Binary Search Tree - Finding the size - python

I want to find the size of the tree with a given node which will be stated like this
print bst.get("B")
However, when I tried to print out, it keeps stating that "it only accept 1 argument but 2 is given"
Sorry, can someone help me out, as I'm quite new to this.
the brief code is:
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size(temp.left) + self.size(temp.right)
def size2(self,n):
if n is None:
return 0
else:
return 1 + self.size2(n.left) + self.size2(n.right)
The full code:
import os
import pygraphviz as pgv
from collections import deque
class BST:
root=None
def put(self, key, val):
self.root = self.put2(self.root, key, val)
def put2(self, node, key, val):
if node is None:
#key is not in tree, create node and return node to parent
return Node(key, val)
if key < node.key:
# key is in left subtree
node.left = self.put2(node.left, key, val)
elif key > node.key:
# key is in right subtree
node.right = self.put2(node.right, key, val)
else:
node.val = val
# node.count = 1 + self.size2(node.left) + self.size2(node.right)
return node
# draw the graph
def drawTree(self, filename):
# create an empty undirected graph
G=pgv.AGraph('graph myGraph {}')
# create queue for breadth first search
q = deque([self.root])
# breadth first search traversal of the tree
while len(q) <> 0:
node = q.popleft()
G.add_node(node, label=node.key+":"+str(node.val))
if node.left is not None:
# draw the left node and edge
G.add_node(node.left, label=node.left.key+":"+str(node.left.val))
G.add_edge(node, node.left)
q.append(node.left)
if node.right is not None:
# draw the right node and edge
G.add_node(node.right, label=node.right.key+":"+str(node.right.val))
G.add_edge(node, node.right)
q.append(node.right)
# render graph into PNG file
G.draw(filename,prog='dot')
os.startfile(filename)
def createTree(self):
self.put("F",6)
self.put("D",4)
self.put("C",3)
self.put("B",2)
self.put("A",1)
self.put("E",5)
self.put("I",9)
self.put("G",7)
self.put("H",8)
self.put("J",10)
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size(temp.left) + self.size(temp.right)
def size2(self,n):
if n is None:
return 0
else:
return 1 + self.size2(n.left) + self.size2(n.right)
class Node:
left = None
right = None
key = 0
val = 0
def __init__(self, key, val):
self.key = key
self.val = val
bst = BST()
bst.createTree()
bst.drawTree("demo.png")
##print bst.size("D")

I get a stack overflow with your code. I think you need to use size2 in your size method:
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size2(temp.left) + self.size2(temp.right)
Personally, I would maybe not call the method size2, but that's a matter of taste (and style). Also, the key seems to be unused?

Related

python AVL structure insertion recursive method fix

So i have this working recursive avl structure.
i tried making a helper function for adding node or doing it iteratively but dont understand it properly. my driver needs .root to work. i want to make it work using it internally.
class AvlTree :
def __init__(self):
self.root = None
def addNode(self, key, url):
node = self.root
if (node == None):
node = LinkNode(key,url)
if (key < node.key):
self.root = node.left
node.left = self.addNode(key,url)
if (key > node.key):
self.root = node.right
node.right = self.addNode(key,url)
if key == node.key:
node.occurrence = node.occurrence + 1
if url in node.urldic:
node.count = (node.urldic.get(url)) + 1
node.urldic.update({url:node.count})
return node
else:
node.count = 1
node.urldic.update({url:node.count})
return node
node.height = 1 + self.maxHeight(self.getHeight(node.left), self.getHeight(node.right))
factor = self.getBalanceFactor(node)
if (factor > 1 and key < node.left.key) :
return self.rightRotate(node)
if (factor < -1 and key > node.right.key) :
return self.leftRotate(node)
if (factor > 1 and key > node.left.key) :
node.left = self.leftRotate(node.left)
return self.rightRotate(node)
if (factor < -1 and key < node.right.key) :
node.right = self.rightRotate(node.right)
return self.leftRotate(node)
return node
current driver:
run = AvlTree()
for word in list:
run.root = haha.addNode(word,url)
run.preorder()
what im trying to achieve:
run = AvlTree()
for word in list:
run.addNode(word,url)
run.preorder()

