Is there a good way to speed up raytracing in Python? - python

I've been following the Raytracing in one weekend tutorial series (which is coded in C++), but I've run into a problem. I know Python is not really the language for raytracing, and it shows. Rendering 4 spheres with 100 samples per pixel at 600x300px with multithreading took a little over an quarter of an hour.
I figured that multithreading wasn't really doing anything. I needed multiprocessing. I tried to implement it, but it gave me the error that pygame.Surface wasn't serializable. Is there a solution for this, or maybe even a better way of implementing this? Or is the best way forward to recreate this in C#/C++?
The render:
Multithreaded code:
vec3.py
import math
import random
class vec3:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __add__(self, other):
return vec3(
self.x + other.x,
self.y + other.y,
self.z + other.z
)
def __sub__(self, other):
return vec3(
self.x - other.x,
self.y - other.y,
self.z - other.z
)
def __mul__(self, val):
if type(val) == vec3:
return vec3(
self.x * val.x,
self.y * val.y,
self.z * val.z
)
else:
return vec3(
self.x * val,
self.y * val,
self.z * val
)
def __truediv__(self, val):
return vec3(
self.x / val,
self.y / val,
self.z / val
)
def __pow__(self, pow):
return vec3(
self.x ** pow,
self.y ** pow,
self.z ** pow
)
def __rshift__(self, val):
return vec3(
self.x >> val,
self.y >> val,
self.z >> val
)
def __repr__(self):
return "vec3({}, {}, {})".format(self.x, self.y, self.z)
def __str__(self):
return "({}, {}, {})".format(self.x, self.y, self.z)
def dot(self, other):
return (
self.x * other.x +
self.y * other.y +
self.z * other.z
)
def cross(self, other):
return vec3(
(self.y * other.z) - (self.z * other.y),
-(self.x * other.z) - (self.z * other.x),
(self.x * other.y) - (self.y * other.x)
)
def length(self):
return math.sqrt(
(self.x ** 2) +
(self.y ** 2) +
(self.z ** 2)
)
def squared_length(self):
return (
(self.x ** 2) +
(self.y ** 2) +
(self.z ** 2))
def make_unit_vector(self):
return self / (self.length() + 0.0001)
def reflect(self, normal):
return self - normal * (self.dot(normal) * 2)
Raytracing.py
import uuid
import math
import pygame
from random import random
from vec3 import vec3
from threading import Thread
#import time
imprecision = 0.00000001
mindist = 0.001
maxdist = 999999999
class Material:
def random_in_unit_sphere():
p = vec3(random(), random(), random())*2 - vec3(1, 1, 1)
while p.squared_length() >= 1:
p = vec3(random(), random(), random())*2 - vec3(1, 1, 1)
return p
class Matte:
def __init__(self, albedo):
self.albedo = albedo
def scatter(self, ray, rec, scattered):
target = rec.p + rec.normal + Material.random_in_unit_sphere()
scattered.origin = rec.p
scattered.direction = target - rec.p
return True, self.albedo
class Metal:
def __init__(self, albedo, fuzz = 0):
self.albedo = albedo
self.fuzz = fuzz
def scatter(self, ray, rec, scattered):
reflected = ray.direction.make_unit_vector().reflect(rec.normal)
scattered.origin = rec.p
scattered.direction = reflected + (Material.random_in_unit_sphere() * self.fuzz)
return (scattered.direction.dot(rec.normal) > 0), self.albedo
class Transparent:
def __init__(self, refractive_index):
self.ri = refractive_index
def refract(self, v, normal, ni_over_nt):
uv = v.make_unit_vector()
dt = uv.dot(normal)
discriminant = 1 - (ni_over_nt * ni_over_nt * (1-dt*dt))
if discriminant > 0:
refracted = (uv - normal*dt) * ni_over_nt - (normal * math.sqrt(discriminant))
return True, refracted
else:
return False, None
def scatter(self, ray, rec, scattered):
reflected = ray.direction.reflect(rec.normal)
if ray.direction.dot(rec.normal) > 0:
outward_normal = 0 - rec.normal
ni_over_nt = self.ri
else:
outward_normal = rec.normal
ni_over_nt = 1 / self.ri
refracted = self.refract(ray.direction, outward_normal, ni_over_nt)
return bool(refracted[0]), vec3(1, 1, 1)
class Object:
class Sphere:
def __init__(self, pos, r, material=Material.Matte(0.5)):
self.center = pos
self.r = r
self.material = material
def hit(self, ray, t_min, t_max, rec):
oc = ray.origin - self.center
a = ray.direction.dot(ray.direction)
b = oc.dot(ray.direction)
c = oc.dot(oc) - (self.r * self.r)
discriminant = (b*b) - (a*c)
if discriminant < 0:
return False
else:
t = (-b - math.sqrt(discriminant)) / (a + imprecision)
if (t_min < t < t_max):
rec.t = t
rec.p = ray.point_at_parameter(t)
rec.normal = (rec.p - self.center) / self.r
rec.material = self.material
return True
t = (-b + math.sqrt(discriminant)) / (a + imprecision)
if (t_min < t < t_max):
rec.t = t
rec.p = ray.point_at_parameter(t)
rec.normal = (rec.p - self.center) / self.r
rec.material = self.material
return True
class Scene:
def genUUID(self):
id = uuid.uuid4()
while id in self.objects.keys():
id = uuid.uuid4()
return id
def __init__(self):
self.objects = {}
def add(self, object):
id = self.genUUID()
