Trouble balancing a binary search tree using AVL - python

I'm unable to identify where I'm going wrong with my AVL implementation for balancing an existing binary search tree. I'm not getting any errors but my binary search tree does not come out to be properly balanced. After insertion, my binary search tree looks like (it would be prudent here to mention that my display_keys method gives us a visualization that is rotated by 90 degrees):
∅
The-Dreamers
∅
Saint-Laurent
∅
Pierrot-le-Fou
∅
Contempt
Cold-War
Before-Sunrise
∅
Basic-Instinct
∅
This is correct as it seems be to be following the rules for a BST.
But after calling the BalanceTree() method on my binary search tree, I seem to get:
∅
The-Dreamers
Saint-Laurent
Pierrot-le-Fou
Contempt
Cold-War
Before-Sunrise
Basic-Instinct
∅
which as you can see, is not Balanced. But wait, and here's the catch, if I call BalanceTree() again, the tree comes out to be perfectly balanced and isBSTBalanced returns True also. After the second call to BalanceTree(), our tree looks like:
∅
The-Dreamers
Saint-Laurent
Pierrot-le-Fou
Contempt
Cold-War
Before-Sunrise
Basic-Instinct
∅
I am adding the complete source code for my BST class for clarity and if somebody wants to execute the code, but I have added a comment (#Addition of new methods for AVL starts here) in the BST class to indicate where the methods for AVL start. You need only concern yourself with them. I would like for you help me pinpoint what exactly is going wrong in my code.
class BST:
class TreeNode:
def __init__(self, key, value, left=None, right=None, parent=None):
self.key = key
self.value = value
self.left = left
self.right = right
self.parent = parent
self.height = 1
def __init__(self):
self.root = None
self.size = 0
def __len__(self):
return self.size
def insert(self, key, value):
if self.root == None:
self.root = self.TreeNode(key, value)
else:
self._insert(key, value, self.root)
self.size += 1
def _insert(self, key, value, curr_node):
if key < curr_node.key:
if curr_node.left is not None:
self._insert(key, value, curr_node.left)
else:
curr_node.left = self.TreeNode(key, value, parent=curr_node)
elif key > curr_node.key:
if curr_node.right is not None:
self._insert(key, value, curr_node.right)
else:
curr_node.right = self.TreeNode(key, value, parent=curr_node)
def search(self, key):
if self.root:
found = self._search(key, self.root)
if found:
return found.value
else:
return None
else:
return None
def _search(self, key, curr_node):
if not curr_node:
return None
elif curr_node.key == key:
return curr_node
elif key < curr_node.key:
return self._search(key, curr_node.left)
else:
return self._search(key, curr_node.right)
def find_min(self):
curr = self.root
while curr.left is not None:
curr = curr.left
return curr
def find(self, node):
curr = node
while curr.left is not None:
curr = curr.left
return curr
def delete(self, key):
node_to_remove = self._search(key, self.root)
if node_to_remove.left is None and node_to_remove.right is None:
#Then we identify this as a leaf node
if node_to_remove is node_to_remove.parent.left:
#Setting the parent's reference to this to None
node_to_remove.parent.left = None
elif node_to_remove is node_to_remove.parent.right:
node_to_remove.parent.right = None
#2nd Case --> Two child
elif node_to_remove.left and node_to_remove.right:
minimum = self.find(node_to_remove.right)
self.delete(minimum.key) #We will still have a ref to this node afterwards
node_to_remove.key, node_to_remove.value = minimum.key, minimum.value
#3rd Case -> One child
else:
if node_to_remove.left:
node_to_remove.left.parent = node_to_remove.parent
node_to_remove.parent.left = node_to_remove.left
elif node_to_remove.right:
node_to_remove.right.parent = node_to_remove.parent
node_to_remove.parent.right = node_to_remove.right
def traversal(self, root):
res = []
if root:
res = self.traversal(root.left)
res.append(root)
res = res + self.traversal(root.right)
return res
def inorder_traversal(self, root):
if root:
self.inorder_traversal(root.left)
print(root.key)
self.inorder_traversal(root.right)
#Addition of new methods for AVL starts here
def display_keys(self, node, space='\t', level=0):
"""
Allows us to visualize the tree (albiet rotated by 90 degrees)
"""
# print(node.key if node else None, level)
# If the node is empty
if node is None:
print(space*level + '∅')
return
# If the node is a leaf
if node.left is None and node.right is None:
print(space*level + str(node.key))
return
# If the node has children
self.display_keys(node.right, space, level+1)
print(space*level + str(node.key))
self.display_keys(node.left,space, level+1)
def height(self):
return self._height(self.root)
def _height(self, curr_node):