Trouble balancing a binary search tree using AVL

I'm unable to identify where I'm going wrong with my AVL implementation for balancing an existing binary search tree. I'm not getting any errors but my binary search tree does not come out to be properly balanced. After insertion, my binary search tree looks like (it would be prudent here to mention that my display_keys method gives us a visualization that is rotated by 90 degrees):
∅
The-Dreamers
∅
Saint-Laurent
∅
Pierrot-le-Fou
∅
Contempt
Cold-War
Before-Sunrise
∅
Basic-Instinct
∅
This is correct as it seems be to be following the rules for a BST.
But after calling the BalanceTree() method on my binary search tree, I seem to get:
∅
The-Dreamers
Saint-Laurent
Pierrot-le-Fou
Contempt
Cold-War
Before-Sunrise
Basic-Instinct
∅
which as you can see, is not Balanced. But wait, and here's the catch, if I call BalanceTree() again, the tree comes out to be perfectly balanced and isBSTBalanced returns True also. After the second call to BalanceTree(), our tree looks like:
∅
The-Dreamers
Saint-Laurent
Pierrot-le-Fou
Contempt
Cold-War
Before-Sunrise
Basic-Instinct
∅
I am adding the complete source code for my BST class for clarity and if somebody wants to execute the code, but I have added a comment (#Addition of new methods for AVL starts here) in the BST class to indicate where the methods for AVL start. You need only concern yourself with them. I would like for you help me pinpoint what exactly is going wrong in my code.
class BST:
class TreeNode:
def __init__(self, key, value, left=None, right=None, parent=None):
self.key = key
self.value = value
self.left = left
self.right = right
self.parent = parent
self.height = 1
def __init__(self):
self.root = None
self.size = 0
def __len__(self):
return self.size
def insert(self, key, value):
if self.root == None:
self.root = self.TreeNode(key, value)
else:
self._insert(key, value, self.root)
self.size += 1
def _insert(self, key, value, curr_node):
if key < curr_node.key:
if curr_node.left is not None:
self._insert(key, value, curr_node.left)
else:
curr_node.left = self.TreeNode(key, value, parent=curr_node)
elif key > curr_node.key:
if curr_node.right is not None:
self._insert(key, value, curr_node.right)
else:
curr_node.right = self.TreeNode(key, value, parent=curr_node)
def search(self, key):
if self.root:
found = self._search(key, self.root)
if found:
return found.value
else:
return None
else:
return None
def _search(self, key, curr_node):
if not curr_node:
return None
elif curr_node.key == key:
return curr_node
elif key < curr_node.key:
return self._search(key, curr_node.left)
else:
return self._search(key, curr_node.right)
def find_min(self):
curr = self.root
while curr.left is not None:
curr = curr.left
return curr
def find(self, node):
curr = node
while curr.left is not None:
curr = curr.left
return curr
def delete(self, key):
node_to_remove = self._search(key, self.root)
if node_to_remove.left is None and node_to_remove.right is None:
#Then we identify this as a leaf node
if node_to_remove is node_to_remove.parent.left:
#Setting the parent's reference to this to None
node_to_remove.parent.left = None
elif node_to_remove is node_to_remove.parent.right:
node_to_remove.parent.right = None
#2nd Case --> Two child
elif node_to_remove.left and node_to_remove.right:
minimum = self.find(node_to_remove.right)
self.delete(minimum.key) #We will still have a ref to this node afterwards
node_to_remove.key, node_to_remove.value = minimum.key, minimum.value
#3rd Case -> One child
else:
if node_to_remove.left:
node_to_remove.left.parent = node_to_remove.parent
node_to_remove.parent.left = node_to_remove.left
elif node_to_remove.right:
node_to_remove.right.parent = node_to_remove.parent
node_to_remove.parent.right = node_to_remove.right
def traversal(self, root):
res = []
if root:
res = self.traversal(root.left)
res.append(root)
res = res + self.traversal(root.right)
return res
def inorder_traversal(self, root):
if root:
self.inorder_traversal(root.left)
print(root.key)
self.inorder_traversal(root.right)
#Addition of new methods for AVL starts here
def display_keys(self, node, space='\t', level=0):
"""
Allows us to visualize the tree (albiet rotated by 90 degrees)
"""
# print(node.key if node else None, level)
# If the node is empty
if node is None:
print(space*level + '∅')
return
# If the node is a leaf
if node.left is None and node.right is None:
print(space*level + str(node.key))
return
# If the node has children
self.display_keys(node.right, space, level+1)
print(space*level + str(node.key))
self.display_keys(node.left,space, level+1)
def height(self):
return self._height(self.root)
def _height(self, curr_node):
if curr_node is None:
return -1 #since we are counting number of edges, we will return -1
else:
return 1 + max(self._height(curr_node.left), self._height(curr_node.right))
def isBSTBalanced(self):
return self._isBSTBalanced(self.root)
def _isBSTBalanced(self, curr_node):
if curr_node is None:
return True
hleft_subtree = self._height(curr_node.left)
hright_subtree = self._height(curr_node.right)
if hleft_subtree - hright_subtree in [-1,0,1]:
return self._isBSTBalanced(curr_node.left) and self._isBSTBalanced(curr_node.right)
else:
return False
def balance_factor(self):
if self.root is not None:
return self._balance_factor(self.root)
else:
return 0
def _balance_factor(self, curr_node):
if curr_node is None:
return
hleft_subtree = self._height(curr_node.left)
hright_subtree = self._height(curr_node.right)
b_factor = hleft_subtree - hright_subtree
return b_factor
def BalanceTree(self):
if self.isBSTBalanced() == False:
return self._rebalance(self.root)
def _rebalance(self, curr_node):
if curr_node is None:
return None
curr_node.left = self._rebalance(curr_node.left)
curr_node.right = self._rebalance(curr_node.right)
curr_node.height = 1 + max(self._height(curr_node.left), self._height(curr_node.right))
#print(curr_node.height)
if self._balance_factor(curr_node) > 1 and self._balance_factor(curr_node.left) >= 0:
#left heavy subtree
return self._rotate_right(curr_node)
if self._balance_factor(curr_node) < -1 and self._balance_factor(curr_node.right) <= 0:
#right heavy subtree
return self._rotate_left(curr_node)
if self._balance_factor(curr_node) < 0 and self._balance_factor(curr_node.right) > 0:
self._rotate_right(curr_node.right)
return self._rotate_left(curr_node)
if self._balance_factor(curr_node) > 0 and self._balance_factor(curr_node.left) < 0:
self._rotate_left(curr_node.left)
return self._rotate_right(curr_node)
return curr_node
def _rotate_left(self, oldRoot):
newRoot = oldRoot.right #the newRoot is the right child of the previous root
oldRoot.right = newRoot.left #replacing right child of the old root with the left child of the new
if newRoot.left is not None:
newRoot.left.parent = oldRoot
newRoot.parent = oldRoot.parent
if oldRoot == self.root:
self.root = newRoot
else:
if oldRoot.parent.left is oldRoot: #Checking isLeftChild
oldRoot.parent.left = newRoot
else:
oldRoot.parent.right = newRoot
newRoot.left = oldRoot
oldRoot.parent = newRoot
oldRoot.height = 1 + max(self._height(oldRoot.left), self._height(oldRoot.right))
newRoot.height = 1 + max(self._height(newRoot.left), self._height(newRoot.right))
return newRoot
def _rotate_right(self, oldRoot):
newRoot = oldRoot.left #the newRoot is the left child of the previous root
oldRoot.left = newRoot.right #replacing left child of the old root with the right child of the new
if newRoot.right is not None:
newRoot.right.parent = oldRoot
newRoot.parent = oldRoot.parent
if oldRoot == self.root:
self.root = newRoot
else:
if oldRoot.parent.right is oldRoot: #Checking isRightChild
oldRoot.parent.right = newRoot
else:
oldRoot.parent.left = newRoot
newRoot.right = oldRoot
oldRoot.parent = newRoot
oldRoot.height = 1 + max(self._height(oldRoot.left), self._height(oldRoot.right))
newRoot.height = 1 + max(self._height(newRoot.left), self._height(newRoot.right))
return newRoot
if __name__ == '__main__':
obj = BST()
obj.insert('Basic-Instinct', 0)
obj.insert('The-Dreamers', 1)
obj.insert('Saint-Laurent', 2)
obj.insert('Pierrot-le-Fou', 3)
obj.insert('Contempt', 4)
obj.insert('Before-Sunrise', 5)
obj.insert('Cold-War', 8)
obj.display_keys(obj.root) #displays a visual representation of our tree, albeit rotated by 90 degrees
print()
print("isBSTBalanced:", obj.isBSTBalanced())
obj.BalanceTree()
print("isBSTBalanced:", obj.isBSTBalanced()) #After executing BalanceTree(), isBSTBalanced still returns False
print()
obj.display_keys(obj.root)
Progress: Revamped _isBSTBalanced method so that it visits every node recursively and not just the root node. The final outcome, however, remains the same.
Progress: I was able to identify one of the major issues being that while I was calling _rotate_left and _rotate_right methods in the _rebalance method, I was not returning them. In addition to this, I was not recursively visiting the left and right subtrees of curr_node, which was initially set to the root of the tree, to be able to traverse the tree in a bottom up manner. I have resolved this too. I have added a display_keys method which allows us to visualize the tree, albeit rotated by 90 degrees. I'm updating the code and prompt in this post accordingly. The problem that still remains is that I have to call the BalanceTree() method more than once in some cases for isBSTBalanced to return True.