self.objects[id] = object
return id
def hit(self, ray, t_min, t_max, hit_record):
tmp_hit_record = Camera.HitRec()
hit_any = False
closest = maxdist
for object in self.objects.keys():
if self.objects[object].hit(ray, t_min, closest, tmp_hit_record):
hit_any = True
closest = tmp_hit_record.t
hit_record.t = tmp_hit_record.t
hit_record.p = tmp_hit_record.p
hit_record.normal = tmp_hit_record.normal
hit_record.material = tmp_hit_record.material
return hit_any
class Camera:
class Ray:
def __init__(self, A, B):
self.origin = A
self.direction = B
def point_at_parameter(self, t):
return self.origin + (self.direction * t)
class HitRec:
def __init__(self):
self.t = 0
self.p = vec3(0, 0, 0)
self.normal = vec3(0, 0, 0)
def __init__(self, w, screen, scene = Scene(), screen_ratio = 16/9, focal_length = 1):
self.w = w
self.h = int(w / screen_ratio)
self.screen = screen
self.scene = scene
self.screen_ratio = screen_ratio
self.screen_unit_width = 4
self.focal_length = focal_length
self.sampels_per_pixel = 1
self.max_hit_depth = 5
self.max_block_size = 100
# self.depthT = pygame.Surface((w, self.h))
self.origin = vec3(0, 0, 0)
self.horizontal = vec3(self.screen_unit_width, 0, 0)
self.vertical = vec3(0, (-self.screen_unit_width / self.screen_ratio), 0)
self.top_left_corner = \
self.origin - (self.horizontal/2) - (self.vertical/2) - vec3(0, 0, self.focal_length)
def color(self, ray, depth=0):
# Check for sphere hit
rec = self.HitRec()
if self.scene.hit(ray, mindist, maxdist, rec):
scattered = self.Ray(vec3(0, 0, 0), vec3(0, 0, 0))
hit = rec.material.scatter(ray, rec, scattered) # Scattered is the output ray
if depth < self.max_hit_depth and hit[0]:
return self.color(scattered, depth + 1) * hit[1]
else:
return hit[1]
# target = rec.p + rec.normal + self.random_in_unit_sphere()
# return self.color(self.Ray(rec.p, target - rec.p)) * 0.5
## return vec3(rec.normal.x + 1, rec.normal.y + 1, rec.normal.z + 1) * 0.5, rec.t
# Background if nothing's hit
unit_dir = ray.direction.make_unit_vector()
t = 0.5 * (unit_dir.y + 1)
return (vec3(1, 1, 1) * (1 - t)) + (vec3(0.5, 0.7, 1) * t)#, maxdist
def getRay(self, u, v):
return self.Ray(
self.origin,
self.top_left_corner + (self.horizontal * (u + imprecision)) + (self.vertical * (v + imprecision))
)
def renderSquare(self, xoff, yoff, w, h):
pygame.draw.rect(self.screen, (255, 255, 255), (xoff, yoff, w, h))
pygame.display.update()
for y in range(h):
for x in range(w):
col = vec3(0, 0, 0)
for n in range(self.sampels_per_pixel):
u = (x + xoff + random()-0.5) / self.w
v = (y + yoff + random()-0.5) / self.h
r = self.getRay(u, v)
col += (self.color(r) / self.sampels_per_pixel)
col = vec3(math.sqrt(col.x), math.sqrt(col.y), math.sqrt(col.z))
self.screen.set_at((x + xoff, y + yoff), (col.x * 255, col.y * 255, col.z * 255))
pygame.display.update()
def render(self):
blocks = []
for i in range(math.ceil(self.w / self.max_block_size)):
for j in range(math.ceil(self.h / self.max_block_size)):
blocks.append(Thread( target = self.renderSquare, args=(
i * self.max_block_size,
j * self.max_block_size,
self.max_block_size,
self.max_block_size
)))
for job in blocks:
job.start()
for job in blocks:
job.join()
if __name__ == '__main__':
from Raytracing import Camera, Scene, Object
import pygame
pygame.init()
WIDTH, HEIGHT = 600, 300
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption('Multithreaded raytracer')
scene = Scene()
scene.add(Object.Sphere(vec3( 0, 0, -1), 0.5, Material.Matte(vec3(0, 0.3, 0.8))))
scene.add(Object.Sphere(vec3(-1, 0, -1), 0.5, Material.Metal(vec3(0.8, 0.8, 0.8), 0.1)))
scene.add(Object.Sphere(vec3( 1, 0, -1), 0.5, Material.Metal(vec3(0.8, 0.6, 0.2), 1)))
scene.add(Object.Sphere(vec3(0, -100.5, -1), 100, Material.Matte(vec3(0.8, 0.8, 0))))
tracer = Camera(WIDTH, screen, scene, screen_ratio=2 / 1)
# tracer.render()
tracer.sampels_per_pixel = 100
tracer.render()
loop = True
while loop:
for event in pygame.event.get():
if event.type==pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
loop = False
if event.type==pygame.QUIT:
loop = False
pygame.display.update()
pygame.quit()

Related

Trajectory plalnification

I have a program that generates circles and lines, where the circles can not collide with each other and the lines can not collide with the circles, the problem is that it only draws a line but not the others, it does not mark any error and as much as I think the reason I do not understand why, (I'm new to python, so excuse me if maybe the error is obvious)
I tried to remove the for from my CreaLin class and it does generate the lines but they all collide with the circles, I also thought that the collisionL function could be the problem since the method does not belong as such to the line class, but I need values from the circle class, so I don't know what would be another way to do it, I would like to know a method.
