answer by Alex Reynolds.
Another approach with Numpy:
#!/usr/bin/env python
import numpy as np
start = 1
end = 25
entries = 5
total = 100
a = np.arange(start, end + 1)
c = np.array(np.meshgrid(a, a, a, a, a)).T.reshape(-1, entries)
assert(len(c) == pow(end, entries))
s = c.sum(axis=1)
#
# filter all combinations for those that meet sum criterion
#
valid_combinations = c[np.where(s == total)]
print(len(valid_combinations)) # 23746
#
# filter those combinations for unique permutations
#
unique_permutations = set(tuple(sorted(x)) for x in valid_combinations)
print(len(unique_permutations)) # 376
You want combinations_with_replacement from itertools library. Here is what the code would look like:
from itertools import combinations_with_replacement
values = [i for i in range(1, 26)]
candidates = []
for tuple5 in combinations_with_replacement(values, 5):
if sum(tuple5) == 100:
candidates.append(tuple5)
For me on this problem I get 376 candidates. As mentioned in the comments above if these are counted once for each arrangement of the 5-pair, then you'd want to look at all, permutations of the 5 candidates-which may not be all distinct. For example (20,20,20,20,20) is the same regardless of how you arrange the indices. However, (21,20,20,20,19) is not-this one has some distinct arrangements.
I think that this could be what you are searching for: given a target number SUM, a left treshold L, a right treshold R and a size K, find all the possible lists of K elements between L and R which sum gives SUM. There isn't a specific name for this problem though, as much as I was able to find.
Related
I tried a lot of things and still don't know why it doesn't work fast. How to I fix it?
It is a CodeWars 6 kyu task:
Given a set of elements (integers or string characters, characters only in RISC-V), where any element may occur more than once, return the number of subsets that do not contain a repeated element.
import itertools
def est_subsets(a):
counter = 0
a = list(set(a))
p = itertools.chain.from_iterable(itertools.combinations(a, r)for r in range(1, len(a) + 1))
for b in p:
counter += 1
return counter
itertools.combinations needs to generate all the values. But you could just compute the number of values that would be generated directly, instead of generating them at all. Just use math.comb (added in 3.8), selecting the length of your input and you'll get the same results in a tiny fraction of the time.
Please take a look at the manual:
https://docs.python.org/3/library/itertools.html#itertools.combinations
The number of items returned is n! / r! / (n-r)! when 0 <= r <= n or zero when r > n.
Which means that you can calculate the number or items it should return.
I have an application that is kind of like a URL shortener and need to generate unique URL whenever a user requests.
For this I need a function to map an index/number to a unique string of length n with two requirements:
Two different numbers can not generate same string.
In other words as long as i,j<K: f(i) != f(j). K is the number of possible strings = 26^n. (26 is number of characters in English)
Two strings generated by number i and i+1 don't look similar most of the times. For example they are not abcdef1 and abcdef2. (So that users can not predict the pattern and the next IDs)
This is my current code in Python:
chars = "abcdefghijklmnopqrstuvwxyz"
for item in itertools.product(chars, repeat=n):
print("".join(item))
# For n = 7 generates:
# aaaaaaa
# aaaaaab
# aaaaaac
# ...
The problem with this code is there is no index that I can use to generate unique strings on demand by tracking that index. For example generate 1 million unique strings today and 2 million tomorrow without looping through or collision with the first 1 million.
The other problem with this code is that the strings that are created after each other look very similar and I need them to look random.
One option is to populate a table/dictionary with millions of strings, shuffle them and keep track of index to that table but it takes a lot of memory.
An option is also to check the database of existing IDs after generating a random string to make sure it doesn't exist but the problem is as I get closer to the K (26^n) the chance of collision increases and it wouldn't be efficient to make a lot of check_if_exist queries against the database.
Also if n was long enough I could use UUID with small chance of collision but in my case n is 7.
I'm going to outline a solution for you that is going to resist casual inspection even by a knowledgeable person, though it probably IS NOT cryptographically secure.
