How to select rows from list in PySpark - python

Suppose we have two dataframes df1 and df2 where df1 has columns [a, b, c, p, q, r] and df2 has columns [d, e, f, a, b, c]. Suppose the common columns are stored in a list common_cols = ['a', 'b', 'c'].
How do you join the two dataframes using the common_cols list within a sql command? The code below attempts to do this.
common_cols = ['a', 'b', 'c']
filter_df = spark.sql("""
select * from df1 inner join df2
on df1.common_cols = df2.common_cols
""")

Demo setup
df1 = spark.createDataFrame([(1,2,3,4,5,6)],['a','b','c','p','q','r'])
df2 = spark.createDataFrame([(7,8,9,1,2,3)],['d','e','f','a','b','c'])
common_cols = ['a','b','c']
df1.show()
+---+---+---+---+---+---+
| a| b| c| p| q| r|
+---+---+---+---+---+---+
| 1| 2| 3| 4| 5| 6|
+---+---+---+---+---+---+
df2.show()
+---+---+---+---+---+---+
| d| e| f| a| b| c|
+---+---+---+---+---+---+
| 7| 8| 9| 1| 2| 3|
+---+---+---+---+---+---+
Solution, based on using (SQL syntax for join)
df1.createOrReplaceTempView('df1')
df2.createOrReplaceTempView('df2')
common_cols_csv = ','.join(common_cols)
query = f'''\
select *
from df1 inner join df2 using ({common_cols_csv})
'''
print(query)
select *
from df1 inner join df2 using (a,b,c)
filter_df = spark.sql(query)
filter_df.show()
+---+---+---+---+---+---+---+---+---+
| a| b| c| p| q| r| d| e| f|
+---+---+---+---+---+---+---+---+---+
| 1| 2| 3| 4| 5| 6| 7| 8| 9|
+---+---+---+---+---+---+---+---+---+

You can do so with using instead of on. See documentation.
common_cols = ['a', 'b', 'c']
spark.sql(
f'''
SELECT *
FROM
(SELECT 1 a, 2 b, 3 c, 10 val1)
JOIN
(SELECT 1 a, 2 b, 3 c, 20 val2)
USING ({','.join(common_cols)})
'''
).show()
+---+---+---+----+----+
| a| b| c|val1|val2|
+---+---+---+----+----+
| 1| 2| 3| 10| 20|
+---+---+---+----+----+

Adding to #David דודו Markovitz's answer in order to get the columns in a dynamic fashion you could do something like below -
Input Data
df1 = spark.createDataFrame([(1,2,3,4,5,6)],['a','b','c','p','q','r'])
df2 = spark.createDataFrame([(7,8,9,1,2,3)],['d','e','f','a','b','c'])
df1.createOrReplaceTempView("df1")
df2.createOrReplaceTempView("df2")
Finding the common columns using set intersection
common_cols = set(df1.columns).intersection(set(df2.columns))
print(common_cols)
{'a', 'b', 'c'}
Creating query string -
query = '''
select *
from df1 inner join df2 using ({common_cols})
'''.format(common_cols=', '.join(map(str, common_cols)))
print(query)
select *
from df1 inner join df2 using (a, b, c)
Finally, execute the query within spark.sql -
spark.sql(query).show()
+---+---+---+---+---+---+---+---+---+
| a| b| c| p| q| r| d| e| f|
+---+---+---+---+---+---+---+---+---+
| 1| 2| 3| 4| 5| 6| 7| 8| 9|
+---+---+---+---+---+---+---+---+---+

Related

pyspark recover for an even number the two values ​of a median

Is there a way i pyspark to recover for an even number the two values ​​of a median ?
For exemple:
I have this dataframe
df1 = spark.createDataFrame([
('c',1),
('c',2),
('c',4),
('c',6),
('c',7),
('c',8),
], ['a', 'b'])
df1.show()
+---+---+
| a| b|
+---+---+
| c| 1|
| c| 2|
| c| 4|
| c| 6|
| c| 7|
| c| 8|
I want for this dataframe to display the values 4 and 6

Pyspark dataframe: Counting of unique values in a column, independently co-ocurring with values in other columns