my code:
class CreaCir:
def __init__(self, figs):
self.figs = figs
def update(self):
if len(self.figs) <70:
choca = False
r = randint(5, 104)
x = randint(0, 600 + r)
y = randint(0, 400 + r)
creOne = Circulo(x, y, r)
for fig in (self.figs):
choca = creOne.colisionC(fig)
if choca == True:
break
if choca == False:
self.figs.append(creOne)
def dibujar(self, ventana):
pass
class CreaLin:
def __init__(self, lins):
self.lins = lins
def update(self):
if len(self.lins) <70:
choca = False
x = randint(0, 700)
y = randint(0, 500)
a = randint(0, 700)
b = randint(0, 500)
linOne = Linea(x, y, a, b)
for lin in (self.lins):
choca = linOne.colisionL(lin)
if choca == True:
break
if choca == False:
self.lins.append(linOne)
def dibujar(self, ventana):
pass
class Ventana:
def __init__(self, Ven_Tam= (700, 500)):
pg.init()
self.ven_tam = Ven_Tam
self.ven = pg.display.set_caption("Linea")
self.ven = pg.display.set_mode(self.ven_tam)
self.ven.fill(pg.Color('#404040'))
self.figs = []
self.lins = []
self.reloj = pg.time.Clock()
def check_events(self):
for event in pg.event.get():
if event.type == pg.QUIT or (event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE):
quit()
pg.display.flip()
def run(self):
cirCreater = CreaCir(self.figs)
linCreater = CreaLin(self.lins)
while True:
self.check_events()
cirCreater.update()
linCreater.update()
for fig in self.figs:
fig.dibujar(self.ven)
for lin in self.lins:
lin.dibujar(self.ven)
self.reloj.tick(60)
if __name__ == '__main__':
ven = Ventana()
ven.run()
class Circulo:
class Circulo(PosGeo):
def __init__(self, x, y, r):
self.x = x
self.y = y
self.radio = r
self.cx = x+r
self.cy = y+r
def __str__(self):
return f"Circulo, (X: {self.x}, Y: {self.y}), radio: {self.radio}"
def dibujar(self, ventana):
pg.draw.circle(ventana, "white", (self.cx, self.cy), self.radio, 1)
pg.draw.line(ventana, "white", (self.cx+2, self.cy+2),(self.cx-2, self.cy-2))
pg.draw.line(ventana, "white", (self.cx-2, self.cy+2),(self.cx+2, self.cy-2))
def update(self):
pass
def colisionC(self, c2):
return self.radio + c2.radio > sqrt(pow(self.cx - c2.cx, 2) + pow(self.cy - c2.cy, 2))
def colisionL(self, L2):
l0 = [L2.x, L2.y]
l1 = [L2.a, L2.b]
cp = [self.cx, self.cy]
x1 = l0[0] - cp[0]
y1 = l0[1] - cp[1]
x2 = l1[0] - cp[0]
y2 = l1[1] - cp[1]
dx = x2 - x1
dy = y2 - y1
dr = sqrt(dx*dx + dy*dy)
D = x1 * y2 - x2 * y1
discriminant = self.radio*self.radio*dr*dr - D*D
if discriminant < 0:
return False
else:
return True`
and finally my class line:
class Linea(PosGeo):
def __init__(self, x, y, a, b):
super().__init__(x, y)
self.x = x
self.y = y
self.a = a
self.b = b
def dibujar(self, ventana):
pg.draw.line(ventana, "#7B0000", (self.x, self.y), (self.a, self.b))
def update(self):
pass
def colisionL(self, l1):
pass
Result:
You need to implement the colisionC and colisionL methods in Linea and Circulo. See Problem with calculating line intersections for the line-line intersection algorithm. When checking for collisions between lines and circles, in addition to checking for collisions between circles and endless lines, you must also consider the beginning and end of the line segment:
class Linea:
# [...]
def colisionC(self, c2):
return c2.colisionL(self)
def colisionL(self, l1):
return Linea.intersect_line_line((self.x, self.y), (self.a, self.b), (l1.x, l1.y), (l1.a, l1.b))
def intersect_line_line(P0, P1, Q0, Q1):
d = (P1[0]-P0[0]) * (Q1[1]-Q0[1]) + (P1[1]-P0[1]) * (Q0[0]-Q1[0])
if d == 0:
return None
t = ((Q0[0]-P0[0]) * (Q1[1]-Q0[1]) + (Q0[1]-P0[1]) * (Q0[0]-Q1[0])) / d
u = ((Q0[0]-P0[0]) * (P1[1]-P0[1]) + (Q0[1]-P0[1]) * (P0[0]-P1[0])) / d
if 0 <= t <= 1 and 0 <= u <= 1:
return P1[0] * t + P0[0] * (1-t), P1[1] * t + P0[1] * (1-t)
return None
class Circulo
# [...]
def colisionC(self, c2):
return self.radio + c2.radio > sqrt(pow(self.cx - c2.cx, 2) + pow(self.cy - c2.cy, 2))
def colisionL(self, L2):
l0 = [L2.x, L2.y]
l1 = [L2.a, L2.b]
cp = [self.cx, self.cy]
x1 = l0[0] - cp[0]
y1 = l0[1] - cp[1]
x2 = l1[0] - cp[0]
y2 = l1[1] - cp[1]
if sqrt(x1*x1+y1*y1) < self.radio or sqrt(x2*x2+y2*y2) < self.radio:
return True
dx = x2 - x1
dy = y2 - y1
dr = sqrt(dx*dx + dy*dy)
D = x1 * y2 - x2 * y1
discriminant = self.radio*self.radio*dr*dr - D*D
if discriminant < 0:
return False
sign = lambda x: -1 if x < 0 else 1
xa = (D * dy + sign(dy) * dx * sqrt(discriminant)) / (dr * dr)
xb = (D * dy - sign(dy) * dx * sqrt(discriminant)) / (dr * dr)
ya = (-D * dx + abs(dy) * sqrt(discriminant)) / (dr * dr)
yb = (-D * dx - abs(dy) * sqrt(discriminant)) / (dr * dr)
ta = (xa-x1)*dx/dr + (ya-y1)*dy/dr
tb = (xb-x1)*dx/dr + (yb-y1)*dy/dr
return 0 < ta < dr or 0 < tb < dr
Put all objects into one container. Before you add a new Linea you have to check if the new "Line" intersects another object with "ColisionL". Before you add a new Circulo, you must check if the new "Line" intersects another object with CollisionC:
class CreaObjects:
def __init__(self, figs):
self.figs = figs
self.no_lines = 0
self.no_circles = 0
def update(self):
if self.no_circles <70:
r = randint(5, 104)
creOne = Circulo(randint(0, 600 - 2*r), randint(0, 400 - 2*r), r)
if not any(fig.colisionC(creOne) for fig in self.figs):
self.figs.append(creOne)
self.no_circles += 1
if self.no_lines <70:
linOne = Linea(randint(0, 700), randint(0, 500), randint(0, 700), randint(0, 500))
if not any(fig.colisionL(linOne) for fig in self.figs):
self.figs.append(linOne)
self.no_lines += 1
Complete example:
import pygame as pg
from random import randint
from math import sqrt, hypot
class Linea:
def __init__(self, x, y, a, b):
self.x = x
self.y = y
self.a = a
self.b = b
def dibujar(self, ventana):
pg.draw.line(ventana, "#7B0000", (self.x, self.y), (self.a, self.b))
