I want to shuffle this dataset to have a random set. It has 1.6 million rows but the first are 0 and the last 4, so I need pick samples randomly to have more than one class. The actual code prints only class 0 (meaning in just 1 class). I took advice from this platform but doesn't work.
fid = open("sentiment_train.csv", "r")
li = fid.readlines(16000000)
random.shuffle(li)
fid2 = open("shuffled_train.csv", "w")
fid2.writelines(li)
fid2.close()
fid.close()
sentiment_onefourty_train = pd.read_csv('shuffled_train.csv', header= 0, delimiter=",", usecols=[0,5], nrows=100000)
sentiment_onefourty_train.columns=['target', 'text']
print(sentiment_onefourty_train['target'].value_counts())
Because you read in your data using Pandas, you can also do the randomisation in a different way using pd.sample:
df = pd.read_csv('sentiment_train.csv', header= 0, delimiter=",", usecols=[0,5])
df.columns=['target', 'text']
df1 = df.sample(n=100000)
If this fails, it might be good to check out the amount of unique values and how frequent they appear. If the first 1,599,999 are 0 and the last is only 4, then the chances are that you won't get any 4.
Related
There is a for loop of 8 million iterations, which takes 2 sample values from a column of a 1 million records dataframe (say df_original_nodes) and then query that 2 samples in another dataframe say (df_original_rel) and if sample does not exist then add that samples as a new row into the queried dataframe (df_original_rel) and finally write the dataframe (df_original_rel) into a CSV.
This loop is taking roughly around 24+ hrs to complete. How this can be made performant? Happy if it even takes 8 hrs to complete than anything 12+ hrs.
Here is the piece of code:
for j in range(1, n_8000000):
ran_num = random.randint(0, 1)
ran_rel_type = rel_type[ran_num]
df_ran_rel = df_original_nodes["UID"].sample(2, ignore_index=True)
FROM = df_ran_rel[0]
TO = df_ran_rel[1]
if df_original_rel.query("#FROM == FROM and #TO == TO").empty:
k += 1
new_row = {"FROM": FROM, "TO": TO, "TYPE": ran_rel_type[0], "PART_OF": ran_rel_type[1]}
df_original_rel = df_original_rel.append(new_row, ignore_index=True)
df_original_rel.to_csv("output/extra_rel.csv", encoding="utf-8", index=False)
My assumption is that querying a dataframe df_original_rel is the heavy-lifting part where the dataframe df_original_rel is also keep growing as the new row is added.
In my view lists are faster to traverse and maybe to query but then there will be another layer of conversion from dataframe to lists and vice-versa which could add further complexity.
Some things that should probably help – most of them around "do less Pandas".
Since I don't have your original data or anything like it, I can't test this.
# Grab a regular list of UIDs that we can use with `random.sample`
original_nodes_uid_list = df_original_nodes["UID"].tolist()
# Make a regular set of FROM-TO tuples
rel_from_to_pairs = set(df_original_rel[["FROM", "TO"]].apply(tuple, axis=1).tolist())
# Store new rows here instead of putting them in the dataframe; we'll also update rel_from_to_pairs as we go.
new_rows = []
for j in range(1, 8_000_000):
# These two lines could probably also be a `random.choice`
ran_num = random.randint(0, 1)
ran_rel_type = rel_type[ran_num]
# Grab a from-to pair from the UID list
FROM, TO = random.sample(original_nodes_uid_list, 2)
# If this pair isn't in the set of known pairs...
if (FROM, TO) not in rel_from_to_pairs:
# ... prepare a new row to be added later
new_rows.append({"FROM": FROM, "TO": TO, "TYPE": ran_rel_type[0], "PART_OF": ran_rel_type[1]})
# ... and since this from-to pair _would_ exist had df_original_rel
# been updated, update the pairs set.
rel_from_to_pairs.add((FROM, TO))
# Finally, make a dataframe of the new rows, concatenate it with the old, and output.
df_new_rel = pd.DataFrame(new_rows)
df_original_rel = pd.concat([df_original_rel, df_new_rel], ignore_index=True)
df_original_rel.to_csv("output/extra_rel.csv", encoding="utf-8", index=False)
creating a dataset from multiple hdf5 groups
Code for groups with
np.array(hdf.get('all my groups'))
I have then added code for creating a dataset from groups.