First, your strings and numbers are in a one-to-one map. Here is some simple code for that.
alphabet = 'abcdefghijklmnopqrstuvwxyz'
len_of_codes = 7
char_to_pos = {}
for i in range(len(alphabet)):
char_to_pos[alphabet[i]] = i
def number_to_string(n):
chars = []
for _ in range(len_of_codes):
chars.append(alphabet[n % len(alphabet)])
n = n // len(alphabet)
return "".join(reversed(chars))
def string_to_number(s):
n = 0
for c in s:
n = len(alphabet) * n + char_to_pos[c]
return n
So now your problem is how to take an ascending stream of numbers and get an apparently random stream of numbers out of it instead. (Because you know how to turn those into strings.) Well, there are lots of tricks for primes, so let's find a decent sized prime that fits in the range that you want.
def is_prime (n):
for i in range(2, n):
if 0 == n%i:
return False
elif n < i*i:
return True
if n == 2:
return True
else:
return False
def last_prime_before (n):
for m in range(n-1, 1, -1):
if is_prime(m):
return m
print(last_prime_before(len(alphabet)**len_of_codes)
With this we find that we can use the prime 8031810103. That's how many numbers we'll be able to handle.
Now there is an easy way to scramble them. Which is to use the fact that multiplication modulo a prime scrambles the numbers in the range 1..(p-1).
def scramble1 (p, k, n):
return (n*k) % p
Picking a random number to scramble by, int(random.random() * 26**7) happened to give me 3661807866, we get a sequence we can calculate with:
for i in range(1, 5):
print(number_to_string(scramble1(8031810103, 3661807866, i)))
Which gives us
lwfdjoc
xskgtce
jopkctb
vkunmhd
This looks random to casual inspection. But will be reversible for any knowledgeable someone who puts modest effort in. They just have to guess the prime and algorithm that we used, look at 2 consecutive values to get the hidden parameter, then look at a couple of more to verify it.
Before addressing that, let's figure out how to take a string and get the number back. Thanks to Fermat's little theorem we know for p prime and 1 <= k < p that (k * k^(p-2)) % p == 1.
def n_pow_m_mod_k (n, m, k):
answer = 1
while 0 < m:
if 1 == m % 2:
answer = (answer * n) % k
m = m // 2
n = (n * n) % k
return answer
print(n_pow_m_mod_k(3661807866, 8031810103-2, 8031810103))
This gives us 3319920713. Armed with that we can calculate scramble1(8031810103, 3319920713, string_to_number("vkunmhd")) to find out that vkunmhd came from 4.
Now let's make it harder. Let's generate several keys to be scrambling with:
import random
p = 26**7
for i in range(5):
p = last_prime_before(p)
print((p, int(random.random() * p)))
When I ran this I happened to get:
(8031810103, 3661807866)
(8031810097, 3163265427)
(8031810091, 7069619503)
(8031809963, 6528177934)
(8031809917, 991731572)
Now let's scramble through several layers, working from smallest prime to largest (this requires reversing the sequence):
def encode (n):
for p, k in [
(8031809917, 991731572)
, (8031809963, 6528177934)
, (8031810091, 7069619503)
, (8031810097, 3163265427)
, (8031810103, 3661807866)
]:
n = scramble1(p, k, n)
return number_to_string(n)
This will give a sequence:
ehidzxf
shsifyl
gicmmcm
ofaroeg
And to reverse it just use the same trick that reversed the first scramble (reversing the primes so I am unscrambling in the order that I started with):
def decode (s):
n = string_to_number(s)
for p, k in [
(8031810103, 3319920713)
, (8031810097, 4707272543)
, (8031810091, 5077139687)
, (8031809963, 192273749)
, (8031809917, 5986071506)
]:
n = scramble1(p, k, n)
return n
TO BE CLEAR I do NOT promise that this is cryptographically secure. I'm not a cryptographer, and I'm aware enough of my limitations that I know not to trust it.