def update(self):
pass
def colisionC(self, c2):
return c2.colisionL(self)
def colisionL(self, l1):
return Linea.intersect_line_line((self.x, self.y), (self.a, self.b), (l1.x, l1.y), (l1.a, l1.b))
def intersect_line_line(P0, P1, Q0, Q1):
d = (P1[0]-P0[0]) * (Q1[1]-Q0[1]) + (P1[1]-P0[1]) * (Q0[0]-Q1[0])
if d == 0:
return None
t = ((Q0[0]-P0[0]) * (Q1[1]-Q0[1]) + (Q0[1]-P0[1]) * (Q0[0]-Q1[0])) / d
u = ((Q0[0]-P0[0]) * (P1[1]-P0[1]) + (Q0[1]-P0[1]) * (P0[0]-P1[0])) / d
if 0 <= t <= 1 and 0 <= u <= 1:
return P1[0] * t + P0[0] * (1-t), P1[1] * t + P0[1] * (1-t)
return None
class Circulo:
def __init__(self, x, y, r):
self.x = x
self.y = y
self.radio = r
self.cx = x+r
self.cy = y+r
def __str__(self):
return f"Circulo, (X: {self.x}, Y: {self.y}), radio: {self.radio}"
def dibujar(self, ventana):
pg.draw.circle(ventana, "white", (self.cx, self.cy), self.radio, 1)
pg.draw.line(ventana, "white", (self.cx+2, self.cy+2),(self.cx-2, self.cy-2))
pg.draw.line(ventana, "white", (self.cx-2, self.cy+2),(self.cx+2, self.cy-2))
def update(self):
pass
def colisionC(self, c2):
return self.radio + c2.radio > sqrt(pow(self.cx - c2.cx, 2) + pow(self.cy - c2.cy, 2))
def colisionL(self, L2):
l0 = [L2.x, L2.y]
l1 = [L2.a, L2.b]
cp = [self.cx, self.cy]
x1 = l0[0] - cp[0]
y1 = l0[1] - cp[1]
x2 = l1[0] - cp[0]
y2 = l1[1] - cp[1]
if sqrt(x1*x1+y1*y1) < self.radio or sqrt(x2*x2+y2*y2) < self.radio:
return True
dx = x2 - x1
dy = y2 - y1
dr = sqrt(dx*dx + dy*dy)
D = x1 * y2 - x2 * y1
discriminant = self.radio*self.radio*dr*dr - D*D
if discriminant < 0:
return False
sign = lambda x: -1 if x < 0 else 1
xa = (D * dy + sign(dy) * dx * sqrt(discriminant)) / (dr * dr)
xb = (D * dy - sign(dy) * dx * sqrt(discriminant)) / (dr * dr)
ya = (-D * dx + abs(dy) * sqrt(discriminant)) / (dr * dr)
yb = (-D * dx - abs(dy) * sqrt(discriminant)) / (dr * dr)
ta = (xa-x1)*dx/dr + (ya-y1)*dy/dr
tb = (xb-x1)*dx/dr + (yb-y1)*dy/dr
return 0 < ta < dr or 0 < tb < dr
class CreaObjects:
def __init__(self, figs):
self.figs = figs
self.no_lines = 0
self.no_circles = 0
def update(self):
if self.no_circles <70:
r = randint(5, 104)
creOne = Circulo(randint(0, 600 - 2*r), randint(0, 400 - 2*r), r)
if not any(fig.colisionC(creOne) for fig in self.figs):
self.figs.append(creOne)
self.no_circles += 1
if self.no_lines <70:
linOne = Linea(randint(0, 700), randint(0, 500), randint(0, 700), randint(0, 500))
if not any(fig.colisionL(linOne) for fig in self.figs):
self.figs.append(linOne)
self.no_lines += 1
class Ventana:
def __init__(self, Ven_Tam= (700, 500)):
pg.init()
self.ven_tam = Ven_Tam
self.ven = pg.display.set_caption("Linea")
self.ven = pg.display.set_mode(self.ven_tam)
self.figs = []
self.reloj = pg.time.Clock()
def check_events(self):
for event in pg.event.get():
if event.type == pg.QUIT or (event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE):
quit()
def run(self):
cirCreater = CreaObjects(self.figs)
while True:
self.check_events()
cirCreater.update()
self.ven.fill(pg.Color('#404040'))
for fig in self.figs:
fig.dibujar(self.ven)
pg.display.flip()
self.reloj.tick(60)
if __name__ == '__main__':
ven = Ventana()
ven.run()

Coulombs Law: Protons atract each other

I'am working on a simulation of the Coulomb's Law with pygame, but I have a problem. When I start the Simulation an set two Protons, they attract each other. But there is more!
When I set an electron and a proton, they both start to "travel" with a constant distance to each other in the same direction.
Here is my code:
import pygame
import numpy as np
import math
pygame.init()
# window-settings
WIDTH, HEIGHT = 800, 800
WIN = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("Electric field simulation")
# constants
Pi = np.pi
epsilon0 = 8.85 * (10**(-12))
q = 1.6 * (10**-19)
# colors
WHITE = (255,255,255)
BLACK = (0,0,0)
BLUE = (100, 149, 237)
RED = (188, 39, 50)
class Charge:
TIMESTEP = 50000
def __init__(self, x, y, radius, color, q):
self.x = x
self.y = y
self.radius = radius
self.color = color
self.q = q
self.x_vel = 0
self.y_vel = 0
def draw(self, win):
pygame.draw.circle(win, self.color, (self.x, self.y), self.radius)
def attraction(self, other):
other_x, other_y = other.x, other.y
distance_x = other_x - self.x
distance_y = other_y - self.y
distance = math.sqrt(distance_x ** 2 + distance_y ** 2)
force = (1 / (4 * Pi * epsilon0)) * self.q * other.q / (distance ** 2)
theta = math.atan2(distance_y, distance_x)
force_x = math.cos(theta) * force
force_y = math.sin(theta) * force
return force_x, force_y
def update_position(self, charges):
total_fx = total_fy = 0
for charge in charges:
if self == charge:
continue
fx, fy = self.attraction(charge)
total_fx += fx
total_fy += fy
self.x_vel += total_fx / self.q * self.TIMESTEP
self.y_vel += total_fy / self.q * self.TIMESTEP
self.x += self.x_vel * self.TIMESTEP
self.y += self.y_vel * self.TIMESTEP
def main():
run = True
clock = pygame.time.Clock()
proton = Charge(200, 200, 10, RED, q)
electron = Charge(300, 200, 10, BLUE, -q)
charges = [electron, proton]
while run:
clock.tick(60)
WIN.fill(WHITE)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
if event.type == pygame.MOUSEBUTTONDOWN: # To set charges
if event.button == 1: # Sets positive charge
charges.append(Charge(pygame.mouse.get_pos()[0], pygame.mouse.get_pos()[1], 10, RED, q))
if event.button == 3: # Sets negitive charge
charges.append(Charge(pygame.mouse.get_pos()[0], pygame.mouse.get_pos()[1], 10, BLUE, -q))
for charge in charges:
charge.update_position(charges)
charge.draw(WIN)
pygame.display.update()
pygame.quit()
if __name__ == "__main__":
main()
I think the problem is the attraction-function, but I don't know how to solve it.