if curr_node is None:
return -1 #since we are counting number of edges, we will return -1
else:
return 1 + max(self._height(curr_node.left), self._height(curr_node.right))
def isBSTBalanced(self):
return self._isBSTBalanced(self.root)
def _isBSTBalanced(self, curr_node):
if curr_node is None:
return True
hleft_subtree = self._height(curr_node.left)
hright_subtree = self._height(curr_node.right)
if hleft_subtree - hright_subtree in [-1,0,1]:
return self._isBSTBalanced(curr_node.left) and self._isBSTBalanced(curr_node.right)
else:
return False
def balance_factor(self):
if self.root is not None:
return self._balance_factor(self.root)
else:
return 0
def _balance_factor(self, curr_node):
if curr_node is None:
return
hleft_subtree = self._height(curr_node.left)
hright_subtree = self._height(curr_node.right)
b_factor = hleft_subtree - hright_subtree
return b_factor
def BalanceTree(self):
if self.isBSTBalanced() == False:
return self._rebalance(self.root)
def _rebalance(self, curr_node):
if curr_node is None:
return None
curr_node.left = self._rebalance(curr_node.left)
curr_node.right = self._rebalance(curr_node.right)
curr_node.height = 1 + max(self._height(curr_node.left), self._height(curr_node.right))
#print(curr_node.height)
if self._balance_factor(curr_node) > 1 and self._balance_factor(curr_node.left) >= 0:
#left heavy subtree
return self._rotate_right(curr_node)
if self._balance_factor(curr_node) < -1 and self._balance_factor(curr_node.right) <= 0:
#right heavy subtree
return self._rotate_left(curr_node)
if self._balance_factor(curr_node) < 0 and self._balance_factor(curr_node.right) > 0:
self._rotate_right(curr_node.right)
return self._rotate_left(curr_node)
if self._balance_factor(curr_node) > 0 and self._balance_factor(curr_node.left) < 0:
self._rotate_left(curr_node.left)
return self._rotate_right(curr_node)
return curr_node
def _rotate_left(self, oldRoot):
newRoot = oldRoot.right #the newRoot is the right child of the previous root
oldRoot.right = newRoot.left #replacing right child of the old root with the left child of the new
if newRoot.left is not None:
newRoot.left.parent = oldRoot
newRoot.parent = oldRoot.parent
if oldRoot == self.root:
self.root = newRoot
else:
if oldRoot.parent.left is oldRoot: #Checking isLeftChild
oldRoot.parent.left = newRoot
else:
oldRoot.parent.right = newRoot
newRoot.left = oldRoot
oldRoot.parent = newRoot
oldRoot.height = 1 + max(self._height(oldRoot.left), self._height(oldRoot.right))
newRoot.height = 1 + max(self._height(newRoot.left), self._height(newRoot.right))
return newRoot
def _rotate_right(self, oldRoot):
newRoot = oldRoot.left #the newRoot is the left child of the previous root
oldRoot.left = newRoot.right #replacing left child of the old root with the right child of the new
if newRoot.right is not None:
newRoot.right.parent = oldRoot
newRoot.parent = oldRoot.parent
if oldRoot == self.root:
self.root = newRoot
else:
if oldRoot.parent.right is oldRoot: #Checking isRightChild
oldRoot.parent.right = newRoot
else:
oldRoot.parent.left = newRoot
newRoot.right = oldRoot
oldRoot.parent = newRoot
oldRoot.height = 1 + max(self._height(oldRoot.left), self._height(oldRoot.right))
newRoot.height = 1 + max(self._height(newRoot.left), self._height(newRoot.right))
return newRoot
if __name__ == '__main__':
obj = BST()
obj.insert('Basic-Instinct', 0)
obj.insert('The-Dreamers', 1)
obj.insert('Saint-Laurent', 2)
obj.insert('Pierrot-le-Fou', 3)
obj.insert('Contempt', 4)
obj.insert('Before-Sunrise', 5)
obj.insert('Cold-War', 8)
obj.display_keys(obj.root) #displays a visual representation of our tree, albeit rotated by 90 degrees
print()
print("isBSTBalanced:", obj.isBSTBalanced())
obj.BalanceTree()
print("isBSTBalanced:", obj.isBSTBalanced()) #After executing BalanceTree(), isBSTBalanced still returns False
print()
obj.display_keys(obj.root)
Progress: Revamped _isBSTBalanced method so that it visits every node recursively and not just the root node. The final outcome, however, remains the same.
Progress: I was able to identify one of the major issues being that while I was calling _rotate_left and _rotate_right methods in the _rebalance method, I was not returning them. In addition to this, I was not recursively visiting the left and right subtrees of curr_node, which was initially set to the root of the tree, to be able to traverse the tree in a bottom up manner. I have resolved this too. I have added a display_keys method which allows us to visualize the tree, albeit rotated by 90 degrees. I'm updating the code and prompt in this post accordingly. The problem that still remains is that I have to call the BalanceTree() method more than once in some cases for isBSTBalanced to return True.