But I do promise that you'll have a sequence of over 8 billion strings that you are able to encode/decode with no obvious patterns.
Now take this code, scramble the alphabet, regenerate the magic numbers that I used, and choose a different number of layers to go through. I promise you that I personally have absolutely no idea how someone would even approach the problem of figuring out the algorithm. (But then again I'm not a cryptographer. Maybe they have some techniques to try. I sure don't.)
How about :
from random import Random
n = 7
def f(i):
myrandom = Random()
myrandom.seed(i)
alphabet = "123456789"
return "".join([myrandom.choice(alphabet) for _ in range(7)])
# same entry, same output
assert f(0) == "7715987"
assert f(0) == "7715987"
assert f(0) == "7715987"
# different entry, different output
assert f(1) == "3252888"
(change the alphabet to match your need)
This "emulate" a UUID, since you said you could accept a small chance of collision. If you want to avoid collision, what you really need is a perfect hash function (https://en.wikipedia.org/wiki/Perfect_hash_function).
you can try something based on the sha1 hash
#!/usr/bin/python3
import hashlib
def generate_link(i):
n = 7
a = "abcdefghijklmnopqrstuvwxyz01234567890"
return "".join(a[x%36] for x in hashlib.sha1(str(i).encode('ascii')).digest()[-n:])
This is a really simple example of what I outlined in this comment. It just offsets the number based on i. If you want "different" strings, don't use this, because if num is 0, then you will get abcdefg (with n = 7).
alphabet = "abcdefghijklmnopqrstuvwxyz"
# num is the num to convert, i is the "offset"
def num_to_char(num, i):
return alphabet[(num + i) % 26]
# generate the link
def generate_link(num, n):
return "".join([num_to_char(num, i) for i in range(n)])
generate_link(0, 7) # "abcdefg"
generate_link(0, 7) # still "abcdefg"
generate_link(0, 7) # again, "abcdefg"!
generate_link(1, 7) # now it's "bcdefgh"!
You would just need to change the num + i to some complicated and obscure math equation.
Best explained by example. If a python list is -
[[0,1,2,0,4],
[0,1,2,0,2],
[1,0,0,0,1],
[1,0,0,1,0]]
I want to select two sub-lists which will yield the max sum of occurrences of zeros present - where sum is to be calculated as below
SUM = No. of zeros present in the first selected sub-list + No. of zeros present in the second selected sub-list which were not present in the first selected sub-list.
In this case, answer is 5. (First or second sub-list and the last sub-list). (Note that the third sub-list is not to be selected because it has zero present in 3rd index which is same as in first/second sub-list we have to select and it will amount to sum as 4 which will not be maximum if we consider the last sub-list)
What kind of algorithm is best suited if we were to apply it on a big input? Is there a better way to do this in better than in N2 time?
Binary operations are fairly useful for this task:
Convert each sublist to a binary number, where a 0 is turned into a 1 bit, and other numbers are turned into a 0 bit.
For example, [0,1,2,0,4] would be turned into 10010, which is 18.
Eliminate duplicate numbers.
Combine the remaining numbers pairwise and combine them with a binary OR.
Find the number with the most 1 bits.
The code:
lists = [[0,1,2,0,4],
[0,1,2,0,2],
[1,0,0,0,1],
[1,0,0,1,0]]
import itertools
def to_binary(lst):
num = ''.join('1' if n == 0 else '0' for n in lst)
return int(num, 2)
def count_ones(num):
return bin(num).count('1')
# Step 1 & 2: Convert to binary and remove duplicates
binary_numbers = {to_binary(lst) for lst in lists}
# Step 3: Create pairs
combinations = itertools.combinations(binary_numbers, 2)
# Step 4 & 5: Compute binary OR and count 1 digits
zeros = (count_ones(a | b) for a, b in combinations)
print(max(zeros)) # output: 5
The efficiency of the naive algorithm is O(n(n-1)*m) ~ O(n2m) where n is the number of lists and m is the length of each list. When n and m are comparable in magnitude, this equates to O(n3).