with h5py.File('/train.h5', 'w') as hdf:
hdf.create_dataset('train', data=one_T+two_T+three_T+four_T+five_T)
The error message being
ValueError: operands could not be broadcast together with shapes(534456,4) (534456,14)
The numbers in each group are the same other than the varying column lengths. 5 separate groups to one dataset.
This answer addresses the OP's request in comments to my first answer ("an example would be ds_1 all columns, ds_2 first two columns, ds_3 column 4 and 6, ds_4 all columns"). The process is very similar, but the input is "slightly more complicated" than the first answer. As a result I used a different approach to define dataset names and colums to be copied. Differences:
The first solution iterates over the dataset names from the "keys()" (copying each dataset completely, appending to a dataset in the new file). The size of the new dataset is calculated by summing sizes of all datasets.
The second solution uses 2 lists to define 1) dataset names (ds_list) and 2) associated columns to copy from each dataset (col_list is a of lists). The size of the new dataset is calculated by summing the number of columns in col_list. I used "fancy indexing" to extract the columns using col_list.
How you decide to do this depends on your data.
Note: for simplicity, I deleted the dtype and shape tests. You should include these to avoid errors with "real world" problems.
Code below:
# Data for file1
arr1 = np.random.random(120).reshape(20,6)
arr2 = np.random.random(120).reshape(20,6)
arr3 = np.random.random(120).reshape(20,6)
arr4 = np.random.random(120).reshape(20,6)
# Create file1 with 4 datasets
with h5py.File('file1.h5','w') as h5f :
h5f.create_dataset('ds_1',data=arr1)
h5f.create_dataset('ds_2',data=arr2)
h5f.create_dataset('ds_3',data=arr3)
h5f.create_dataset('ds_4',data=arr4)
# Open file1 for reading and file2 for writing
with h5py.File('file1.h5','r') as h5f1 , \
h5py.File('file2.h5','w') as h5f2 :
# Loop over datasets in file1 to get dtype and rows (should test compatibility)
for i, ds in enumerate(h5f1.keys()) :
if i == 0:
ds_0_dtype = h5f1[ds].dtype
n_rows = h5f1[ds].shape[0]
break
# Create new empty dataset with appropriate dtype and size
# Use maxshape parameter to make resizable in the future
ds_list = ['ds_1','ds_2','ds_3','ds_4']
col_list =[ [0,1,2,3,4,5], [0,1], [3,5], [0,1,2,3,4,5] ]
n_cols = sum( [ len(c) for c in col_list])
h5f2.create_dataset('combined', dtype=ds_0_dtype, shape=(n_rows,n_cols), maxshape=(n_rows,None))
# Loop over datasets in file1, read data into xfer_arr, and write to file2
first = 0
for ds, cols in zip(ds_list, col_list) :
xfer_arr = h5f1[ds][:,cols]
last = first + xfer_arr.shape[1]
h5f2['combined'][:, first:last] = xfer_arr[:]
first = last
Here you go; a simple example to copy values from 3 datasets in file1 to a single dataset in file2. I included some tests to verify compatible dtype and shape. The code to create file1 are included at the top. Comments in the code should explain the process. I have another post that shows multiple ways to copy data between 2 HDF5 files. See this post: How can I combine multiple .h5 file?