Binary search tree cumsum

Problem: Given a binary search tree in which the keys are numbers, we'll define the operation 'cumsum' ( shorthand for cumulative sum ) that switches the key of every node in the tree with the sum of all the keys that are smaller or equal to it.
For example,
In this example,
The key 5 in the root is switched to the value 10: the sum of the original key in the root ( which is 5 ) and all smaller keys than it ( which are 2 and 3 ).
The key 3 is switched with the value 5: sum of the original key in this node ( meaning, 3 ) and all the smaller keys than it ( which is 2 ).
The key 12 in the rightmost node is switched with the value 45: sum of the original key in this node ( meaning, 12 ) and all the smaller keys than it ( which are 2,3,5,6,8 and 9 ).
Note that the method needs to be an envelope function that envelopes a recursive function. Also note that the method cumsum does not return a new tree but rather updates the tree itself ( in-place )
My attempt:
def cumsum(T):
def cumsum_rec(node,L):
L.append(node.key)
if node.left != None:
cumsum_rec(node.left,L)
if node.right != None:
cumsum_rec(node.right,L)
count = 0
for val in L:
if val < node.key:
count += val
node.key += count
L = []
cumsum_rec(T.root,L)
Explanation: I traverse each node in the tree, I save each original node in an auxiliary list denoted as 'L'. When all nodes were traversed, I look for all the nodes keys in the list 'L' that are smaller than the current node and appropriately update the key of the current node to be the sum of the keys of all nodes whose key are smaller or equal to the current node's key .
My implemenation works, for example, for the tree in the example above:
t = Binary_search_tree()
t.insert(5,'A')
t.insert(2,'A')
t.insert(9,'A')
t.insert(3,'A')
t.insert(8,'A')
t.insert(12,'A')
t.insert(6,'A')
which looks:
>>> print(t)
5
______/ |__________
2 9
/ |__ __/ |__
# 3 8 12
/ | __/ | / |
# # 6 # # #
/ |
# #
And after performing cumsum operation on it:
>>> cumsum(t)
>>> print(t)
10
______/ |____________
2 33
/ |__ __/ |__
# 5 24 45
/ | __/ | / |
# # 16 # # #
/ |
# #
My question:
Although my implementation works, I was interested in seeing other possible implementations for the sake of learning. Do you have an alternative implementation? one that doesn't require using a list as an input to the recursive function?
Addendum ( implementation of Binary search tree and Tree_node classes if you're interested ):
def printree(t, bykey = True):
"""Print a textual representation of t
bykey=True: show keys instead of values"""
#for row in trepr(t, bykey):
# print(row)
return trepr(t, bykey)
def trepr(t, bykey = False):
"""Return a list of textual representations of the levels in t
bykey=True: show keys instead of values"""
if t==None:
return ["#"]
thistr = str(t.key) if bykey else str(t.val)
return conc(trepr(t.left,bykey), thistr, trepr(t.right,bykey))
def conc(left,root,right):
"""Return a concatenation of textual represantations of
a root node, its left node, and its right node
root is a string, and left and right are lists of strings"""
lwid = len(left[-1])
rwid = len(right[-1])
rootwid = len(root)
result = [(lwid+1)*" " + root + (rwid+1)*" "]
ls = leftspace(left[0])
rs = rightspace(right[0])
result.append(ls*" " + (lwid-ls)*"_" + "/" + rootwid*" " + "|" + rs*"_" + (rwid-rs)*" ")
for i in range(max(len(left),len(right))):
row = ""
if i<len(left):
row += left[i]
else:
row += lwid*" "
row += (rootwid+2)*" "
if i<len(right):
row += right[i]
else:
row += rwid*" "
result.append(row)
return result
def leftspace(row):
"""helper for conc"""
#row is the first row of a left node
#returns the index of where the second whitespace starts
i = len(row)-1
while row[i]==" ":
i-=1
return i+1
def rightspace(row):
"""helper for conc"""
#row is the first row of a right node
#returns the index of where the first whitespace ends
i = 0
while row[i]==" ":
i+=1
return i
#######################################################################
class Tree_node():
def __init__(self, key, val):
self.key = key
self.val = val
self.left = None
self.right = None
def __repr__(self):
return "(" + str(self.key) + ":" + str(self.val) + ")"
class Binary_search_tree():
def __init__(self):
self.root = None
def __repr__(self): #no need to understand the implementation of this one
out = ""
for row in printree(self.root): #need printree.py file
out = out + row + "\n"
return out
def lookup(self, key):
''' return node with key, uses recursion '''
def lookup_rec(node, key):
if node == None:
return None
elif key == node.key:
return node
elif key < node.key:
return lookup_rec(node.left, key)
else:
return lookup_rec(node.right, key)
return lookup_rec(self.root, key)
def insert(self, key, val):
''' insert node with key,val into tree, uses recursion '''
def insert_rec(node, key, val):
if key == node.key:
node.val = val # update the val for this key
elif key < node.key:
if node.left == None:
node.left = Tree_node(key, val)
else:
insert_rec(node.left, key, val)
else: #key > node.key:
if node.right == None:
node.right = Tree_node(key, val)
else:
insert_rec(node.right, key, val)
return
if self.root == None: #empty tree
self.root = Tree_node(key, val)
else:
insert_rec(self.root, key, val)
Thanks in advance for any help!
Here's one implementation that doesn't require keeping the extra list; it just adds the numbers up as it goes.
def cumsum(T):
def cumsum_rec(node, initial):
if node is None:
return initial
left = cumsum_rec(node.left, initial)
node.key = left + node.key
right = cumsum_rec(node.right, node.key)
return right
cumsum_rec(T.root, 0)
Note that there is no need to do extra comparisons of values (my code has no <), because all of that information is already contained in the structure of the tree.