Related

how to print a binary search tree in python?

Below is a binary search tree which has a root node, a left node and a right node.
The code works but I want to display this binary search tree so that i can see every node in layer...
Here is the code...
class Node:
def __init__(self,value):
self.value = value
self.left = None
self.right = None
class Binary_search_tree:
def __init__(self):
self.root=None
def insert(self,value):
if self.root==None:
self.root=Node(value)
else:
self.insert_after_root(value)
def insert_after_root(self, value):
if value > self.root.value:
self.root.left = Node(value)
elif value < self.root.value:
self.root.right = Node(value)
bst = Binary_search_tree()
bst.insert(4)
bst.insert_after_root(2)
bst.insert_after_root(8)
Your implementation has some problems:
The tree can only have 3 nodes, since you never create a grand-child of the root, but always make the new node either the root, or one of its children
left/right are reversed: you should insert smaller values to the left.
In the main program code, you should only use the insert method, never the insert_after_root.
Here is a correction of your implementation, based on recursion (putting a method on the Node), and an additional set of methods for producing a string representation, 90° tilted (with the root displayed at the left).
class Node:
def __init__(self,value):
self.value = value
self.left = None
self.right = None
def insert_after(self, value):
if value < self.value:
if self.left:
self.left.insert_after(value)
else:
self.left = Node(value)
elif value > self.value:
if self.right:
self.right.insert_after(value)
else:
self.right = Node(value)
else:
raise ValueError("this tree doesn't accept duplicates")
def __repr__(self):
lines = []
if self.right:
found = False
for line in repr(self.right).split("\n"):
if line[0] != " ":
found = True
line = " ┌─" + line
elif found:
line = " | " + line
else:
line = " " + line
lines.append(line)
lines.append(str(self.value))
if self.left:
found = False
for line in repr(self.left).split("\n"):
if line[0] != " ":
found = True
line = " └─" + line
elif found:
line = " " + line
else:
line = " | " + line
lines.append(line)
return "\n".join(lines)
class Binary_search_tree:
def __init__(self):
self.root=None
def insert(self,value):
if self.root==None:
self.root=Node(value)
else:
self.root.insert_after(value)
def __repr__(self):
return repr(self.root)
bst = Binary_search_tree()
bst.insert(4)
bst.insert(2)
bst.insert(8)
bst.insert(3)
bst.insert(5)
bst.insert(7)
bst.insert(10)
print(str(bst))
Here is a simple implementation of binary search tree. In addition I recommend you to don't use == operator with None, instead of that use is, here why should I avoid == None
class Node:
def __init__(self,key):
self.left = None
self.right = None
self.value = key
def insert(root,node):
if root is None:
root = node
else:
if root.value < node.value:
if root.right is None:
root.right = node
else:
insert(root.right, node)
else:
if root.left is None:
root.left = node
else:
insert(root.left, node)
def left_right(root):
if root:
left_right(root.left)
print(root.value) # that shows your tree
left_right(root.right)
tree = Node(20)
insert(tree,Node(30))
insert(tree,Node(10))
insert(tree,Node(40))
insert(tree,Node(90))
left_right(tree)

