I've seen various people suggesting that Dataframe.explode is a useful way to do this, but it results in more rows than the original dataframe, which isn't what I want at all. I simply want to do the Dataframe equivalent of the very simple:
rdd.map(lambda row: row + [row.my_str_col.split('-')])
which takes something looking like:
col1 | my_str_col
-----+-----------
18 | 856-yygrm
201 | 777-psgdg
and converts it to this:
col1 | my_str_col | _col3 | _col4
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am aware of pyspark.sql.functions.split(), but it results in a nested array column instead of two top-level columns like I want.
Ideally, I want these new columns to be named as well.
pyspark.sql.functions.split() is the right approach here - you simply need to flatten the nested ArrayType column into multiple top-level columns. In this case, where each array only contains 2 items, it's very easy. You simply use Column.getItem() to retrieve each part of the array as a column itself:
split_col = pyspark.sql.functions.split(df['my_str_col'], '-')
df = df.withColumn('NAME1', split_col.getItem(0))
df = df.withColumn('NAME2', split_col.getItem(1))
The result will be:
col1 | my_str_col | NAME1 | NAME2
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am not sure how I would solve this in a general case where the nested arrays were not the same size from Row to Row.
Here's a solution to the general case that doesn't involve needing to know the length of the array ahead of time, using collect, or using udfs. Unfortunately this only works for spark version 2.1 and above, because it requires the posexplode function.
Suppose you had the following DataFrame:
df = spark.createDataFrame(
[
[1, 'A, B, C, D'],
[2, 'E, F, G'],
[3, 'H, I'],
[4, 'J']
]
, ["num", "letters"]
)
df.show()
#+---+----------+
#|num| letters|
#+---+----------+
#| 1|A, B, C, D|
#| 2| E, F, G|
#| 3| H, I|
#| 4| J|
#+---+----------+
Split the letters column and then use posexplode to explode the resultant array along with the position in the array. Next use pyspark.sql.functions.expr to grab the element at index pos in this array.
import pyspark.sql.functions as f
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.show()
#+---+------------+---+---+
#|num| letters|pos|val|
#+---+------------+---+---+
#| 1|[A, B, C, D]| 0| A|
#| 1|[A, B, C, D]| 1| B|
#| 1|[A, B, C, D]| 2| C|
#| 1|[A, B, C, D]| 3| D|
#| 2| [E, F, G]| 0| E|
#| 2| [E, F, G]| 1| F|
#| 2| [E, F, G]| 2| G|
#| 3| [H, I]| 0| H|
#| 3| [H, I]| 1| I|
#| 4| [J]| 0| J|
#+---+------------+---+---+
Now we create two new columns from this result. First one is the name of our new column, which will be a concatenation of letter and the index in the array. The second column will be the value at the corresponding index in the array. We get the latter by exploiting the functionality of pyspark.sql.functions.expr which allows us use column values as parameters.
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.show()
#+---+-------+---+
#|num| name|val|
#+---+-------+---+
#| 1|letter0| A|
#| 1|letter1| B|
#| 1|letter2| C|
#| 1|letter3| D|
#| 2|letter0| E|
#| 2|letter1| F|
#| 2|letter2| G|
#| 3|letter0| H|
#| 3|letter1| I|
#| 4|letter0| J|
#+---+-------+---+
Now we can just groupBy the num and pivot the DataFrame. Putting that all together, we get:
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.groupBy("num").pivot("name").agg(f.first("val"))\
.show()
#+---+-------+-------+-------+-------+
#|num|letter0|letter1|letter2|letter3|
#+---+-------+-------+-------+-------+
#| 1| A| B| C| D|
#| 3| H| I| null| null|
#| 2| E| F| G| null|
#| 4| J| null| null| null|
#+---+-------+-------+-------+-------+
Here's another approach, in case you want split a string with a delimiter.
import pyspark.sql.functions as f
df = spark.createDataFrame([("1:a:2001",),("2:b:2002",),("3:c:2003",)],["value"])
df.show()
+--------+
| value|
+--------+
|1:a:2001|
|2:b:2002|
|3:c:2003|
+--------+
df_split = df.select(f.split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"])
df_split.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
I don't think this transition back and forth to RDDs is going to slow you down...