how to print a binary search tree in python?

Below is a binary search tree which has a root node, a left node and a right node.
The code works but I want to display this binary search tree so that i can see every node in layer...
Here is the code...
class Node:
def __init__(self,value):
self.value = value
self.left = None
self.right = None
class Binary_search_tree:
def __init__(self):
self.root=None
def insert(self,value):
if self.root==None:
self.root=Node(value)
else:
self.insert_after_root(value)
def insert_after_root(self, value):
if value > self.root.value:
self.root.left = Node(value)
elif value < self.root.value:
self.root.right = Node(value)
bst = Binary_search_tree()
bst.insert(4)
bst.insert_after_root(2)
bst.insert_after_root(8)
Your implementation has some problems:
The tree can only have 3 nodes, since you never create a grand-child of the root, but always make the new node either the root, or one of its children
left/right are reversed: you should insert smaller values to the left.
In the main program code, you should only use the insert method, never the insert_after_root.
Here is a correction of your implementation, based on recursion (putting a method on the Node), and an additional set of methods for producing a string representation, 90° tilted (with the root displayed at the left).
class Node:
def __init__(self,value):
self.value = value
self.left = None
self.right = None
def insert_after(self, value):
if value < self.value:
if self.left:
self.left.insert_after(value)
else:
self.left = Node(value)
elif value > self.value:
if self.right:
self.right.insert_after(value)
else:
self.right = Node(value)
else:
raise ValueError("this tree doesn't accept duplicates")
def __repr__(self):
lines = []
if self.right:
found = False
for line in repr(self.right).split("\n"):
if line[0] != " ":
found = True
line = " ┌─" + line
elif found:
line = " | " + line
else:
line = " " + line
lines.append(line)
lines.append(str(self.value))
if self.left:
found = False
for line in repr(self.left).split("\n"):
if line[0] != " ":
found = True
line = " └─" + line
elif found:
line = " " + line
else:
line = " | " + line
lines.append(line)
return "\n".join(lines)
class Binary_search_tree:
def __init__(self):
self.root=None
def insert(self,value):
if self.root==None:
self.root=Node(value)
else:
self.root.insert_after(value)
def __repr__(self):
return repr(self.root)
bst = Binary_search_tree()
bst.insert(4)
bst.insert(2)
bst.insert(8)
bst.insert(3)
bst.insert(5)
bst.insert(7)
bst.insert(10)
print(str(bst))
Here is a simple implementation of binary search tree. In addition I recommend you to don't use == operator with None, instead of that use is, here why should I avoid == None
class Node:
def __init__(self,key):
self.left = None
self.right = None
self.value = key
def insert(root,node):
if root is None:
root = node
else:
if root.value < node.value:
if root.right is None:
root.right = node
else:
insert(root.right, node)
else:
if root.left is None:
root.left = node
else:
insert(root.left, node)
def left_right(root):
if root:
left_right(root.left)
print(root.value) # that shows your tree
left_right(root.right)
tree = Node(20)
insert(tree,Node(30))
insert(tree,Node(10))
insert(tree,Node(40))
insert(tree,Node(90))
left_right(tree)