It might be helpful to observe that naive matrix multiplication is also O(n3). This might lead us to the following algorithm:
Write each list with only 1's and 0's, where a 1 indicates a non-zero entry.
Arrange these lists in a matrix A.
Compute the product M=AAT.
Find the minimum element in M; the row and column correspond to the lists which produce the maximize number of non-overlapping zeros.
Here, (3) is the limiting step of the algorithm. Asymptotically, depending on your matrix multiplication algorithm, you can achieve a complexity down to roughly O(n2.4).
An example Python implementation would look like:
import numpy as np
lists = [[0,1,2,0,4],
[0,1,2,0,2],
[1,0,0,0,1],
[1,0,0,1,0]]
filtered = list(set(tuple(1 if e else 0 for e in sub) for sub in lists))
A = np.mat(filtered)
D = np.einsum('ik,jk->ij', A, A)
indices= np.unravel_index(np.argmin(D), D.shape)
print(f'{indices}: {len(lists[0]) - D[indices]}') # (0, 3): 0
Note that this algorithm on it's own has the fundamental inefficiency that it is calculating both the lower-triangular and upper-triangular halves of dot product matrix. However, the numpy speed-up will probably offset this from the combinations approach. See the timing results below:
def numpy_approach(lists):
filtered = list(set(tuple(1 if e else 0 for e in sub) for sub in lists))
A = np.mat(filtered, dtype=bool).astype(int)
D = np.einsum('ik,jk->ij', A, A)
return len(lists[0]) - D.min()
def itertools_approach(lists):
binary_numbers = {int(''.join('1' if n == 0 else '0' for n in lst), 2)
for lst in lists}
combinations = itertools.combinations(binary_numbers, 2)
zeros = (bin(a | b).count('1') for a, b in combinations)
return max(zeros)
from time import time
N = 1000
lists = [[random.randint(0, 5) for _ in range(10)] for _ in range(100)]
for name, function in {
'numpy approach': numpy_approach,
'itertools approach': itertools_approach
}.items():
start = time()
for _ in range(N):
function(lists)
print(f'{name}: {time() - start}')
# numpy approach: 0.2698099613189697
# itertools approach: 0.9693171977996826
The algorithm should look something like (with Haskell code as example, so as not to make the process trivial for you in Python:
turn each sublist into "Is zero" or "Isn't zero"
map (map (\x -> if x==0 then 1 else 0)) bigList
Enumerate the list so you can keep indices
enumList = zip [0..] bigList
Compare each sublist with its successive sublists
myCompare = concat . go
where
go [] = []
go ((ix, xs):xss) = [((ix, iy), zipWith (.|.) xs ys) | (iy, ys) <- xss] : go xss
Calculate your maxes
best = maximumBy (compare `on` (sum . snd)) $ myCompare enumList
Pull out the indices
result = fst best
For one of my programming questions, I am required to define a function that accepts two variables, a list of length l and an integer w. I then have to find the maximum sum of a sublist with length w within the list.
Conditions:
1<=w<=l<=100000
Each element in the list ranges from [1, 100]
Currently, my solution works in O(n^2) (correct me if I'm wrong, code attached below), which the autograder does not accept, since we are required to find an even simpler solution.
My code:
def find_best_location(w, lst):
best = 0
n = 0
while n <= len(lst) - w:
lists = lst[n: n + w]
cur = sum(lists)
best = cur if cur>best else best
n+=1
return best
If anyone is able to find a more efficient solution, please do let me know! Also if I computed my big-O notation wrongly do let me know as well!
Thanks in advance!
1) Find sum current of first w elements, assign it to best.
2) Starting from i = w: current = current + lst[i]-lst[i-w], best = max(best, current).
3) Done.