BST with connection to parent - loop

I have problem with infinite loop in getMinimal() method. It works in this way :
1)Take node,
2)If node has other node on the left - go to other one.
3)Repeat as far as node has sth on the left side
4)Return the minimal node.
But sometimes it works in infinite loop for example from 1000 to 400, then to 4 then..to 1000! I have no ide where I make mistake. I reviewed this code many times,every single "pointer" to parent/left/right node is okay! Please - help.
Algorithm works okay to "handwritten" trees - ~20nodes. I wanted to test it in better cases - 2500nodes,generated by random lib (from -10k to 10k).
import random
class Node:
def __init__(self, val):
self.val = val
self.parent = None
self.right = None
self.left = None
# Class of node.
def str(self):
return str(self.val)
class MyTree:
def __init__(self, node):
self.root = node
def insert(self, node):
current = self.root
a = True
while a:
if node.val > current.val:
if current.right is not None:
current = current.right
continue
else:
current.right = node
node.parent = current
a = False
if node.val <= current.val:
if current.left is not None:
current = current.left
continue
else:
current.left = node
node.parent = current
a = False
def search(self, node):
current = self.root
while node.val != current.val:
if node.val > current.val:
current = current.right
continue
elif node.val <= current.val:
current = current.left
continue
if node.val == current.val:
return current
else:
print("There is no such node!")
def delete(self, node):
if isinstance(node, (float, int)):
node = self.search(node)
if node is self.root:
self.__deleteRoot()
return
else:
if node.right is None and node.left is None:
self.__deleteNN(node)
return
if node.right is None and node.left is not None:
self.__deleteLN(node)
return
if node.right is not None and node.left is None:
self.__deleteNR(node)
return
if node.right is not None and node.left is not None:
self.__deleteLR(node)
return
def __deleteNN(self, node):
if node.parent.left is node:
node.parent.left = None
if node.parent.right is node:
node.parent.right = None
def __deleteLN(self, node):
parent = node.parent
son = node.left
# parent replaced
if parent.left is node:
parent.left = son
if parent.right is node:
parent.right = son
son.parent = parent
def __deleteNR(self,node):
parent = node.parent
son = node.right
# replace parent
if parent.left is node:
parent.left = son
if parent.right is node:
parent.right = son
son.parent = parent
def __deleteLR(self, node):
minimal = self.getMinimal(node.right)
if minimal.parent.left is minimal:
minimal.parent.left = None
if minimal.parent.right is minimal:
minimal.parent.right = None
# parent of minimal done..
if node.parent.left is node:
node.parent.left = minimal
if node.parent.right is node:
node.parent.right = minimal
minimal.right = node.right
minimal.left = node.left
def getMinimal(self, node):
k = node
while k.left is not None:
k = k.left
return k
def getMax(self):
current = self.root
while current.right:
current = current.right
return current
def __trav(self, node):
if not node:
return
print(node.val)
self.__trav(node.left)
self.__trav(node.right)
def printTrav(self):
self.__trav(self.root)
def __deleteRoot(self):
if self.root.left is None and self.root.right is None:
self.root = None
return
if self.root.left is None and self.root.right is not None:
# left empty,right full
self.root.right.parent = None
self.root = self.root.right
return
if self.root.left is not None and self.root.right is None:
# right empty, left full
self.root.left.parent = None
self.root = self.root.left
return
# node has both children
if self.root.left is not None and self.root.right is not None:
temp = self.getMinimal(self.root.right) # minimal from right subtree
# sometimes it could be like this..
# r
# \
# x
if temp.parent.left is temp:
temp.parent.left = None
else:
temp.parent.right = None
self.root.left.parent = temp
self.root.right.parent = temp
temp.right = self.root.right
temp.left = self.root.left
self.root = temp
self.root.parent = None
return
def search(self, val):
node = self.root
if node.val == val:
return node
if val > node.val and node.right is not None:
node = node.right
if val < node.val and node.left is not None:
node = node.left
else:
print("There's no such value!")
return
def printMax(self):
print(self.getMax().val)
def printMin(self):
print(self.getMinimal(self.root).val)
arr=[None]*2500
for x in range(2500):
arr[x]=Node(random.randint(-10000,10000))
myTree = MyTree(arr[0])
for x in range(1,2500):
myTree.insert(arr[x])
for x in range(2500):
myTree.delete(arr[x])
It is suspicious that you define search twice.
Still that said, here is how I would debug this. I would modify your program to read from a file, try to run, and then detect an endless loop and bail out. Now write random files until you have one that causes you to crash.
Once you have a random file that shows the bug, the next step is to make it minimal. Here is a harness that can let you do that.
import itertools
flatten = itertools.chain.from_iterable
# bug_found should be a function that takes a list of elements and runs your test.
# example should be an array that demonstrates the bug.
def find_minimal (bug_found, example):
parts = [example]
while 1 < max(len(part) for part in parts):
i = 0
while i < len(parts):
if 1 == len(parts[i]):
i = i + 1
else:
part = parts.pop(i)
# Divide in 2.
mid = len(part)/2
part1 = part[0:mid]
part2 = part[mid:len(part)]
# Do we need part1?
parts.insert(i, part1)
if bug_found(flatten(parts)):
i = i + 1
parts.insert(i, part2)
else:
parts[i] = part2
# Do we need part2?
if bug_found_func(flatten(parts)):
i = i + 1
else:
parts.pop(i)
return list(flatten(parts))
Just let it run, and after some time it is likely to find a small example. Which will greatly aid in debugging.
So - I found 2 serious bugs in code. Both in LR ("standard" node and root). As I suspected - bugs were in pointers. Now tree is working (tested few times for 20k,30k and 100k nodes). Solved.