import h5py
import numpy as np
import sys
# Data for file1
arr1 = np.random.random(80).reshape(20,4)
arr2 = np.random.random(40).reshape(20,2)
arr3 = np.random.random(60).reshape(20,3)
#Create file1 with 3 datasets
with h5py.File('file1.h5','w') as h5f :
h5f.create_dataset('ds_1',data=arr1)
h5f.create_dataset('ds_2',data=arr2)
h5f.create_dataset('ds_3',data=arr3)
# Open file1 for reading and file2 for writing
with h5py.File('file1.h5','r') as h5f1 , \
h5py.File('file2.h5','w') as h5f2 :
# Loop over datasets in file1 and check data compatiblity
for i, ds in enumerate(h5f1.keys()) :
if i == 0:
ds_0 = ds
ds_0_dtype = h5f1[ds].dtype
n_rows = h5f1[ds].shape[0]
n_cols = h5f1[ds].shape[1]
else:
if h5f1[ds].dtype != ds_0_dtype :
print(f'Dset 0:{ds_0}: dtype:{ds_0_dtype}')
print(f'Dset {i}:{ds}: dtype:{h5f1[ds].dtype}')
sys.exit('Error: incompatible dataset dtypes')
if h5f1[ds].shape[0] != n_rows :
print(f'Dset 0:{ds_0}: shape[0]:{n_rows}')
print(f'Dset {i}:{ds}: shape[0]:{h5f1[ds].shape[0]}')
sys.exit('Error: incompatible dataset shape')
n_cols += h5f1[ds].shape[1]
prev_ds = ds
# Create new empty dataset with appropriate dtype and size
# Using maxshape paramater to make resizable in the future
h5f2.create_dataset('ds_123', dtype=ds_0_dtype, shape=(n_rows,n_cols), maxshape=(n_rows,None))
# Loop over datasets in file1, read data into xfer_arr, and write to file2
first = 0
for ds in h5f1.keys() :
xfer_arr = h5f1[ds][:]
last = first + xfer_arr.shape[1]
h5f2['ds_123'][:, first:last] = xfer_arr[:]
first = last
I'm new to any kind of programming as you can tell by this 'beautiful' piece of hard coding. With sweat and tears (not so bad, just a little), I've created a very sequential code and that's actually my problem. My goal is to create a somewhat-automated script - probably including for-loop (I've unsuccessfully tried).
The main aim is to create a randomization loop which takes original dataset looking like this:
dataset
From this data set picking randomly row by row and saving it one by one to another excel list. The point is that the row from columns called position01 and position02 should be always selected so it does not match with the previous pick in either of those two column values. That should eventually create an excel sheet with randomized rows that are followed always by a row that does not include values from the previous pick. So row02 should not include any of those values in columns position01 and position02 of the row01, row3 should not contain values of the row2, etc. It should also iterate in the range of the list length, which is 0-11. Important is also the excel output since I need the rest of the columns, I just need to shuffle the order.
I hope my aim and description are clear enough, if not, happy to answer any questions. I would appreciate any hint or help, that helps me 'unstuck'. Thank you. Code below. (PS: I'm aware of the fact that there is probably much more neat solution to it than this)
import pandas as pd
import random
dataset = pd.read_excel("C:\\Users\\ibm\\Documents\\Psychopy\\DataInput_Training01.xlsx")
# original data set use for comparisons
imageDataset = dataset.loc[0:11, :]
# creating empty df for storing rows from imageDataset
emptyExcel = pd.DataFrame()
randomPick = imageDataset.sample() # select randomly one row from imageDataset
emptyExcel = emptyExcel.append(randomPick) # append a row to empty df
randomPickIndex = randomPick.index.tolist() # get index of the row
imageDataset2 = imageDataset.drop(index=randomPickIndex) # delete the row with index selected before
# getting raw values from the row 'position01'/02 are columns headers
randomPickTemp1 = randomPick['position01'].values[0]
randomPickTemp2 = randomPick
randomPickTemp2 = randomPickTemp2['position02'].values[0]
# getting a dataset which not including row values from position01 and position02
isit = imageDataset2[(imageDataset2.position01 != randomPickTemp1) & (imageDataset2.position02 != randomPickTemp1) & (imageDataset2.position01 != randomPickTemp2) & (imageDataset2.position02 != randomPickTemp2)]