I have a spark data frame comprising billions of predictions of interactions between two types of molecules, Regulators and Targets (there is no overlap between these) as obtained from various Sources. I need to add a column
containing number resources that predict at least one interaction for the given 'Regulator' and given 'Target'.
In other words, for each pair of 'Regulator' and 'Target' I am trying to obtain number of Sources containing value of 'Regulator' and 'Target', even if not paired within one interaction.
Example:
+---------+------+------+
|Regulator|Target|Source|
+---------+------+------+
| m| A| x|
| m| B| x|
| m| C| z|
| n| A| y|
| n| C| x|
| n| C| z|
+---------+------+------+
What I want to obtain is this:
+---------+------+------+----------+
|Regulator|Target|Source|No.sources|
+---------+------+------+----------+
| m| A| x| 1|
| m| B| x| 1|
| m| C| z| 2|
| n| A| y| 2|
| n| C| x| 2|
| n| C| z| 2|
+---------+------+------+----------+
Further explanation:
First Row (m, A, x):
Interactions involving m are predicted by sources x and z.
Interactions involving A are predicted by sources x and y.
Overlap of these is x, therefore No.sources equals 1.
Second Row (m, B, x):
Interactions involving m are predicted by sources x and z.
Interactions involving B are predicted by source x only.
Overlap of these is x, therefore No.sources equals 1.
Third Row (m, C, z):
Interactions involving m are predicted by x and z
Interactions involving C are predicted by sources x and z.
Overlap of these is x, z, therefore No.sources equals 2.
Here is one way to approach this problem. For each row, create 2 new columns:
Column 'RS': The set of sources for the 'Regulator'
Column 'TS': The set of sources for the 'Target'
Then your desired output is the length of the intersection of these sets.
Consider the following example:
Create DataFrame
from pyspark.sql Window
import pyspark.sql.functions as f
cols = ["Regulator", "Target", "Source"]
data = [
('m', 'A', 'x'),
('m', 'B', 'x'),
('m', 'C', 'z'),
('n', 'A', 'y'),
('n', 'C', 'x'),
('n', 'C', 'z')
]
df = sqlCtx.createDataFrame(data, cols)
Create new columns
Use pyspark.sql.functions.collect_set() and pyspark.sql.Window to calculate the distinct values for the 'Source' column:
df = df.withColumn(
'RS',
f.collect_set(f.col('Source')).over(Window.partitionBy('Regulator'))
)
df = df.withColumn(
'TS',
f.collect_set(f.col('Source')).over(Window.partitionBy('Target'))
)
df.sort('Regulator', 'Target', 'Source').show()
#+---------+------+------+------+---------+
#|Regulator|Target|Source| TS| RS|
#+---------+------+------+------+---------+
#| m| A| x|[y, x]| [z, x]|
#| m| B| x| [x]| [z, x]|
#| m| C| z|[z, x]| [z, x]|
#| n| A| y|[y, x]|[y, z, x]|
#| n| C| x|[z, x]|[y, z, x]|
#| n| C| z|[z, x]|[y, z, x]|
#+---------+------+------+------+---------+
Compute the length of the intersection
Define a udf to return the length of the intersection of two sets, and use this to compute the 'No_sources' column. (Note, I used _ instead of . in the column name because it makes it easier to use select().)
intersection_length_udf = f.udf(lambda u, v: len(set(u) & set(v)), IntegerType())
df = df.withColumn('No_sources', intersection_length_udf(f.col('TS'), f.col('RS')))
df.select('Regulator', 'Target', 'Source', 'No_sources')\
.sort('Regulator', 'Target', 'Source')\
.show()
#+---------+------+------+----------+
#|Regulator|Target|Source|No_sources|
#+---------+------+------+----------+
#| m| A| x| 1|
#| m| B| x| 1|
#| m| C| z| 2|
#| n| A| y| 2|
#| n| C| x| 2|
#| n| C| z| 2|
#+---------+------+------+----------+

Stemming each sentence, of each row of Spark dataframe [duplicate]