Python Serializing/Deserializing a binary tree

I'm trying to implement a serializing/deserializing algorithm in python for binary trees.
Here's my code:
class Node:
count = 1
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def insert(self, value):
if self.value > value:
if self.left is None:
self.left = Node(value)
Node.count += 1
else:
self.left.insert(value)
else:
if self.right is None:
self.right = Node(value)
Node.count += 1
else:
self.right.insert(value)
# Using preorder
def serialize(root, serial):
if root != None:
serial.append(root.value)
serialize(root.left, serial)
serialize(root.right, serial)
else:
serial.append('x')
def deserialize(newRoot, serial):
if serial[0] == 'x':
serial.pop(0)
else:
if len(serial) > 0:
newRoot = Node(serial.pop(0))
print(newRoot.value)
deserialize(newRoot.left, serial)
deserialize(newRoot.right, serial)
print("This program serializes a tree\n")
root = Node(3)
root.insert(1)
root.insert(2)
root.insert(4)
root.insert(5)
root.insert(0)
# Serialize
serial = []
serialize(root, serial)
print(serial)
# Deserialize
newRoot = Node(None)
deserialize(newRoot, serial)
print(newRoot.value)
The problem is, newRoot doesn't get updated by deserialize because python passes it by value. How do I get around this, preferably in the most elegant way? In C/C++, I would just pass a pointer to newRoot and it should get updated accordingly. Thanks!
You can return the newly created nodes and assign them as left and right nodes. Also poping the first element of a list is more costly than poping the last element, so reverseing the list at the beginning and then using it in the recursion will be more performant in your case. So the code will become something like:
def deserialize(serial):
serial.reverse()
return _deserialize(serial)
def _deserialize(serial):
if not serial:
return None
node = None
value = serial.pop()
if value != 'x':
node = Node(value)
node.left = _deserialize(serial)
node.right = _deserialize(serial)
return node
root = deserialize(serial)
print(root.value)
You can create left and right subtree within deserialize function and return the root.
Here is my code:
node_list = []
MARKER = -1
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
def serialize(root):
if root is None:
node_list.append(MARKER)
return
node_list.append(root.val)
serialize(root.left)
serialize(root.right)
def deserialize(root, node_list):
if node_list:
val = node_list.pop(0)
else:
return
if val == MARKER:
return
# Create root, left and right recursively
root = Node(val)
root.left = deserialize(root.left, node_list)
root.right = deserialize(root.right, node_list)
return root
def inorder_traversal(root):
if root:
inorder_traversal(root.left)
print(root.val, end=' ')
inorder_traversal(root.right)
if __name__=="__main__":
# Create tree
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
print("Inorder traversal before serialization..")
inorder_traversal(root)
print('')
# serialize the tree and insert elements into a list
serialize(root)
print(node_list)
root1 = None
root1 = deserialize(root1, node_list)
print("Inorder traversal after deserialization..")
inorder_traversal(root1)
print('')