At the moment I have not the possibility to run your code but have you mixed up the direction of your force?
At least Wikipedia calculates r1-r2
Annother source of error might be the sin, cos etc. functions have you checked for your example that the calculated values are correct?
If I understand your code correct you update all positions one after eachother and apply the changes right away. Dependend on your application you might want to
Calculate all forces
Update all Values
Otherwise you have a multiple states of your system in just one time step.
Okay I solved the problem by calculating the direction of the force. With this I calculate at first the the force but return the absolute and then calculate the direction and speed.
Here is the code of my changes (I just changed something in the updating and attracting function):
def attraction(self, other):
other_x, other_y = other.x, other.y
distance_x = self.x - other_x
distance_y = self.y - other_y
distance = math.sqrt(distance_x ** 2 + distance_y ** 2)
if self.q != other.q and distance < 5:
return 0,0
force = (1 / (4 * Pi * epsilon0)) * self.q * other.q / (distance ** 2)
force_x = distance_x / distance*np.abs(force)
force_y = distance_y / distance*np.abs(force)
return force_x, force_y
def update_position(self, charges):
total_fx = total_fy = 0
for charge in charges:
if self == charge:
continue
fx, fy = self.attraction(charge)
total_fx += fx
total_fy += fy
self.x_vel += total_fx / self.q * self.TIMESTEP
self.y_vel += total_fy / self.q * self.TIMESTEP
if self != charge and self.q < 0 and self.q != charge.q:
x = abs(self.x - charge.x)
y = abs(self.y - charge.y)
self.direction = [x / np.sqrt((x ** 2) + (y ** 2)),y / np.sqrt((x ** 2) + (y ** 2))]
elif self != charge and self.q > 0 and self.q != charge.q:
x = abs(self.x - charge.x)
y = abs(self.y - charge.y)
self.direction = [-x / np.sqrt((x ** 2) + (y ** 2)), -y / np.sqrt((x ** 2) + (y ** 2))]
elif self != charge and self.q < 0 and self.q == charge.q:
x = abs(self.x - charge.x)
y = abs(self.y - charge.y)
self.direction = [-x / np.sqrt((x ** 2) + (y ** 2)), -y / np.sqrt((x ** 2) + (y ** 2))]
elif self != charge and self.q > 0 and self.q == charge.q:
x = abs(self.x - charge.x)
y = abs(self.y - charge.y)
self.direction = [x / np.sqrt((x ** 2) + (y ** 2)), y / np.sqrt((x ** 2) + (y ** 2))]
self.x += self.x_vel * self.TIMESTEP * self.direction[0]
self.y += self.y_vel * self.TIMESTEP * self.direction[1]
I know this code isn't that beautiful, but at first it works.

Qt callout example with more than one y axis

I have a QChart from the Callout example of PySide6. Now I have rewritten some of the code for my project, but when I hover over a `QLineSeries' the callout appears higher or lower than where I am actually pointing.
Here is some code:
The Callout class (Almost the same as in the example)
class Callout(QGraphicsItem):
def __init__(self, chart):
QGraphicsItem.__init__(self, chart)
self.chart = chart
self._text = ""
self._textRect = QRectF()
self._anchor = QPointF()
self._font = QFont()
self._rect = QRectF()
def boundingRect(self):
anchor = self.mapFromParent(self.chart.mapToPosition(self._anchor))
rect = QRectF()
rect.setLeft(min(self._rect.left(), anchor.x()))
rect.setRight(max(self._rect.right(), anchor.x()))
rect.setTop(min(self._rect.top(), anchor.y()))
rect.setBottom(max(self._rect.bottom(), anchor.y()))
return rect
def paint(self, painter, option, widget):
path = QPainterPath()
path.addRoundedRect(self._rect, 5, 5)
anchor = self.mapFromParent(self.chart.mapToPosition(self._anchor))
if not self._rect.contains(anchor) and not self._anchor.isNull():
point1 = QPointF()
point2 = QPointF()
# establish the position of the anchor point in relation to _rect
above = anchor.y() <= self._rect.top()
above_center = (anchor.y() > self._rect.top() and
anchor.y() <= self._rect.center().y())
below_center = (anchor.y() > self._rect.center().y() and
anchor.y() <= self._rect.bottom())
below = anchor.y() > self._rect.bottom()
on_left = anchor.x() <= self._rect.left()
left_of_center = (anchor.x() > self._rect.left() and
anchor.x() <= self._rect.center().x())
right_of_center = (anchor.x() > self._rect.center().x() and
anchor.x() <= self._rect.right())
on_right = anchor.x() > self._rect.right()