Your solution is indeed O(n^2) (or O(n*W) if you want a tighter bound)
You can do it in O(n) by creating an aux array sums, where:
sums[0] = l[0]
sums[i] = sums[i-1] + l[i]
Then, by iterating it and checking sums[i] - sums[i-W] you can find your solution in linear time
You can even calculate sums array on the fly to reduce space complexity, but if I were you, I'd start with it, and see if I can upgrade my solution next.
The subset sum problem is well-known for being NP-complete, but there are various tricks to solve versions of the problem somewhat quickly.
The usual dynamic programming algorithm requires space that grows with the target sum. My question is: can we reduce this space requirement?
I am trying to solve a subset sum problem with a modest number of elements but a very large target sum. The number of elements is too large for the exponential time algorithm (and shortcut method) and the target sum is too large for the usual dynamic programming method.
Consider this toy problem that illustrates the issue. Given the set A = [2, 3, 6, 8] find the number of subsets that sum to target = 11 . Enumerating all subsets we see the answer is 2: (3, 8) and (2, 3, 6).
The dynamic programming solution gives the same result, of course - ways[11] returns 2:
def subset_sum(A, target):
ways = [0] * (target + 1)
ways[0] = 1
ways_next = ways[:]
for x in A:
for j in range(x, target + 1):
ways_next[j] += ways[j - x]
ways = ways_next[:]
return ways[target]
Now consider targeting the sum target = 1100 the set A = [200, 300, 600, 800]. Clearly there are still 2 solutions: (300, 800) and (200, 300, 600). However, the ways array has grown by a factor of 100.
Is it possible to skip over certain weights when filling out the dynamic programming storage array? For my example problem I could compute the greatest common denominator of the input set and then reduce all items by that constant, but this won't work for my real application.
This SO question is related, but those answers don't use the approach I have in mind. The second comment by Akshay on this page says:
...in the cases where n is very small (eg. 6) and sum is very large
(eg. 1 million) then the space complexity will be too large. To avoid
large space complexity n HASHTABLES can be used.
This seems closer to what I'm looking for, but I can't seem to actually implement the idea. Is this really possible?
Edited to add: A smaller example of a problem to solve. There is 1 solution.
target = 5213096522073683233230240000
A = [2316931787588303659213440000,
1303274130518420808307560000,
834095443531789317316838400,
579232946897075914803360000,
425558899761116998631040000,
325818532629605202076890000,
257436865287589295468160000,
208523860882947329329209600,
172333769324749858949760000,
144808236724268978700840000,
123386899930738064691840000,
106389724940279249657760000,
92677271503532146368537600,
81454633157401300519222500,
72153585080604612224640000,
64359216321897323867040000,
57762842349846905631360000,
52130965220736832332302400,
47284322195679666514560000,
43083442331187464737440000,
39418499221729173786240000,
36202059181067244675210000,
33363817741271572692673536,
30846724982684516172960000,
28604096143065477274240000,
26597431235069812414440000,
24794751591313594450560000,
23169317875883036592134400,
21698632766175580575360000,
20363658289350325129805625,
19148196591638873216640000,
18038396270151153056160000,
17022355990444679945241600]
A real problem is:
target = 262988806539946324131984661067039976436265064677212251086885351040000
A = [116883914017753921836437627140906656193895584300983222705282378240000,
65747201634986581032996165266759994109066266169303062771721337760000,
42078209046391411861117545770726396229802410348353960173901656166400,
29220978504438480459109406785226664048473896075245805676320594560000,
21468474003260924418937523352411426647858372626711204170357987840000,
16436800408746645258249041316689998527266566542325765692930334440000,
12987101557528213537381958571211850688210620477887024745031375360000,
10519552261597852965279386442681599057450602587088490043475414041600,
8693844844295746252297013588993057072273225278585528961549928960000,
7305244626109620114777351696306666012118474018811451419080148640000,
6224587137040149683597270084426981690799173128454727836375984640000,
5367118500815231104734380838102856661964593156677801042589496960000,
4675356560710156873457505085636266247755823372039328908211295129600,
4109200102186661314562260329172499631816641635581441423232583610000,
3639983481521748430892521260443459881470796742937193786669693440000,