Binary Search Tree - Finding the size

I want to find the size of the tree with a given node which will be stated like this
print bst.get("B")
However, when I tried to print out, it keeps stating that "it only accept 1 argument but 2 is given"
Sorry, can someone help me out, as I'm quite new to this.
the brief code is:
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size(temp.left) + self.size(temp.right)
def size2(self,n):
if n is None:
return 0
else:
return 1 + self.size2(n.left) + self.size2(n.right)
The full code:
import os
import pygraphviz as pgv
from collections import deque
class BST:
root=None
def put(self, key, val):
self.root = self.put2(self.root, key, val)
def put2(self, node, key, val):
if node is None:
#key is not in tree, create node and return node to parent
return Node(key, val)
if key < node.key:
# key is in left subtree
node.left = self.put2(node.left, key, val)
elif key > node.key:
# key is in right subtree
node.right = self.put2(node.right, key, val)
else:
node.val = val
# node.count = 1 + self.size2(node.left) + self.size2(node.right)
return node
# draw the graph
def drawTree(self, filename):
# create an empty undirected graph
G=pgv.AGraph('graph myGraph {}')
# create queue for breadth first search
q = deque([self.root])
# breadth first search traversal of the tree
while len(q) <> 0:
node = q.popleft()
G.add_node(node, label=node.key+":"+str(node.val))
if node.left is not None:
# draw the left node and edge
G.add_node(node.left, label=node.left.key+":"+str(node.left.val))
G.add_edge(node, node.left)
q.append(node.left)
if node.right is not None:
# draw the right node and edge
G.add_node(node.right, label=node.right.key+":"+str(node.right.val))
G.add_edge(node, node.right)
q.append(node.right)
# render graph into PNG file
G.draw(filename,prog='dot')
os.startfile(filename)
def createTree(self):
self.put("F",6)
self.put("D",4)
self.put("C",3)
self.put("B",2)
self.put("A",1)
self.put("E",5)
self.put("I",9)
self.put("G",7)
self.put("H",8)
self.put("J",10)
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size(temp.left) + self.size(temp.right)
def size2(self,n):
if n is None:
return 0
else:
return 1 + self.size2(n.left) + self.size2(n.right)
class Node:
left = None
right = None
key = 0
val = 0
def __init__(self, key, val):
self.key = key
self.val = val
bst = BST()
bst.createTree()
bst.drawTree("demo.png")
##print bst.size("D")
I get a stack overflow with your code. I think you need to use size2 in your size method:
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size2(temp.left) + self.size2(temp.right)
Personally, I would maybe not call the method size2, but that's a matter of taste (and style). Also, the key seems to be unused?

Mirror Binary Search Tree

This is a code that given a root of the binary search tree, is to create its mirror.
def mirror(root):
if root is None:
pass
else:
mirror(root.left)
mirror(root.right)
temp = root.left
root.left = root.right
root.right = temp
Firstly, is this code right and also is the recursion here supposed to first get to the leaves of the tree first and then switch the references when unwinding?
It's right, but not very Pythonic.
Better to just write
def mirror(root):
if root is None:
return
mirror(root.left)
mirror(root.right)
root.left, root.right = root.right, root.left
For this problem, you could recurse in either order (either reversing the leaves before the parents or after).
Here is my python code to get mirror image of Binary search tree.There might be some incorrect indentations.
#Binary Tree Node
class Node:
def __init__(self,item):
self.data = item
self.left = None
self.right = None
#Binary search tree
class binarySearchTree:
def __init__(self):
self.root = Node(None)
def mirror(self,node):
if node is None:
return False
elif self.root.data == node:
self.root.left,self.root.right = self.root.right,self.root.left
if self.root.left != None:
self._mirror(self.root.left)
if self.root.right != None:
self._mirror(self.root.right)
else:
return self.root
def _mirror(self,node):
if node is None:
return False
else:
node.left,node.right = node.right,node.left
if node.left != None:
self._mirror(node.left)
if node.right != None:
self._mirror(node.right)
else:
return node
def inorder_traverse(self):
if self.root != None:
self._inorder(self.root)
def _inorder(self,cur):
if cur != None:
if cur.left is not None:
self._inorder(cur.left)
print(cur.data)
if cur.right != None:
self._inorder(cur.right)
def main():
bst = binarySearchTree()
bst.insert(7)
bst.insert(1)
bst.insert(0)
bst.insert(3)
bst.insert(2)
bst.insert(5)
bst.insert(4)
bst.insert(6)
bst.insert(9)
bst.insert(8)
bst.insert(10)
bst.insert(11)
bst.inorder_traverse()
bst.mirror(7)
bst.inorder_traverse()
output:
enter image description here

Categories