Also don't worry about last schema specification: it's optional, you can avoid it generalizing the solution to data with unknown column size.
I understand your pain. Using split() can work, but can also lead to breaks.
Let's take your df and make a slight change to it:
df = spark.createDataFrame([('1:"a:3":2001',),('2:"b":2002',),('3:"c":2003',)],["value"])
df.show()
+------------+
| value|
+------------+
|1:"a:3":2001|
| 2:"b":2002|
| 3:"c":2003|
+------------+
If you try to apply split() to this as outlined above:
df_split = df.select(split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"]).show()
you will get
IllegalStateException: Input row doesn't have expected number of values required by the schema. 4 fields are required while 3 values are provided.
So, is there a more elegant way of addressing this? I was so happy to have it pointed out to me. pyspark.sql.functions.from_csv() is your friend.
Taking my above example df:
from pyspark.sql.functions import from_csv
# Define a column schema to apply with from_csv()
col_schema = ["col1 INTEGER","col2 STRING","col3 INTEGER"]
schema_str = ",".join(col_schema)
# define the separator because it isn't a ','
options = {'sep': ":"}
# create a df from the value column using schema and options
df_csv = df.select(from_csv(df.value, schema_str, options).alias("value_parsed"))
df_csv.show()
+--------------+
| value_parsed|
+--------------+
|[1, a:3, 2001]|
| [2, b, 2002]|
| [3, c, 2003]|
+--------------+
Then we can easily flatten the df to put the values in columns:
df2 = df_csv.select("value_parsed.*").toDF("col1","col2","col3")
df2.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a:3|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
No breaks. Data correctly parsed. Life is good. Have a beer.
Instead of Column.getItem(i) we can use Column[i].
Also, enumerate is useful in big dataframes.
from pyspark.sql import functions as F
Keep parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
or
new_cols = ['new_1', 'new_2']
df = df.select('*', *[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)])
Replace parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
df = df.drop('my_str_col')
or
new_cols = ['new_1', 'new_2']
df = df.select(
*[c for c in df.columns if c != 'my_str_col'],
*[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)]
)
Related
id
texts
vector
0
[a, b, c]
(3,[0,1,2],[1.0,1.0,1.0])
1
[a, b, c]
(3,[0,1,2],[2.0,2.0,1.0])
This is my above spark dataframe, I want to convert it to something like below -
id
texts
list_2
0
a
1.0
0
b
1.0
0
c
1.0
1
a
2.0
1
b
2.0
1
c
1.0
from pyspark.sql.types import *
from pyspark.ml.linalg import Vectors, VectorUDT
from pyspark.sql.functions import *
def to_array_(v):
return v.toArray().tolist()
def to_vector_(v):
return Vectors.dense(v)
to_array = udf(lambda z: to_array_(z),ArrayType(DoubleType())) #watch your return type
to_vector = udf(lambda z: to_vector_(z),VectorUDT()) # helper to make an example for your question.
getFeatureVector=udf(lambda v:v[2],VectorUDT()) #this should work on your Feature Vector, but I'm too lazy to contrive an example with Vectors of vectors.
getFeatureVectorExample=udf(lambda v:v[2],FloatType()) # This works for this example but gives you the general idea of how to access vectors.
schema = ["id","texts","vector"]
data = [
(0,['a', 'b', 'c'],[1.0,1.0,1.0]), #small cheat
(1,['a', 'b', 'c'],[2.0,2.0,1.0]),
]
df = spark.createDataFrame( data, schema )
df = df.withColumn("vector", to_vector(df.vector) ) #convert the array to a vector so I can prove this works
#DataFrame[id: bigint, texts: array<string>, vector: vector]
This may make you ask the question how do I access the element of vector to turn it into an array: (we use another udf that will translate for us.)