I've seen various people suggesting that Dataframe.explode is a useful way to do this, but it results in more rows than the original dataframe, which isn't what I want at all. I simply want to do the Dataframe equivalent of the very simple:
rdd.map(lambda row: row + [row.my_str_col.split('-')])
which takes something looking like:
col1 | my_str_col
-----+-----------
18 | 856-yygrm
201 | 777-psgdg
and converts it to this:
col1 | my_str_col | _col3 | _col4
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am aware of pyspark.sql.functions.split(), but it results in a nested array column instead of two top-level columns like I want.
Ideally, I want these new columns to be named as well.
pyspark.sql.functions.split() is the right approach here - you simply need to flatten the nested ArrayType column into multiple top-level columns. In this case, where each array only contains 2 items, it's very easy. You simply use Column.getItem() to retrieve each part of the array as a column itself:
split_col = pyspark.sql.functions.split(df['my_str_col'], '-')
df = df.withColumn('NAME1', split_col.getItem(0))
df = df.withColumn('NAME2', split_col.getItem(1))
The result will be:
col1 | my_str_col | NAME1 | NAME2
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am not sure how I would solve this in a general case where the nested arrays were not the same size from Row to Row.
Here's a solution to the general case that doesn't involve needing to know the length of the array ahead of time, using collect, or using udfs. Unfortunately this only works for spark version 2.1 and above, because it requires the posexplode function.
Suppose you had the following DataFrame:
df = spark.createDataFrame(
[
[1, 'A, B, C, D'],
[2, 'E, F, G'],
[3, 'H, I'],
[4, 'J']
]
, ["num", "letters"]
)
df.show()
#+---+----------+
#|num| letters|
#+---+----------+
#| 1|A, B, C, D|
#| 2| E, F, G|
#| 3| H, I|
#| 4| J|
#+---+----------+
Split the letters column and then use posexplode to explode the resultant array along with the position in the array. Next use pyspark.sql.functions.expr to grab the element at index pos in this array.
import pyspark.sql.functions as f
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.show()
#+---+------------+---+---+
#|num| letters|pos|val|
#+---+------------+---+---+
#| 1|[A, B, C, D]| 0| A|
#| 1|[A, B, C, D]| 1| B|
#| 1|[A, B, C, D]| 2| C|
#| 1|[A, B, C, D]| 3| D|
#| 2| [E, F, G]| 0| E|
#| 2| [E, F, G]| 1| F|
#| 2| [E, F, G]| 2| G|
#| 3| [H, I]| 0| H|
#| 3| [H, I]| 1| I|
#| 4| [J]| 0| J|
#+---+------------+---+---+
Now we create two new columns from this result. First one is the name of our new column, which will be a concatenation of letter and the index in the array. The second column will be the value at the corresponding index in the array. We get the latter by exploiting the functionality of pyspark.sql.functions.expr which allows us use column values as parameters.
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.show()
#+---+-------+---+
#|num| name|val|
#+---+-------+---+
#| 1|letter0| A|
#| 1|letter1| B|
#| 1|letter2| C|
#| 1|letter3| D|
#| 2|letter0| E|
#| 2|letter1| F|
#| 2|letter2| G|
#| 3|letter0| H|
#| 3|letter1| I|
#| 4|letter0| J|
#+---+-------+---+
Now we can just groupBy the num and pivot the DataFrame. Putting that all together, we get:
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.groupBy("num").pivot("name").agg(f.first("val"))\
.show()
#+---+-------+-------+-------+-------+
#|num|letter0|letter1|letter2|letter3|
#+---+-------+-------+-------+-------+
#| 1| A| B| C| D|
#| 3| H| I| null| null|
#| 2| E| F| G| null|
#| 4| J| null| null| null|
#+---+-------+-------+-------+-------+
Here's another approach, in case you want split a string with a delimiter.
import pyspark.sql.functions as f
df = spark.createDataFrame([("1:a:2001",),("2:b:2002",),("3:c:2003",)],["value"])
df.show()
+--------+
| value|
+--------+
|1:a:2001|
|2:b:2002|
|3:c:2003|
+--------+
df_split = df.select(f.split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"])
df_split.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
I don't think this transition back and forth to RDDs is going to slow you down...
Also don't worry about last schema specification: it's optional, you can avoid it generalizing the solution to data with unknown column size.
I understand your pain. Using split() can work, but can also lead to breaks.
Let's take your df and make a slight change to it:
df = spark.createDataFrame([('1:"a:3":2001',),('2:"b":2002',),('3:"c":2003',)],["value"])
df.show()
+------------+
| value|
+------------+
|1:"a:3":2001|
| 2:"b":2002|
| 3:"c":2003|
+------------+
If you try to apply split() to this as outlined above:
df_split = df.select(split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"]).show()
you will get
IllegalStateException: Input row doesn't have expected number of values required by the schema. 4 fields are required while 3 values are provided.
So, is there a more elegant way of addressing this? I was so happy to have it pointed out to me. pyspark.sql.functions.from_csv() is your friend.
Taking my above example df:
from pyspark.sql.functions import from_csv
# Define a column schema to apply with from_csv()
col_schema = ["col1 INTEGER","col2 STRING","col3 INTEGER"]
schema_str = ",".join(col_schema)
# define the separator because it isn't a ','
options = {'sep': ":"}
# create a df from the value column using schema and options
df_csv = df.select(from_csv(df.value, schema_str, options).alias("value_parsed"))
df_csv.show()
+--------------+
| value_parsed|
+--------------+
|[1, a:3, 2001]|
| [2, b, 2002]|
| [3, c, 2003]|
+--------------+
Then we can easily flatten the df to put the values in columns:
df2 = df_csv.select("value_parsed.*").toDF("col1","col2","col3")
df2.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a:3|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
No breaks. Data correctly parsed. Life is good. Have a beer.
Instead of Column.getItem(i) we can use Column[i].
Also, enumerate is useful in big dataframes.
from pyspark.sql import functions as F
Keep parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
or
new_cols = ['new_1', 'new_2']
df = df.select('*', *[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)])
Replace parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
df = df.drop('my_str_col')
or
new_cols = ['new_1', 'new_2']
df = df.select(
*[c for c in df.columns if c != 'my_str_col'],
*[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)]
)