3246775389382053384345489642802962672052655119471756186257843840000,
2914003396564502206448583502127866774917064428556368433095682560000,
2629888065399463241319846610670399764362650646772122510868853510400,
2385386000362324935437502594712380738650930291856800463373109760000,
2173461211073936563074253397248264268068306319646382240387482240000,
1988573206351200938616141104476672789688204647842814753019927040000,
1826311156527405028694337924076666503029618504702862854770037160000,
1683128361855656474444701830829055849192096413934158406956066246656,
1556146784260037420899317521106745422699793282113681959093996160000,
1443011284169801504153550952356872298690068941987447193892375040000,
1341779625203807776183595209525714165491148289169450260647374240000,
1250838556670374906691960338012080744048823137584838292922165760000,
1168839140177539218364376271409066561938955843009832227052823782400,
1094646437211014876720019400903392201607763016346356924399106560000,
1027300025546665328640565082293124907954160408895360355808145902500,
965982760477305139144112620999228563585913919842836551283325440000,
909995870380437107723130315110864970367699185734298446667423360000,
858738960130436976757500934096457065914334905068448166814319513600,
811693847345513346086372410700740668013163779867939046564460960000,
768411414287644482489363509326632509674989232073666182868912640000,
728500849141125551612145875531966693729266107139092108273920640000,
691620793004461075955252231602997965644352569828303092930664960000,
657472016349865810329961652667599941090662661693030627717213377600,
625791330255672395317036671188673352614551016483550865168079360000,
596346500090581233859375648678095184662732572964200115843277440000,
568931977371436071675467087219123799753953628290345594563299840000,
543365302768484140768563349312066067017076579911595560096870560000,
519484062301128541495278342848474027528424819115480989801255014400,
497143301587800234654035276119168197422051161960703688254981760000,
476213321032044045508347054897310957784092466595223632570186240000,
456577789131851257173584481019166625757404626175715713692509290000,
438132122515529069774235170457376054037925971973698044293020160000,
420782090463914118611175457707263962298024103483539601739016561664,
404442609057972047876946806715939986830088526993021531852188160000,
389036696065009355224829380276686355674948320528420489773499040000,
374494562534633427030238036407319297168052779889230688624970240000,
360752821042450376038387738089218074672517235496861798473093760000,
347753793771829850091880543559722282890929011143421158461997158400,
335444906300951944045898802381428541372787072292362565161843560000,
323778155173833578494287055791985197213007158728485381455075840000,
312709639167593726672990084503020186012205784396209573230541440000,
302199145693704480473409550206308504954053507241841138853071360000,
292209785044384804591094067852266640484738960752458056763205945600,
282707666261699891568916593460940582033071824431295083135592960000,
273661609302753719180004850225848050401940754086589231099776640000,
265042888929147215048611399412486748738992254650755607041456640000,
256825006386666332160141270573281226988540102223840088952036475625,
248983485481605987343890803377079267631966925138189113455039385600,
241495690119326284786028155249807140896478479960709137820831360000,
234340660761814501342824380545368657996226388663143017230461440000,
227498967595109276930782578777716242591924796433574611666855840000,
220952578483466770957349011608519198854244960871423861446658560000,
214684740032609244189375233524114266478583726267112041703579878400,
208679870295533683104133831435857945991878646837700655494453760000,
202923461836378336521593102675185167003290944966984761641115240000,
197401994025105141026072179446079922264038329650750423033879040000,
192102853571911120622340877331658127418747308018416545717228160000,
187014262428406274938300203425450649910232934881573156328451805184,
182125212285281387903036468882991673432316526784773027068480160000,
177425404985627474536673746714144021883127046501745489011223040000,
172905198251115268988813057900749491411088142457075773232666240000,
168555556186474170249629649778586749838977769381324948621621760000,
164368004087466452582490413166899985272665665423257656929303344400]
In the particular comment you linked to, the suggestion is to use a hashtable to only store values which actually arise as a sum of some subset. In the worst case, this is exponential in the number of elements, so it is basically equivalent to the brute force approach you already mentioned and ruled out.