df.select(col('*'), getFeatureVectorExample( df.vector ) ).show()
+---+---------+-------------+----------------+
| id| texts| vector|<lambda>(vector)|
+---+---------+-------------+----------------+
| 0|[a, b, c]|[1.0,1.0,1.0]| 1.0|
| 1|[a, b, c]|[2.0,2.0,1.0]| 1.0|
+---+---------+-------------+----------------+
Ok so now we know how to get the element we're interest in so the rest of this example show how to convert a vector into an array, and then explode it.
df.withColumn( 'text', explode( df.texts) )\# I use with column as I'm lazy
.withColumn( 'feature', explode( to_array(df.vector) ) )\#can't have to explodes in 1 select so don't try to do that.
.drop('texts','vector')\#book keeping to clean up columns you don't want.
.show()
| id|text|feature|
+---+----+-------+
| 0| a| 1.0|
| 0| a| 1.0|
| 0| a| 1.0|
| 0| b| 1.0|
| 0| b| 1.0|
| 0| b| 1.0|
| 0| c| 1.0|
| 0| c| 1.0|
| 0| c| 1.0|
| 1| a| 2.0|
| 1| a| 2.0|
| 1| a| 1.0|
| 1| b| 2.0|
| 1| b| 2.0|
| 1| b| 1.0|
| 1| c| 2.0|
| 1| c| 2.0|
| 1| c| 1.0|
+---+----+-------+
To further clarify if you wish to access elements of a vector you can create a static function:
This function pulls the last element(2) of a vector out and returns it as a vector, but gives a hint to how to access other elements.
getFeatureVector=udf(lambda v:v[2],VectorUDT())
If the elements are different types you will need to write extra logic to handle it and the return type:
Here's an example to access the first(0) element of a vector and return it as a FloatType:
getFeatureVectorExample=udf(lambda v:v[0],FloatType())
You can of course combine these elements and return a more complex structure, that may suit your needs. I suggest returning them as a struct as you can use 'column_name.*' to turn the columns from the struct as rows or struct_column.field_name to access elements and return them as columns. See this example for how to build out the return type.
Further example using multitple elements in struct and turning them into a column
def structExample(v):
return (
float(v[0]),
float(v[0])
)
getstructExample=udf(structExample,StructType([StructField( "flt", FloatType(), False), StructField( "array", FloatType() ) ]))
df.select(col('*'), getstructExample( df.vector ).alias("struct") ).select(col("struct.*")).show()
+---+-----+
|flt|array|
+---+-----+
|1.0| 1.0|
|2.0| 2.0|
+---+-----+
Suppose we have two dataframes df1 and df2 where df1 has columns [a, b, c, p, q, r] and df2 has columns [d, e, f, a, b, c]. Suppose the common columns are stored in a list common_cols = ['a', 'b', 'c'].
How do you join the two dataframes using the common_cols list within a sql command? The code below attempts to do this.
common_cols = ['a', 'b', 'c']
filter_df = spark.sql("""
select * from df1 inner join df2
on df1.common_cols = df2.common_cols
""")
Demo setup
df1 = spark.createDataFrame([(1,2,3,4,5,6)],['a','b','c','p','q','r'])
df2 = spark.createDataFrame([(7,8,9,1,2,3)],['d','e','f','a','b','c'])
common_cols = ['a','b','c']
df1.show()
+---+---+---+---+---+---+
| a| b| c| p| q| r|
+---+---+---+---+---+---+
| 1| 2| 3| 4| 5| 6|
+---+---+---+---+---+---+
df2.show()
+---+---+---+---+---+---+
| d| e| f| a| b| c|
+---+---+---+---+---+---+
| 7| 8| 9| 1| 2| 3|
+---+---+---+---+---+---+
Solution, based on using (SQL syntax for join)
df1.createOrReplaceTempView('df1')
df2.createOrReplaceTempView('df2')
common_cols_csv = ','.join(common_cols)
query = f'''\
select *
from df1 inner join df2 using ({common_cols_csv})
'''
print(query)
select *
from df1 inner join df2 using (a,b,c)
filter_df = spark.sql(query)
filter_df.show()
+---+---+---+---+---+---+---+---+---+
| a| b| c| p| q| r| d| e| f|
+---+---+---+---+---+---+---+---+---+
| 1| 2| 3| 4| 5| 6| 7| 8| 9|
+---+---+---+---+---+---+---+---+---+
You can do so with using instead of on. See documentation.