PySpark: Add a column to DataFrame when column is a list

I have read similar questions but couldn't find a solution to my specific problem.
I have a list
l = [1, 2, 3]
and a DataFrame
df = sc.parallelize([
['p1', 'a'],
['p2', 'b'],
['p3', 'c'],
]).toDF(('product', 'name'))
I would like to obtain a new DataFrame where the list l is added as a further column, namely
+-------+----+---------+
|product|name| new_col |
+-------+----+---------+
| p1| a| 1 |
| p2| b| 2 |
| p3| c| 3 |
+-------+----+---------+
Approaches with JOIN, where I was joining df with an
sc.parallelize([[1], [2], [3]])
have failed. Approaches using withColumn, as in
new_df = df.withColumn('new_col', l)
have failed because the list is not a Column object.
So, from reading some interesting stuff here, I've ascertained that you can't really just append a random / arbitrary column to a given DataFrame object. It appears what you want is more of a zip than a join. I looked around and found this ticket, which makes me think you won't be able to zip given that you have DataFrame rather than RDD objects.
The only way I've been able to solve your issue invovles leaving the world of DataFrame objects and returning to RDD objects. I've also needed to create an index for the purpose of the join, which may or may not work with your use case.
l = sc.parallelize([1, 2, 3])
index = sc.parallelize(range(0, l.count()))
z = index.zip(l)
rdd = sc.parallelize([['p1', 'a'], ['p2', 'b'], ['p3', 'c']])
rdd_index = index.zip(rdd)
# just in case!
assert(rdd.count() == l.count())
# perform an inner join on the index we generated above, then map it to look pretty.
new_rdd = rdd_index.join(z).map(lambda (x, y): [y[0][0], y[0][1], y[1]])
new_df = new_rdd.toDF(["product", 'name', 'new_col'])
When I run new_df.show(), I get:
+-------+----+-------+
|product|name|new_col|
+-------+----+-------+
| p1| a| 1|
| p2| b| 2|
| p3| c| 3|
+-------+----+-------+
Sidenote: I'm really surprised this didn't work. Looks like an outer join?
from pyspark.sql import Row
l = sc.parallelize([1, 2, 3])
new_row = Row("new_col_name")
l_as_df = l.map(new_row).toDF()
new_df = df.join(l_as_df)
When I run new_df.show(), I get:
+-------+----+------------+
|product|name|new_col_name|
+-------+----+------------+
| p1| a| 1|
| p1| a| 2|
| p1| a| 3|
| p2| b| 1|
| p3| c| 1|
| p2| b| 2|
| p2| b| 3|
| p3| c| 2|
| p3| c| 3|
+-------+----+------------+
If the product column is unique then consider the following approach:
original dataframe:
df = spark.sparkContext.parallelize([
['p1', 'a'],
['p2', 'b'],
['p3', 'c'],
]).toDF(('product', 'name'))
df.show()
+-------+----+
|product|name|
+-------+----+
| p1| a|
| p2| b|
| p3| c|
+-------+----+
new column (and new index column):
lst = [1, 2, 3]
indx = ['p1','p2','p3']
create a new dataframe from the list above (with an index):
from pyspark.sql.types import *
myschema= StructType([ StructField("indx", StringType(), True),
StructField("newCol", IntegerType(), True)
])
df1=spark.createDataFrame(zip(indx,lst),schema = myschema)
df1.show()
+----+------+
|indx|newCol|
+----+------+
| p1| 1|
| p2| 2|
| p3| 3|
+----+------+
join this to the original dataframe, using the index created:
dfnew = df.join(df1, df.product == df1.indx,how='left')\
.drop(df1.indx)\
.sort("product")
to get:
dfnew.show()
+-------+----+------+
|product|name|newCol|
+-------+----+------+
| p1| a| 1|
| p2| b| 2|
| p3| c| 3|
+-------+----+------+
This is achievable via RDDs.
1 Convert dataframes to indexed rdds:
df_rdd = df.rdd.zipWithIndex().map(lambda row: (row[1], (row[0][0], row[0][1])))
l_rdd = sc.parallelize(l).zipWithIndex().map(lambda row: (row[1], row[0]))
2 Join two RDDs on index, drop index and rearrange elements:
res_rdd = df_rdd.join(l_rdd).map(lambda row: [row[1][0][0], row[1][0][1], row[1][1]])
3 Convert result to Dataframe:
res_df = res_rdd.toDF(['product', 'name', 'new_col'])
res_df.show()
+-------+----+-------+
|product|name|new_col|
+-------+----+-------+
| p1| a| 1|
| p2| b| 2|
| p3| c| 3|
+-------+----+-------+