Python Serializing/Deserializing a binary tree

I'm trying to implement a serializing/deserializing algorithm in python for binary trees.
Here's my code:
class Node:
count = 1
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def insert(self, value):
if self.value > value:
if self.left is None:
self.left = Node(value)
Node.count += 1
else:
self.left.insert(value)
else:
if self.right is None:
self.right = Node(value)
Node.count += 1
else:
self.right.insert(value)
# Using preorder
def serialize(root, serial):
if root != None:
serial.append(root.value)
serialize(root.left, serial)
serialize(root.right, serial)
else:
serial.append('x')
def deserialize(newRoot, serial):
if serial[0] == 'x':
serial.pop(0)
else:
if len(serial) > 0:
newRoot = Node(serial.pop(0))
print(newRoot.value)
deserialize(newRoot.left, serial)
deserialize(newRoot.right, serial)
print("This program serializes a tree\n")
root = Node(3)
root.insert(1)
root.insert(2)
root.insert(4)
root.insert(5)
root.insert(0)
# Serialize
serial = []
serialize(root, serial)
print(serial)
# Deserialize
newRoot = Node(None)
deserialize(newRoot, serial)
print(newRoot.value)
The problem is, newRoot doesn't get updated by deserialize because python passes it by value. How do I get around this, preferably in the most elegant way? In C/C++, I would just pass a pointer to newRoot and it should get updated accordingly. Thanks!
You can return the newly created nodes and assign them as left and right nodes. Also poping the first element of a list is more costly than poping the last element, so reverseing the list at the beginning and then using it in the recursion will be more performant in your case. So the code will become something like:
def deserialize(serial):
serial.reverse()
return _deserialize(serial)
def _deserialize(serial):
if not serial:
return None
node = None
value = serial.pop()
if value != 'x':
node = Node(value)
node.left = _deserialize(serial)
node.right = _deserialize(serial)
return node
root = deserialize(serial)
print(root.value)
You can create left and right subtree within deserialize function and return the root.
Here is my code:
node_list = []
MARKER = -1
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
def serialize(root):
if root is None:
node_list.append(MARKER)
return
node_list.append(root.val)
serialize(root.left)
serialize(root.right)
def deserialize(root, node_list):
if node_list:
val = node_list.pop(0)
else:
return
if val == MARKER:
return
# Create root, left and right recursively
root = Node(val)
root.left = deserialize(root.left, node_list)
root.right = deserialize(root.right, node_list)
return root
def inorder_traversal(root):
if root:
inorder_traversal(root.left)
print(root.val, end=' ')
inorder_traversal(root.right)
if __name__=="__main__":
# Create tree
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
print("Inorder traversal before serialization..")
inorder_traversal(root)
print('')
# serialize the tree and insert elements into a list
serialize(root)
print(node_list)
root1 = None
root1 = deserialize(root1, node_list)
print("Inorder traversal after deserialization..")
inorder_traversal(root1)
print('')

Categories