# pick another row from dataset not including row selected at the beginning - randomPick
randomPick2 = isit.sample()
# save it in empty df
emptyExcel = emptyExcel.append(randomPick2, sort=False)
# get index of this second row to delete it in next step
randomPick2Index = randomPick2.index.tolist()
# delete the another row
imageDataset3 = imageDataset2.drop(index=randomPick2Index)
# AND REPEAT the procedure of comparison of the raw values with dataset already not including the original row:
randomPickTemp1 = randomPick2['position01'].values[0]
randomPickTemp2 = randomPick2
randomPickTemp2 = randomPickTemp2['position02'].values[0]
isit2 = imageDataset3[(imageDataset3.position01 != randomPickTemp1) & (imageDataset3.position02 != randomPickTemp1) & (imageDataset3.position01 != randomPickTemp2) & (imageDataset3.position02 != randomPickTemp2)]
# AND REPEAT with another pick - save - matching - picking again.. until end of the length of the dataset (which is 0-11)
So at the end I've used a solution provided by David Bridges (post from Sep 19 2019) on psychopy websites. In case anyone is interested, here is a link: https://discourse.psychopy.org/t/how-do-i-make-selective-no-consecutive-trials/9186
I've just adjusted the condition in for loop to my case like this:
remaining = [choices[x] for x in choices if last['position01'] != choices[x]['position01'] and last['position01'] != choices[x]['position02'] and last['position02'] != choices[x]['position01'] and last['position02'] != choices[x]['position02']]
Thank you very much for the helpful answer! and hopefully I did not spam it over here too much.
import itertools as it
import random
import pandas as pd
# list of pair of numbers
tmp1 = [x for x in it.permutations(list(range(6)),2)]
df = pd.DataFrame(tmp1, columns=["position01","position02"])
df1 = pd.DataFrame()
i = random.choice(df.index)
df1 = df1.append(df.loc[i],ignore_index = True)
df = df.drop(index = i)
while not df.empty:
val = list(df1.iloc[-1])
tmp = df[(df["position01"]!=val[0])&(df["position01"]!=val[1])&(df["position02"]!=val[0])&(df["position02"]!=val[1])]
if tmp.empty: #looped for 10000 times, was never empty
print("here")
break
i = random.choice(tmp.index)
df1 = df1.append(df.loc[i],ignore_index = True)
df = df.drop(index=i)
I want to add data (dictionaries) to a dictionary, where every added dictionary represent a new row. It is a iterative process and it is not known what column names a new added dictionary(row) could have. In the end I want a pandas dataframe. Furthermore I have to write the dataframe every 1500 rows to a file ( which is a problem, because after 1500 rows, it could of course happen that new data is added which has columns that are not present in the already written 1500 rows to the file).
I need a approach which is very fast (maybe 26ms per row). My approach is slow, because it has to check every data if it has new column names and in the end it has to reread the file, to create a new file where all columns have the same lengths. The data comes from a queue which is processed in another process.
import pandas as pd
def writingData(exportFullName='path', buffer=1500, maxFiles=150000, writingQueue):
imagePassed = 0
with open(exportFullName, 'a') as f:
columnNamesAllList = []
columnNamesAllSet = set()
dfTempAll = pd.DataFrame(index=range(buffer), columns=columnNamesAllList)
columnNamesUpdated = False
for data in iter(writingQueue.get, "STOP"):
print(imagesPassed)
dfTemp = pd.DataFrame([data],index=[imagesPassed])
if set(dfTemp).difference(columnNamesAllSet):
columnNamesAllSet.update(set(dfTemp))
columnNamesAllList.extend(list(dfTemp))
columnNamesUpdated = True
else:
columnNamesUpdated = False
if columnNamesUpdated:
print('Updated')
dfTempAll = dfTemp.combine_first(dfTempAll)
else:
dfTempAll.iloc[imagesPassed - 1] = dfTemp.iloc[0]