Add column sum as new column in PySpark dataframe

I'm using PySpark and I have a Spark dataframe with a bunch of numeric columns. I want to add a column that is the sum of all the other columns.
Suppose my dataframe had columns "a", "b", and "c". I know I can do this:
df.withColumn('total_col', df.a + df.b + df.c)
The problem is that I don't want to type out each column individually and add them, especially if I have a lot of columns. I want to be able to do this automatically or by specifying a list of column names that I want to add. Is there another way to do this?
This was not obvious. I see no row-based sum of the columns defined in the spark Dataframes API.
Version 2
This can be done in a fairly simple way:
newdf = df.withColumn('total', sum(df[col] for col in df.columns))
df.columns is supplied by pyspark as a list of strings giving all of the column names in the Spark Dataframe. For a different sum, you can supply any other list of column names instead.
I did not try this as my first solution because I wasn't certain how it would behave. But it works.
Version 1
This is overly complicated, but works as well.
You can do this:
use df.columns to get a list of the names of the columns
use that names list to make a list of the columns
pass that list to something that will invoke the column's overloaded add function in a fold-type functional manner
With python's reduce, some knowledge of how operator overloading works, and the pyspark code for columns here that becomes:
def column_add(a,b):
return a.__add__(b)
newdf = df.withColumn('total_col',
reduce(column_add, ( df[col] for col in df.columns ) ))
Note this is a python reduce, not a spark RDD reduce, and the parenthesis term in the second parameter to reduce requires the parenthesis because it is a list generator expression.
Tested, Works!
$ pyspark
>>> df = sc.parallelize([{'a': 1, 'b':2, 'c':3}, {'a':8, 'b':5, 'c':6}, {'a':3, 'b':1, 'c':0}]).toDF().cache()
>>> df
DataFrame[a: bigint, b: bigint, c: bigint]
>>> df.columns
['a', 'b', 'c']
>>> def column_add(a,b):
... return a.__add__(b)
...
>>> df.withColumn('total', reduce(column_add, ( df[col] for col in df.columns ) )).collect()
[Row(a=1, b=2, c=3, total=6), Row(a=8, b=5, c=6, total=19), Row(a=3, b=1, c=0, total=4)]
The most straight forward way of doing it is to use the expr function
from pyspark.sql.functions import *
data = data.withColumn('total', expr("col1 + col2 + col3 + col4"))
The solution
newdf = df.withColumn('total', sum(df[col] for col in df.columns))
posted by #Paul works. Nevertheless I was getting the error, as many other as I have seen,
TypeError: 'Column' object is not callable
After some time I found the problem (at least in my case). The problem is that I previously imported some pyspark functions with the line
from pyspark.sql.functions import udf, col, count, sum, when, avg, mean, min
so the line imported the sum pyspark command while df.withColumn('total', sum(df[col] for col in df.columns)) is supposed to use the normal python sum function.
You can delete the reference of the pyspark function with del sum.