# get the nearest _rect corner.
x = (on_right + right_of_center) * self._rect.width()
y = (below + below_center) * self._rect.height()
corner_case = ((above and on_left) or (above and on_right) or
(below and on_left) or (below and on_right))
vertical = abs(anchor.x() - x) > abs(anchor.y() - y)
x1 = (x + left_of_center * 10 - right_of_center * 20 + corner_case *
int(not vertical) * (on_left * 10 - on_right * 20))
y1 = (y + above_center * 10 - below_center * 20 + corner_case *
vertical * (above * 10 - below * 20))
point1.setX(x1)
point1.setY(y1)
x2 = (x + left_of_center * 20 - right_of_center * 10 + corner_case *
int(not vertical) * (on_left * 20 - on_right * 10))
y2 = (y + above_center * 20 - below_center * 10 + corner_case *
vertical * (above * 20 - below * 10))
point2.setX(x2)
point2.setY(y2)
path.moveTo(point1)
path.lineTo(anchor)
path.lineTo(point2)
path = path.simplified()
painter.setBrush(QColor(255, 255, 255))
painter.drawPath(path)
painter.drawText(self._textRect, self._text)
def mousePressEvent(self, event):
if event.button() == Qt.RightButton:
self.removecallout()
event.setAccepted(True)
def mouseMoveEvent(self, event):
if event.buttons() & Qt.LeftButton:
self.setPos(self.mapToParent(
event.pos() - event.buttonDownPos(Qt.LeftButton)))
event.setAccepted(True)
else:
event.setAccepted(False)
def set_text(self, text):
self._text = text
metrics = QFontMetrics(self._font)
self._textRect = QRectF(metrics.boundingRect(
QRect(0.0, 0.0, 150.0, 150.0), Qt.AlignLeft, self._text))
self._textRect.translate(5, 5)
self.prepareGeometryChange()
self._rect = self._textRect.adjusted(-5, -5, 5, 5)
def set_anchor(self, point):
self._anchor = QPointF(point)
def update_geometry(self):
self.prepareGeometryChange()
self.setPos(self.chart.mapToPosition(
self._anchor) + QPointF(10, -50))
def removecallout(self):
self.hide()
The Class which produces the chart:
class CreateChart(QChartView):
def __init__(self, data):
super().__init__()
self.serieses = self.getserieses(data)
i = 0
self.chart = QChart()
self.buddy = None
self.chart.legend().setVisible(False)
xaxis = QValueAxis()
xaxis.setTitleText("Time")
self.chart.addAxis(xaxis, Qt.AlignBottom)
for key in self.serieses.keys():
if i >= 100:
break
else:
self.serieses[key].setName(key)
self.chart.addSeries(self.serieses[key])
self.serieses[key].hovered.connect(self.tooltip) #The connections for the temporary callout of the coordinates
self.serieses[key].clicked.connect(self.keep_callout) #The connection for the permanent callout of the coordinates
axis = QValueAxis()
axis.setTitleText(key)
axis.setTitleBrush(self.serieses[key].color())
self.chart.addAxis(axis, Qt.AlignLeft if ((i % 2) == 0) else Qt.AlignRight)
self.serieses[key].attachAxis(axis)
self.serieses[key].attachAxis(xaxis)
i += 1
print("Finished Loading")
self.chart.legend().setMarkerShape(QLegend.MarkerShapeFromSeries)
self.chart_view = super()
self.chart_view.setRenderHint(QPainter.Antialiasing)
self.chart_view.setChart(self.chart)
#self.chart_view.setMaximumWidth(300)
#QGraphicsView.RubberbandDrag = Selecting an area which can be retrieved by **Your QChartView**.rubberBandRect()
self.chart_view.setDragMode(QGraphicsView.RubberBandDrag)
self.chart_view.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) #Don't need these, as they don't move the Graph. but the whole window
self.chart_view.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) # ^
self.chart.setFocusPolicy(Qt.NoFocus)
self._tooltip = Callout(self.chart)
self._callouts = []
self.setMouseTracking(True) #Must be on
def tooltip(self, point, state):
#point = self.Mouse
if self._tooltip == 0:
self._tooltip = Callout(self._chart)
if state:
x = point.x()
y = point.y()
self._tooltip.set_text(f"X: {x:.1f} \nY: {y:.1f} ")
self._tooltip.set_anchor(point)
self._tooltip.setZValue(11)
self._tooltip.update_geometry()
self._tooltip.show()
else:
self._tooltip.hide()
def keep_callout(self):
self._callouts.append(self._tooltip)
self._tooltip = Callout(self.chart)
Now when I execute this the callouts appear perfect on one series, but on all the others the callouts appear above or below where my mouse is actually located, as the callout gets drawn on a different axis than the series is
Showing tooltip in a Qt chart with multiple y axes
Answer to this question could be found here in C++, answered by eyllanesc.
Here is a PySide6 version of the answer.
"""PySide6 port of the Callout example from Qt v5.x"""
import sys
from PySide6.QtWidgets import (QApplication, QGraphicsScene,
QGraphicsView, QGraphicsSimpleTextItem, QGraphicsItem)
from PySide6.QtCore import Qt, QPointF, QRectF, QRect
from PySide6.QtCharts import QChart, QChartView, QLineSeries, QSplineSeries, QValueAxis
from PySide6.QtGui import QPainter, QFont, QFontMetrics, QPainterPath, QColor
class Callout(QGraphicsItem):
def __init__(self, chart, series):
QGraphicsItem.__init__(self, chart)
self._chart = chart
self._series = series
self._text = ""
self._textRect = QRectF()
self._anchor = QPointF()
self._font = QFont()
self._rect = QRectF()
def boundingRect(self):
anchor = self.mapFromParent(
self._chart.mapToPosition(self._anchor, self._series))
rect = QRectF()
rect.setLeft(min(self._rect.left(), anchor.x()))
rect.setRight(max(self._rect.right(), anchor.x()))
rect.setTop(min(self._rect.top(), anchor.y()))
rect.setBottom(max(self._rect.bottom(), anchor.y()))
return rect
def paint(self, painter, option, widget):
path = QPainterPath()
path.addRoundedRect(self._rect, 5, 5)
anchor = self.mapFromParent(
self._chart.mapToPosition(self._anchor, self._series))
if not self._rect.contains(anchor) and not self._anchor.isNull():
point1 = QPointF()
point2 = QPointF()
# establish the position of the anchor point in relation to _rect
above = anchor.y() <= self._rect.top()
above_center = (anchor.y() > self._rect.top() and
anchor.y() <= self._rect.center().y())
below_center = (anchor.y() > self._rect.center().y() and
anchor.y() <= self._rect.bottom())
below = anchor.y() > self._rect.bottom()
on_left = anchor.x() <= self._rect.left()
left_of_center = (anchor.x() > self._rect.left() and
anchor.x() <= self._rect.center().x())
right_of_center = (anchor.x() > self._rect.center().x() and
anchor.x() <= self._rect.right())
on_right = anchor.x() > self._rect.right()