common_cols = ['a', 'b', 'c']
spark.sql(
f'''
SELECT *
FROM
(SELECT 1 a, 2 b, 3 c, 10 val1)
JOIN
(SELECT 1 a, 2 b, 3 c, 20 val2)
USING ({','.join(common_cols)})
'''
).show()
+---+---+---+----+----+
| a| b| c|val1|val2|
+---+---+---+----+----+
| 1| 2| 3| 10| 20|
+---+---+---+----+----+
Adding to #David דודו Markovitz's answer in order to get the columns in a dynamic fashion you could do something like below -
Input Data
df1 = spark.createDataFrame([(1,2,3,4,5,6)],['a','b','c','p','q','r'])
df2 = spark.createDataFrame([(7,8,9,1,2,3)],['d','e','f','a','b','c'])
df1.createOrReplaceTempView("df1")
df2.createOrReplaceTempView("df2")
Finding the common columns using set intersection
common_cols = set(df1.columns).intersection(set(df2.columns))
print(common_cols)
{'a', 'b', 'c'}
Creating query string -
query = '''
select *
from df1 inner join df2 using ({common_cols})
'''.format(common_cols=', '.join(map(str, common_cols)))
print(query)
select *
from df1 inner join df2 using (a, b, c)
Finally, execute the query within spark.sql -
spark.sql(query).show()
+---+---+---+---+---+---+---+---+---+
| a| b| c| p| q| r| d| e| f|
+---+---+---+---+---+---+---+---+---+
| 1| 2| 3| 4| 5| 6| 7| 8| 9|
+---+---+---+---+---+---+---+---+---+
I have a dataframe which has one row, and several columns. Some of the columns are single values, and others are lists. All list columns are the same length. I want to split each list column into a separate row, while keeping any non-list column as is.
Sample DF:
from pyspark import Row
from pyspark.sql import SQLContext
from pyspark.sql.functions import explode
sqlc = SQLContext(sc)
df = sqlc.createDataFrame([Row(a=1, b=[1,2,3],c=[7,8,9], d='foo')])
# +---+---------+---------+---+
# | a| b| c| d|
# +---+---------+---------+---+
# | 1|[1, 2, 3]|[7, 8, 9]|foo|
# +---+---------+---------+---+
What I want:
+---+---+----+------+
| a| b| c | d |
+---+---+----+------+
| 1| 1| 7 | foo |
| 1| 2| 8 | foo |
| 1| 3| 9 | foo |
+---+---+----+------+
If I only had one list column, this would be easy by just doing an explode:
df_exploded = df.withColumn('b', explode('b'))
# >>> df_exploded.show()
# +---+---+---------+---+
# | a| b| c| d|
# +---+---+---------+---+
# | 1| 1|[7, 8, 9]|foo|
# | 1| 2|[7, 8, 9]|foo|
# | 1| 3|[7, 8, 9]|foo|
# +---+---+---------+---+
However, if I try to also explode the c column, I end up with a dataframe with a length the square of what I want:
df_exploded_again = df_exploded.withColumn('c', explode('c'))
# >>> df_exploded_again.show()
# +---+---+---+---+
# | a| b| c| d|
# +---+---+---+---+
# | 1| 1| 7|foo|
# | 1| 1| 8|foo|
# | 1| 1| 9|foo|
# | 1| 2| 7|foo|
# | 1| 2| 8|foo|
# | 1| 2| 9|foo|
# | 1| 3| 7|foo|
# | 1| 3| 8|foo|
# | 1| 3| 9|foo|
# +---+---+---+---+
What I want is - for each column, take the nth element of the array in that column and add that to a new row. I've tried mapping an explode accross all columns in the dataframe, but that doesn't seem to work either:
df_split = df.rdd.map(lambda col: df.withColumn(col, explode(col))).toDF()
Spark >= 2.4
You can replace zip_ udf with arrays_zip function
from pyspark.sql.functions import arrays_zip, col, explode
(df
.withColumn("tmp", arrays_zip("b", "c"))
.withColumn("tmp", explode("tmp"))
.select("a", col("tmp.b"), col("tmp.c"), "d"))
Spark < 2.4
With DataFrames and UDF:
from pyspark.sql.types import ArrayType, StructType, StructField, IntegerType
from pyspark.sql.functions import col, udf, explode
zip_ = udf(
lambda x, y: list(zip(x, y)),
ArrayType(StructType([
# Adjust types to reflect data types
StructField("first", IntegerType()),
StructField("second", IntegerType())
]))
)
(df
.withColumn("tmp", zip_("b", "c"))
# UDF output cannot be directly passed to explode
.withColumn("tmp", explode("tmp"))
.select("a", col("tmp.first").alias("b"), col("tmp.second").alias("c"), "d"))
With RDDs:
(df
.rdd
.flatMap(lambda row: [(row.a, b, c, row.d) for b, c in zip(row.b, row.c)])
.toDF(["a", "b", "c", "d"]))
Both solutions are inefficient due to Python communication overhead. If data size is fixed you can do something like this:
from functools import reduce
from pyspark.sql import DataFrame
# Length of array
n = 3
# For legacy Python you'll need a separate function
# in place of method accessor
reduce(
DataFrame.unionAll,
(df.select("a", col("b").getItem(i), col("c").getItem(i), "d")
for i in range(n))
).toDF("a", "b", "c", "d")
or even:
from pyspark.sql.functions import array, struct
# SQL level zip of arrays of known size
# followed by explode
tmp = explode(array(*[
struct(col("b").getItem(i).alias("b"), col("c").getItem(i).alias("c"))
for i in range(n)
]))
(df
.withColumn("tmp", tmp)
.select("a", col("tmp").getItem("b"), col("tmp").getItem("c"), "d"))
This should be significantly faster compared to UDF or RDD. Generalized to support an arbitrary number of columns:
# This uses keyword only arguments
# If you use legacy Python you'll have to change signature
# Body of the function can stay the same
def zip_and_explode(*colnames, n):
return explode(array(*[
struct(*[col(c).getItem(i).alias(c) for c in colnames])
for i in range(n)
]))
df.withColumn("tmp", zip_and_explode("b", "c", n=3))
You'd need to use flatMap, not map as you want to make multiple output rows out of each input row.
from pyspark.sql import Row
def dualExplode(r):
rowDict = r.asDict()
bList = rowDict.pop('b')
cList = rowDict.pop('c')
for b,c in zip(bList, cList):
newDict = dict(rowDict)
newDict['b'] = b
newDict['c'] = c
yield Row(**newDict)
df_split = sqlContext.createDataFrame(df.rdd.flatMap(dualExplode))
One liner (for Spark>=2.4.0):
df.withColumn("bc", arrays_zip("b","c"))
.select("a", explode("bc").alias("tbc"))
.select("a", col"tbc.b", "tbc.c").show()
Import required:
from pyspark.sql.functions import arrays_zip
Steps -
Create a column bc which is an array_zip of columns b and c
Explode bc to get a struct tbc
Select the required columns a, b and c (all exploded as required).