Otherwise in my case I changed the import to
import pyspark.sql.functions as F
and then referenced the functions as F.sum.
Summing multiple columns from a list into one column
PySpark's sum function doesn't support column addition.
This can be achieved using expr function.
from pyspark.sql.functions import expr
cols_list = ['a', 'b', 'c']
# Creating an addition expression using `join`
expression = '+'.join(cols_list)
df = df.withColumn('sum_cols', expr(expression))
This gives us the desired sum of columns.
My problem was similar to the above (bit more complex) as i had to add consecutive column sums as new columns in PySpark dataframe. This approach uses code from Paul's Version 1 above:
import pyspark
from pyspark.sql import SparkSession
import pandas as pd
spark = SparkSession.builder.appName('addColAsCumulativeSUM').getOrCreate()
df=spark.createDataFrame(data=[(1,2,3),(4,5,6),(3,2,1)\
,(6,1,-4),(0,2,-2),(6,4,1)\
,(4,5,2),(5,-3,-5),(6,4,-1)]\
,schema=['x1','x2','x3'])
df.show()
+---+---+---+
| x1| x2| x3|
+---+---+---+
| 1| 2| 3|
| 4| 5| 6|
| 3| 2| 1|
| 6| 1| -4|
| 0| 2| -2|
| 6| 4| 1|
| 4| 5| 2|
| 5| -3| -5|
| 6| 4| -1|
+---+---+---+
colnames=df.columns
add new columns that are cumulative sums (consecutive):
for i in range(0,len(colnames)):
colnameLst= colnames[0:i+1]
colname = 'cm'+ str(i+1)
df = df.withColumn(colname, sum(df[col] for col in colnameLst))
df.show()
+---+---+---+---+---+---+
| x1| x2| x3|cm1|cm2|cm3|
+---+---+---+---+---+---+
| 1| 2| 3| 1| 3| 6|
| 4| 5| 6| 4| 9| 15|
| 3| 2| 1| 3| 5| 6|
| 6| 1| -4| 6| 7| 3|
| 0| 2| -2| 0| 2| 0|
| 6| 4| 1| 6| 10| 11|
| 4| 5| 2| 4| 9| 11|
| 5| -3| -5| 5| 2| -3|
| 6| 4| -1| 6| 10| 9|
+---+---+---+---+---+---+
'cumulative sum' columns added are as follows:
cm1 = x1
cm2 = x1 + x2
cm3 = x1 + x2 + x3
df = spark.createDataFrame([("linha1", "valor1", 2), ("linha2", "valor2", 5)], ("Columna1", "Columna2", "Columna3"))
df.show()
+--------+--------+--------+
|Columna1|Columna2|Columna3|
+--------+--------+--------+
| linha1| valor1| 2|
| linha2| valor2| 5|
+--------+--------+--------+
df = df.withColumn('DivisaoPorDois', df[2]/2)
df.show()
+--------+--------+--------+--------------+
|Columna1|Columna2|Columna3|DivisaoPorDois|
+--------+--------+--------+--------------+
| linha1| valor1| 2| 1.0|
| linha2| valor2| 5| 2.5|
+--------+--------+--------+--------------+
df = df.withColumn('Soma_Colunas', df[2]+df[3])
df.show()
+--------+--------+--------+--------------+------------+
|Columna1|Columna2|Columna3|DivisaoPorDois|Soma_Colunas|
+--------+--------+--------+--------------+------------+
| linha1| valor1| 2| 1.0| 3.0|
| linha2| valor2| 5| 2.5| 7.5|
+--------+--------+--------+--------------+------------+
A very simple approach would be to just use select instead of withcolumn as below:
df = df.select('*', (col("a")+col("b")+col('c).alias("total"))
This should give you required sum with minor changes based on requirements
The following approach works for me:
Import pyspark sql functions
from pyspark.sql import functions as F
Use F.expr(list_of_columns) data_frame.withColumn('Total_Sum',F.expr('col_name1+col_name2+..col_namen)

Categories