imagesPassed += 1
if imagesPassed == buffer:
dfTempAll.dropna(how='all', inplace=True)
dfTempAll.to_csv(f, sep='\t', header=True)
dfTempAll = pd.DataFrame(index=range(buffer), columns=columnNamesAllList)
imagePassed = 0
Reading it in again:
dfTempAll = pd.DataFrame( index=range(maxFiles), columns=columnNamesAllList)
for number, chunk in enumerate(pd.read_csv(exportFullName, delimiter='\t', chunksize=buffer, low_memory=True, memory_map=True,engine='c')):
dfTempAll.iloc[number*buffer:(number+1*buffer)] = pd.concat([chunk, columnNamesAllList]).values#.to_csv(f, sep='\t', header=False) # , chunksize=buffer
#dfTempAll = pd.concat([chunk, dfTempAll])
dfTempAll.reset_index(drop=True, inplace=True).to_csv(exportFullName, sep='\t', header=True)
Small example with dataframes
So to make it clear. Lets say I have a 4 row already existent dataframe (in the real case it could have 150000 rows like in the code above), where 2 rows are already filled with data and I add a new row it could look like this with the exception that the new data is a dictionary in the raw input:
df1 = pd.DataFrame(index=range(4),columns=['A','B','D'], data={'A': [1, 2, 'NaN', 'NaN'], 'B': [3, 4,'NaN', 'NaN'],'D': [3, 4,'NaN', 'NaN']})
df2 = pd.DataFrame(index=[2],columns=['A','C','B'], data={'A': [0], 'B': [0],'C': [0] })#
I am getting an error in my code because I tried to make a dataframe by calling an element from a csv. I have two columns I call from a file: CompanyName and QualityIssue. There are three types of Quality issues: Equipment Quality, User, and Neither. I run into problems trying to make a dataframe df.Equipment Quality, which obviously doesn't work because there is a space there. I want to take Equipment Quality from the original file and replace the space with an underscore.
input:
Top Calling Customers, Equipment Quality, User, Neither,
Customer 3, 2, 2, 0,
Customer 1, 0, 2, 1,
Customer 2, 0, 1, 0,
Customer 4, 0, 1, 0,
Here is my code:
import numpy as np
import pandas as pd
import pandas.util.testing as tm; tm.N = 3
# Get the data.
data = pd.DataFrame.from_csv('MYDATA.csv')
# Group the data by calling CompanyName and QualityIssue columns.
byqualityissue = data.groupby(["CompanyName", "QualityIssue"]).size()
# Make a pandas dataframe of the grouped data.
df = pd.DataFrame(byqualityissue)
# Change the formatting of the data to match what I want SpiderPlot to read.
formatted = df.unstack(level=-1)[0]
# Replace NaN values with zero.
formatted[np.isnan(formatted)] = 0
includingtotals = pd.concat([formatted,pd.DataFrame(formatted.sum(axis=1),
columns=['Total'])], axis=1)
sortedtotal = includingtotals.sort_index(by=['Total'], ascending=[False])
sortedtotal.to_csv('byqualityissue.csv')
This seems to be a frequently asked question and I tried lots of the solutions but they didn't seem to work. Here is what I tried:
with open('byqualityissue.csv', 'r') as f:
reader = csv.reader(f, delimiter=',', quoting=csv.QUOTE_NONE)
return [[x.strip() for x in row] for row in reader]
sentence.replace(" ", "_")
And
sortedtotal['QualityIssue'] = sortedtotal['QualityIssue'].map(lambda x: x.rstrip(' '))
And what I thought was the most promising from here http://pandas.pydata.org/pandas-docs/stable/text.html:
formatted.columns = formatted.columns.str.strip().str.replace(' ', '_')
but I got this error: AttributeError: 'Index' object has no attribute 'str'
Thanks for your help in advance!
Try:
formatted.columns = [x.strip().replace(' ', '_') for x in formatted.columns]
As I understand your question, the following should work (test it out with inplace=False to see how it looks first if you want to be careful):
sortedtotal.rename(columns=lambda x: x.replace(" ", "_"), inplace=True)
And if you have white space surrounding the column names, like: "This example "
sortedtotal.rename(columns=lambda x: x.strip().replace(" ", "_"), inplace=True)
which strips leading/trailing whitespace, then converts internal spaces to "_".