Output:
> df.withColumn("bc", arrays_zip("b","c")).select("a", explode("bc").alias("tbc")).select("a", "tbc.b", col("tbc.c")).show()
+---+---+---+
| a| b| c|
+---+---+---+
| 1| 1| 7|
| 1| 2| 8|
| 1| 3| 9|
+---+---+---+
I have read similar questions but couldn't find a solution to my specific problem.
I have a list
l = [1, 2, 3]
and a DataFrame
df = sc.parallelize([
['p1', 'a'],
['p2', 'b'],
['p3', 'c'],
]).toDF(('product', 'name'))
I would like to obtain a new DataFrame where the list l is added as a further column, namely
+-------+----+---------+
|product|name| new_col |
+-------+----+---------+
| p1| a| 1 |
| p2| b| 2 |
| p3| c| 3 |
+-------+----+---------+
Approaches with JOIN, where I was joining df with an
sc.parallelize([[1], [2], [3]])
have failed. Approaches using withColumn, as in
new_df = df.withColumn('new_col', l)
have failed because the list is not a Column object.
So, from reading some interesting stuff here, I've ascertained that you can't really just append a random / arbitrary column to a given DataFrame object. It appears what you want is more of a zip than a join. I looked around and found this ticket, which makes me think you won't be able to zip given that you have DataFrame rather than RDD objects.
The only way I've been able to solve your issue invovles leaving the world of DataFrame objects and returning to RDD objects. I've also needed to create an index for the purpose of the join, which may or may not work with your use case.
l = sc.parallelize([1, 2, 3])
index = sc.parallelize(range(0, l.count()))
z = index.zip(l)
rdd = sc.parallelize([['p1', 'a'], ['p2', 'b'], ['p3', 'c']])
rdd_index = index.zip(rdd)
# just in case!
assert(rdd.count() == l.count())
# perform an inner join on the index we generated above, then map it to look pretty.
new_rdd = rdd_index.join(z).map(lambda (x, y): [y[0][0], y[0][1], y[1]])
new_df = new_rdd.toDF(["product", 'name', 'new_col'])
When I run new_df.show(), I get:
+-------+----+-------+
|product|name|new_col|
+-------+----+-------+
| p1| a| 1|
| p2| b| 2|
| p3| c| 3|
+-------+----+-------+
Sidenote: I'm really surprised this didn't work. Looks like an outer join?
from pyspark.sql import Row
l = sc.parallelize([1, 2, 3])
new_row = Row("new_col_name")
l_as_df = l.map(new_row).toDF()
new_df = df.join(l_as_df)
When I run new_df.show(), I get:
+-------+----+------------+
|product|name|new_col_name|
+-------+----+------------+
| p1| a| 1|
| p1| a| 2|
| p1| a| 3|
| p2| b| 1|
| p3| c| 1|
| p2| b| 2|
| p2| b| 3|
| p3| c| 2|
| p3| c| 3|
+-------+----+------------+
If the product column is unique then consider the following approach:
original dataframe:
df = spark.sparkContext.parallelize([
['p1', 'a'],
['p2', 'b'],
['p3', 'c'],
]).toDF(('product', 'name'))
df.show()
+-------+----+
|product|name|
+-------+----+
| p1| a|
| p2| b|
| p3| c|
+-------+----+
new column (and new index column):
lst = [1, 2, 3]
indx = ['p1','p2','p3']
create a new dataframe from the list above (with an index):
from pyspark.sql.types import *
myschema= StructType([ StructField("indx", StringType(), True),
StructField("newCol", IntegerType(), True)
])
df1=spark.createDataFrame(zip(indx,lst),schema = myschema)
df1.show()
+----+------+
|indx|newCol|
+----+------+
| p1| 1|
| p2| 2|
| p3| 3|
+----+------+
join this to the original dataframe, using the index created:
dfnew = df.join(df1, df.product == df1.indx,how='left')\
.drop(df1.indx)\
.sort("product")
to get:
dfnew.show()
+-------+----+------+
|product|name|newCol|
+-------+----+------+
| p1| a| 1|
| p2| b| 2|
| p3| c| 3|
+-------+----+------+
This is achievable via RDDs.