# get the nearest _rect corner.
x = (on_right + right_of_center) * self._rect.width()
y = (below + below_center) * self._rect.height()
corner_case = ((above and on_left) or (above and on_right) or
(below and on_left) or (below and on_right))
vertical = abs(anchor.x() - x) > abs(anchor.y() - y)
x1 = (x + left_of_center * 10 - right_of_center * 20 + corner_case *
int(not vertical) * (on_left * 10 - on_right * 20))
y1 = (y + above_center * 10 - below_center * 20 + corner_case *
vertical * (above * 10 - below * 20))
point1.setX(x1)
point1.setY(y1)
x2 = (x + left_of_center * 20 - right_of_center * 10 + corner_case *
int(not vertical) * (on_left * 20 - on_right * 10))
y2 = (y + above_center * 20 - below_center * 10 + corner_case *
vertical * (above * 20 - below * 10))
point2.setX(x2)
point2.setY(y2)
path.moveTo(point1)
path.lineTo(anchor)
path.lineTo(point2)
path = path.simplified()
painter.setBrush(QColor(255, 255, 255))
painter.drawPath(path)
painter.drawText(self._textRect, self._text)
def mousePressEvent(self, event):
event.setAccepted(True)
def mouseMoveEvent(self, event):
if event.buttons() & Qt.LeftButton:
self.setPos(self.mapToParent(
event.pos() - event.buttonDownPos(Qt.LeftButton)))
event.setAccepted(True)
else:
event.setAccepted(False)
def set_text(self, text):
self._text = text
metrics = QFontMetrics(self._font)
self._textRect = QRectF(metrics.boundingRect(
QRect(0.0, 0.0, 150.0, 150.0), Qt.AlignLeft, self._text))
self._textRect.translate(5, 5)
self.prepareGeometryChange()
self._rect = self._textRect.adjusted(-5, -5, 5, 5)
def set_anchor(self, point):
self._anchor = QPointF(point)
def update_geometry(self):
self.prepareGeometryChange()
self.setPos(self._chart.mapToPosition(
self._anchor, self._series) + QPointF(10, -50))
def setSeries(self, series):
self._series = series
class View(QChartView):
def __init__(self, parent=None):
super().__init__(parent)
self.setScene(QGraphicsScene(self))
self.setDragMode(QGraphicsView.RubberBandDrag)
self.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
# Chart
self._chart = QChart()
self._chart.setMinimumSize(640, 480)
self._chart.setTitle("Hover the line to show callout. Click the line "
"to make it stay")
self._chart.legend().hide()
self.series = QLineSeries()
self.series.append(1, 3)
self.series.append(4, 5)
self.series.append(5, 4.5)
self.series.append(7, 1)
self.series.append(11, 2)
self._chart.addSeries(self.series)
self.series2 = QSplineSeries()
self.series2.append(1.6, 1.4)
self.series2.append(2.4, 3.5)
self.series2.append(3.7, 2.5)
self.series2.append(7, 4)
self.series2.append(10, 2)
self._chart.addSeries(self.series2)
xaxis = QValueAxis()
xaxis.setTitleText("X")
self._chart.addAxis(xaxis, Qt.AlignBottom)
yaxis = QValueAxis()
yaxis.setTitleText("YR")
self._chart.addAxis(yaxis, Qt.AlignRight)
y2axis = QValueAxis()
y2axis.setTitleText("YL")
self._chart.addAxis(y2axis, Qt.AlignLeft)
self.series.attachAxis(xaxis)
self.series.attachAxis(y2axis)
self.series2.attachAxis(xaxis)
self.series2.attachAxis(yaxis)
self._chart.setAcceptHoverEvents(True)
self.setRenderHint(QPainter.Antialiasing)
self.scene().addItem(self._chart)
self._coordX = QGraphicsSimpleTextItem(self._chart)
self._coordX.setPos(
self._chart.size().width() / 2 - 50, self._chart.size().height())
self._coordX.setText("X: ")
self._coordY = QGraphicsSimpleTextItem(self._chart)
self._coordY.setPos(
self._chart.size().width() / 2 + 50, self._chart.size().height())
self._coordY.setText("Y: ")
self._callouts = []
self._tooltip = Callout(self._chart, self.series)
self.series.clicked.connect(self.keep_callout)
self.series.hovered.connect(self.tooltip)
self.series2.clicked.connect(self.keep_callout)
self.series2.hovered.connect(self.tooltip)
self.setMouseTracking(True)
def resizeEvent(self, event):
if self.scene():
self.scene().setSceneRect(QRectF(QPointF(0, 0), event.size()))
self._chart.resize(event.size())
self._coordX.setPos(
self._chart.size().width() / 2 - 50,
self._chart.size().height() - 20)
self._coordY.setPos(
self._chart.size().width() / 2 + 50,
self._chart.size().height() - 20)
for callout in self._callouts:
callout.update_geometry()
QGraphicsView.resizeEvent(self, event)
def mouseMoveEvent(self, event):
pos = self._chart.mapToValue(event.pos())
x = pos.x()
y = pos.y()
self._coordX.setText(f"X: {x:.2f}")
self._coordY.setText(f"Y: {y:.2f}")
QGraphicsView.mouseMoveEvent(self, event)
def keep_callout(self):
series = self.sender()
self._callouts.append(self._tooltip)
self._tooltip = Callout(self._chart, series)
def tooltip(self, point, state):
series = self.sender()
if self._tooltip == 0:
self._tooltip = Callout(self._chart, series)
if state:
x = point.x()
y = point.y()
self._tooltip.setSeries(series)
self._tooltip.set_text(f"X: {x:.2f} \nY: {y:.2f} ")
self._tooltip.set_anchor(point)
self._tooltip.setZValue(11)
self._tooltip.update_geometry()
self._tooltip.show()
else:
self._tooltip.hide()
if __name__ == "__main__":
app = QApplication(sys.argv)
v = View()
v.show()
sys.exit(app.exec())

paintevent in continuous loop?

I have the following code which draws ellipse on the circumference of a circle and then draws chords between ellipses. The chords are drawn fine but the event bombs on me and goes into a infinite loop.