In general, there are two parameters to the problem - the number of elements in the set and the size of the target sum. Naive brute force is exponential in the first, while the standard dynamic programming solution is exponential in the second. This works well when one of the parameters is small, but you already indicated that both parameters are too big for an exponential solution. Therefore, you are stuck with the "hard" general case of the problem.
Most NP-Complete problems have some underlying graph whether implicit or explicit. Using graph partitioning and DP, it can be solved exponential in the treewidth of the graph but only polynomial in the size of the graph with treewidth held constant. Of course, without access to your data, it is impossible to say what the underlying graph might look like or whether it is in one of the classes of graphs that have bounded treewidths and hence can be solved efficiently.
Edit: I just wrote the following code to show what I meant by reducing it mod small numbers. The following code solves your first problem in less than a second, but it doesn't work on the larger problem (though it does reduce it to n=57, log(t)=68).
target = 5213096522073683233230240000
A = [2316931787588303659213440000,
1303274130518420808307560000,
834095443531789317316838400,
579232946897075914803360000,
425558899761116998631040000,
325818532629605202076890000,
257436865287589295468160000,
208523860882947329329209600,
172333769324749858949760000,
144808236724268978700840000,
123386899930738064691840000,
106389724940279249657760000,
92677271503532146368537600,
81454633157401300519222500,
72153585080604612224640000,
64359216321897323867040000,
57762842349846905631360000,
52130965220736832332302400,
47284322195679666514560000,
43083442331187464737440000,
39418499221729173786240000,
36202059181067244675210000,
33363817741271572692673536,
30846724982684516172960000,
28604096143065477274240000,
26597431235069812414440000,
24794751591313594450560000,
23169317875883036592134400,
21698632766175580575360000,
20363658289350325129805625,
19148196591638873216640000,
18038396270151153056160000,
17022355990444679945241600]
import itertools, time
from fractions import gcd
def gcd_r(seq):
return reduce(gcd, seq)
def miniSolve(t, vals):
vals = [x for x in vals if x and x <= t]
for k in range(len(vals)):
for sub in itertools.combinations(vals, k):
if sum(sub) == t:
return sub
return None
def tryMod(n, state, answer):
t, vals, mult = state
mods = [x%n for x in vals if x%n]
if (t%n or mods) and sum(mods) < n:
print 'Filtering with', n
print t.bit_length(), len(vals)
else:
return state
newvals = list(vals)
tmod = t%n
if not tmod:
for x in vals:
if x%n:
newvals.remove(x)
else:
if len(set(mods)) != len(mods):
#don't want to deal with the complexity of multisets for now
print 'skipping', n
else:
mini = miniSolve(tmod, mods)
if mini is None:
return None
mini = set(mini)
for x in vals:
mod = x%n
if mod:
if mod in mini:
t -= x
answer.add(x*mult)
newvals.remove(x)
g = gcd_r(newvals + [t])
t = t//g
newvals = [x//g for x in newvals]
mult *= g
return (t, newvals, mult)
def solve(t, vals):
answer = set()
mult = 1
for d in itertools.count(2):
if not t:
return answer
elif not vals or t < min(vals):
return None #no solution'
res = tryMod(d, (t, vals, mult), answer)
if res is None:
return None
t, vals, mult = res
if len(vals) < 23:
break
if (d % 10000) == 0:
print 'd', d
#don't want to deal with the complexity of multisets for now
assert(len(set(vals)) == len(vals))
rest = miniSolve(t, vals)
if rest is None:
return None
answer.update(x*mult for x in rest)
return answer
start_t = time.time()
answer = solve(target, A)
assert(answer <= set(A) and sum(answer) == target)
print answer