1 Convert dataframes to indexed rdds:
df_rdd = df.rdd.zipWithIndex().map(lambda row: (row[1], (row[0][0], row[0][1])))
l_rdd = sc.parallelize(l).zipWithIndex().map(lambda row: (row[1], row[0]))
2 Join two RDDs on index, drop index and rearrange elements:
res_rdd = df_rdd.join(l_rdd).map(lambda row: [row[1][0][0], row[1][0][1], row[1][1]])
3 Convert result to Dataframe:
res_df = res_rdd.toDF(['product', 'name', 'new_col'])
res_df.show()
+-------+----+-------+
|product|name|new_col|
+-------+----+-------+
| p1| a| 1|
| p2| b| 2|
| p3| c| 3|
+-------+----+-------+
I'm using PySpark and I have a Spark dataframe with a bunch of numeric columns. I want to add a column that is the sum of all the other columns.
Suppose my dataframe had columns "a", "b", and "c". I know I can do this:
df.withColumn('total_col', df.a + df.b + df.c)
The problem is that I don't want to type out each column individually and add them, especially if I have a lot of columns. I want to be able to do this automatically or by specifying a list of column names that I want to add. Is there another way to do this?
This was not obvious. I see no row-based sum of the columns defined in the spark Dataframes API.
Version 2
This can be done in a fairly simple way:
newdf = df.withColumn('total', sum(df[col] for col in df.columns))
df.columns is supplied by pyspark as a list of strings giving all of the column names in the Spark Dataframe. For a different sum, you can supply any other list of column names instead.
I did not try this as my first solution because I wasn't certain how it would behave. But it works.
Version 1
This is overly complicated, but works as well.
You can do this:
use df.columns to get a list of the names of the columns
use that names list to make a list of the columns
pass that list to something that will invoke the column's overloaded add function in a fold-type functional manner
With python's reduce, some knowledge of how operator overloading works, and the pyspark code for columns here that becomes:
def column_add(a,b):
return a.__add__(b)
newdf = df.withColumn('total_col',
reduce(column_add, ( df[col] for col in df.columns ) ))
Note this is a python reduce, not a spark RDD reduce, and the parenthesis term in the second parameter to reduce requires the parenthesis because it is a list generator expression.
Tested, Works!
$ pyspark
>>> df = sc.parallelize([{'a': 1, 'b':2, 'c':3}, {'a':8, 'b':5, 'c':6}, {'a':3, 'b':1, 'c':0}]).toDF().cache()
>>> df
DataFrame[a: bigint, b: bigint, c: bigint]
>>> df.columns
['a', 'b', 'c']
>>> def column_add(a,b):
... return a.__add__(b)
...
>>> df.withColumn('total', reduce(column_add, ( df[col] for col in df.columns ) )).collect()
[Row(a=1, b=2, c=3, total=6), Row(a=8, b=5, c=6, total=19), Row(a=3, b=1, c=0, total=4)]
The most straight forward way of doing it is to use the expr function
from pyspark.sql.functions import *
data = data.withColumn('total', expr("col1 + col2 + col3 + col4"))
The solution
newdf = df.withColumn('total', sum(df[col] for col in df.columns))
posted by #Paul works. Nevertheless I was getting the error, as many other as I have seen,
TypeError: 'Column' object is not callable
After some time I found the problem (at least in my case). The problem is that I previously imported some pyspark functions with the line
from pyspark.sql.functions import udf, col, count, sum, when, avg, mean, min
so the line imported the sum pyspark command while df.withColumn('total', sum(df[col] for col in df.columns)) is supposed to use the normal python sum function.
You can delete the reference of the pyspark function with del sum.
Otherwise in my case I changed the import to
import pyspark.sql.functions as F
and then referenced the functions as F.sum.