def binomial(i, n):
return math.factorial(n) / float(
math.factorial(i) * math.factorial(n - i))
def bernstein(t, i, n):
return binomial(i, n) * (t ** i) * ((1 - t) ** (n - i))
def bezier(t, points):
n = len(points) - 1
x = y = 0
for i, pos in enumerate(points):
bern = bernstein(t, i, n)
x += pos[0] * bern
y += pos[1] * bern
return x, y
def bezier_curve_range(n, points):
for i in xrange(n):
t = i / float(n - 1)
yield bezier(t, points)
def getControlPt(x1, y1, x2, y2, t):
new_px = (1 - t) * x1 + t * x2
new_py = (1 - t) * y1 + t * y2
return new_px, new_py
class Temp1(QWidget):
def __init__(self, c, parent=None):
super(Temp1, self).__init__(parent)
self.text = "Hi"
self.cords = c
def paintEvent(self, e):
qp = QPainter(self)
qp.setPen(Qt.red)
bluePen = QPen(Qt.blue, 1, Qt.DashLine)
steps = 10000
for i in range(15):
for j in range(15):
if i == j:
continue
px, py = getControlPt(self.cords[i][0], self.cords[i][1], self.cords[j][0], self.cords[j][1], 0.55)
px1, py1 = getControlPt(px, py, self.cords[j][0], self.cords[j][1], 0.25)
px2, py2 = getControlPt(px1, py1, self.cords[j][0], self.cords[j][1], 0.75)
cp = (self.cords[i], (px, py) , (px1, py1), (px2, py2), self.cords[j])
oldPoint = cp[0]
qp.setPen(bluePen)
for point in bezier_curve_range(steps, cp):
qp.drawLine(oldPoint[0], oldPoint[1], point[0], point[1])
oldPoint = point
class Temp(QPushButton):
def __init__(self, x, y, w, h, theta, cords, parent=None):
super(Temp, self).__init__(parent)
self.w = w
self.h = h
self.x = x
self.y = y
self.text = "test"
self.angle = theta
self.cords = cords
def paintEvent(self, e):
qp = QPainter(self)
qp.setPen(Qt.red)
qp.drawEllipse(0, 0, self.w - 2, self.h -2)
class Example(QWidget):
def __init__(self):
super(Example, self).__init__()
self.cords = []
self.initUI()
def initUI(self):
self.setWindowTitle('Points')
self.drawP()
def drawP(self):
theta = 2 * np.pi / 15
for i in range(15):
angle = theta * (i + 1)
dx = int(round(400 + 300 * np.cos(angle)))
dy = int(round(400 + 300 * np.sin(angle)))
self.cords.append((dx, dy))
for i in range(15):
t = Temp(self.cords[i][0], self.cords[i][1], 45, 20, np.degrees(angle), self.cords, parent=self)
t.setGeometry(self.cords[i][0], self.cords[i][1] , 45, 20)
t1 = Temp1(self.cords, parent = self)
t1.setGeometry(0, 0, 800, 600)
app = QApplication(sys.argv)
ex = Example()
ex.setGeometry(0, 0, 800, 600)
ex.show()
sys.exit(app.exec_())
The problem is with the paintevent function of class Temp1.
If you throw a print 'Temp1.paintEvent', e, i, j inside the nested for loops inside of Temp1.paintEvent, you'll see that it's not hanging, it's just slow, and every time you hide the window, then bring it back up, it has to go through the whole paintEvent again before actually showing it. If you're patient the window will eventually pop up.

How can I use the class Point with 2D for 3D, Python3?

I've got a class about Points with only 2 coordinates (x,y) and I want this same class and all its methods using it with 3 coordinates, too (x,y,z) I've read about *args but i don't know how i can use it with that problem. The code:
#/usr/bin/env python3
# -*- coding: utf-8 -*-
from math import sqrt, pow, hypot, atan2, cos, sin
class Point(object):
__slots__ = ['x', 'y']
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def __del__(self):
#del P destroy (delete) a point
class_name = self.__class__.__name__
def __add__(self, P):
S = Point(self.x, self.y)
S.x = self.x + P.x
S.y = self.y + P.y
return S
__radd__ = __add__
def __sub__(self, P):
R = Point(self.x, self.y)
R.x = self.x - P.x
R.y = self.y - P.y
return R
__rsub__ = __sub__
def __mul__(self, num):
M = Point(self.x, self.y)
M.x = num * self.x
M.y = num * self.y
return M
__rmul__ = __mul__
def __pow__(self, n):
P = Point(self.x, self.y)
P.x = self.x ** n
P.y = self.y ** n
return P
def __neg__(self):
O = Point(self.x, self.y)
O.x = - self.x
O.y = - self.y
return O
def __invert__(self):
I = Point(self.x, self.y)
I.x = 1. / self.x
I.y = 1 / self.y
return I
def dist(self, P):
return sqrt(pow(self.x - P.x, 2) + pow(self.y - P.y, 2))
def pto_medio(self, P):
Q = Point(self.x, self.y)
R = (1. / 2.) * (P + Q)
return R
def traslacion(self, tx, ty):
T = Point(self.x, self.y)
T.x = self.x + tx
T.y = self.y + ty
return T
def incentro(self, B, C):
A = Point(self.x, self.y)
a = B.dist(B)
b = A.dist(C)
c = A.dist(B)
sumd = a + b + c
A = (a / sumd) * A + (b / sumd) * B + (c / sumd) * C
return A
def rect2pol(self):
P = Point(self.x, self.y)
P.x = hypot(self.x, self.y)
P.y = atan2(self.y, self.x)
return(P)
def pol2rect(self):
P = Point(self.x, self.y)
P.x = self.x * cos(self.y)
P.y = self.x * sin(self.y)
return(P)
def entrada(self):
point = raw_input('Introduce un punto:\n')
point = point.replace('(', '')
point = point.replace(')', '')
l1 = point.rsplit(',')
self.x = float(l1[0])
self.y = float(l1[1])
l1 = []
def __repr__(self):
return('({}, {})'.format(self.x, self.y))
def main():
p = Point()
q = Point()
Point.entrada(p)
Point.entrada(q)
s = p + q
r = p - q
m = 5 * p
pol = p.rect2pol()
rect = pol.pol2rect()
print(('s = {}'.format(s)))
print(('r = {}'.format(r)))
print(('m = {}'.format(m)))
print(('p ^ 3 = {}'.format(p ** 3)))
print(('opuesto = {}'.format(- p)))
print(('inverso = {}'.format(~ p)))
print(('distancia = {}'.format(p.dist(q))))
print(('Punto Medio = {}'.format(p.pto_medio(q))))
print(('TraslaciĆ³n = {}'.format(p.traslacion(5, -2))))
print(('En Polares = {}'.format(pol)))
print(('En Rectangulares = {}'.format(rect)))
A = Point(0, 0)
B = Point(1, 0)
C = Point(1. / 2., sqrt(3.) / 2.)
I = A.incentro(B, C)
print(('Incentro = {}'.format(I)))
if __name__ == '__main__':
main()
All functions in this class I can reuse them with 3D. I don't want make a new derivative class only for 3D because I should rewrite all methods again, or make a new class for 3D points. Is it possible?
Just give your z parameter a default value of None:
class Point(object):
__slots__ = ['x', 'y', 'z']
def __init__(self, x=0, y=0, z=None):
self.x = x
self.y = y
self.z = z
then detect if z is not set to None where needed for calculations:
def __add__(self, P):
S = Point(self.x, self.y, self.z)
S.x = self.x + P.x
S.y = self.y + P.y
if self.z is not None:
if P.z is None:
raise ValueError('Cannot add a 2D point to a 3D point')
S.z = self.z + P.z
return S

Categories