Summing multiple columns from a list into one column
PySpark's sum function doesn't support column addition.
This can be achieved using expr function.
from pyspark.sql.functions import expr
cols_list = ['a', 'b', 'c']
# Creating an addition expression using `join`
expression = '+'.join(cols_list)
df = df.withColumn('sum_cols', expr(expression))
This gives us the desired sum of columns.
My problem was similar to the above (bit more complex) as i had to add consecutive column sums as new columns in PySpark dataframe. This approach uses code from Paul's Version 1 above:
import pyspark
from pyspark.sql import SparkSession
import pandas as pd
spark = SparkSession.builder.appName('addColAsCumulativeSUM').getOrCreate()
df=spark.createDataFrame(data=[(1,2,3),(4,5,6),(3,2,1)\
,(6,1,-4),(0,2,-2),(6,4,1)\
,(4,5,2),(5,-3,-5),(6,4,-1)]\
,schema=['x1','x2','x3'])
df.show()
+---+---+---+
| x1| x2| x3|
+---+---+---+
| 1| 2| 3|
| 4| 5| 6|
| 3| 2| 1|
| 6| 1| -4|
| 0| 2| -2|
| 6| 4| 1|
| 4| 5| 2|
| 5| -3| -5|
| 6| 4| -1|
+---+---+---+
colnames=df.columns
add new columns that are cumulative sums (consecutive):
for i in range(0,len(colnames)):
colnameLst= colnames[0:i+1]
colname = 'cm'+ str(i+1)
df = df.withColumn(colname, sum(df[col] for col in colnameLst))
df.show()
+---+---+---+---+---+---+
| x1| x2| x3|cm1|cm2|cm3|
+---+---+---+---+---+---+
| 1| 2| 3| 1| 3| 6|
| 4| 5| 6| 4| 9| 15|
| 3| 2| 1| 3| 5| 6|
| 6| 1| -4| 6| 7| 3|
| 0| 2| -2| 0| 2| 0|
| 6| 4| 1| 6| 10| 11|
| 4| 5| 2| 4| 9| 11|
| 5| -3| -5| 5| 2| -3|
| 6| 4| -1| 6| 10| 9|
+---+---+---+---+---+---+
'cumulative sum' columns added are as follows:
cm1 = x1
cm2 = x1 + x2
cm3 = x1 + x2 + x3
df = spark.createDataFrame([("linha1", "valor1", 2), ("linha2", "valor2", 5)], ("Columna1", "Columna2", "Columna3"))
df.show()
+--------+--------+--------+
|Columna1|Columna2|Columna3|
+--------+--------+--------+
| linha1| valor1| 2|
| linha2| valor2| 5|
+--------+--------+--------+
df = df.withColumn('DivisaoPorDois', df[2]/2)
df.show()
+--------+--------+--------+--------------+
|Columna1|Columna2|Columna3|DivisaoPorDois|
+--------+--------+--------+--------------+
| linha1| valor1| 2| 1.0|
| linha2| valor2| 5| 2.5|
+--------+--------+--------+--------------+
df = df.withColumn('Soma_Colunas', df[2]+df[3])
df.show()
+--------+--------+--------+--------------+------------+
|Columna1|Columna2|Columna3|DivisaoPorDois|Soma_Colunas|
+--------+--------+--------+--------------+------------+
| linha1| valor1| 2| 1.0| 3.0|
| linha2| valor2| 5| 2.5| 7.5|
+--------+--------+--------+--------------+------------+
A very simple approach would be to just use select instead of withcolumn as below:
df = df.select('*', (col("a")+col("b")+col('c).alias("total"))
This should give you required sum with minor changes based on requirements
The following approach works for me:
Import pyspark sql functions
from pyspark.sql import functions as F
Use F.expr(list_of_columns) data_frame.withColumn('Total_Sum',F.expr('col_name1+col_name2+..col_namen)