create table of contents in python - python

Assuming the following text:
# Algorithms
This chapter covers the most basic algorithms.
## Sorting
Quicksort is fast and widely used in practice
Merge sort is a deterministic algorithm
## Searching
DFS and BFS are widely used graph searching algorithms
# Data Structures
more text
## more data structures
How would i create a table of contents in python that if the line starts with # I would replace with 1. for the first #. If the line starts with ## I would replace with 1.1. the second time in the text a # would be seen I need to replace with 2. and so on:
1. Algorithms
1.1. Sorting
1.2. Searching
2. Data Structures
2.1 more data structures
I would begin doing something like :
for line in text:
if line.startswith('#'):
....
but I dont know how to proceed.

You could do something like this:
from collections import defaultdict
levels = defaultdict(int)
max_level = 0
index = []
for line in text:
if not line.startswith("#"):
continue
hashes, caption = line.rstrip().split(maxsplit=1)
level = len(hashes)
max_level = max(level, max_level)
levels[level] += 1
for l in range(level + 1, max_level + 1):
levels[l] = 0
index.append(
".".join(str(levels[l]) for l in range(1, level+1))
+ ". " + caption
)
Some expanations:
levels stores the current state of the counter of the table of contents. It's a defaultdict(int) because its values are ints and that makes it easy to use.
max_level stores the maximal depth of the counter so far. (E.g.: In the step from only single #s to the first ## the maximal depth increases (1->2).)
If a line of the text startswith # then it is split in 2 parts: 1. the hashes and 2. the caption.
The number of hashes (len(hashes)) is the level-depth of the current entry. Just in case it increases the maximum depth so far, max_level gets an update (often doing nothing).
Then the counter for the current level is increaed by 1, and all the counters for the levels beyond the current one get a reset to 0. (E.g.: If the last state of the counter was 1.2 and then the first level gets increased (#), not only must the counter switch the first place (1->2) but also the second level needs a reset (2->0).) Another would be to delete those levels.
The output in the join contains all the individual counters up to the current level (E.g., to get 1.3. instead of 1.3.0.0.0.0. etc.)
Result for
from io import StringIO
text = StringIO(
'''
# Algorithms
This chapter covers the most basic algorithms.
## Sorting
Quicksort is fast and widely used in practice
Merge sort is a deterministic algorithm
## Searching
DFS and BFS are widely used graph searching algorithms
# Data Structures
more text
## more data structures
''')
is
['1. Algorithms',
'1.1. Sorting',
'1.2. Searching',
'2. Data Structures',
'2.1. more data structures']
Another, but similiar approach, without defaultdict would be:
levels = []
index = []
for line in text:
if not line.startswith("#"):
continue
hashes, caption = line.rstrip().split(maxsplit=1)
level = len(hashes)
if level > len(levels):
levels.append(1)
else:
levels[level-1] += 1
levels = levels[:level]
index.append(
".".join(str(l) for l in levels) + ". " + caption
)

You can use recursion:
from collections import defaultdict
def to_table(d, p = []):
r, c, l = defaultdict(list), 0, None
for a, *b in d:
if a != '#' and p:
yield f'{".".join(map(str, p))} {"".join(b)}'
elif a == '#':
r[l:=((c:=c+1) if b[0] != '#' else c)].append(''.join(b))
yield from [j for a, b in r.items() for j in to_table(b, p+[a])]
s = """
# Algorithms
This chapter covers the most basic algorithms.
## Sorting
Quicksort is fast and widely used in practice
Merge sort is a deterministic algorithm
## Searching
DFS and BFS are widely used graph searching algorithms
# Data Structures
more text
## more data structures
"""
print('\n'.join(to_table(list(filter(None, s.split('\n'))))))
Output:
1 Algorithms
1.1 Sorting
1.2 Searching
2 Data Structures
2.1 more data structures

You can keep track of the top-level number and the sub-level number, and substitute the single hashes with the top level number and the double hashes with the format top.sub.
You can refer this

Related

Python Linear Search Better Efficiency

I've got a question regarding Linear Searching in Python. Say I've got the base code of
for l in lines:
for f in search_data:
if my_search_function(l[1],[f[0],f[2]]):
print "Found it!"
break
in which we want to determine where in search_data exists the value stored in l[1]. Say my_search_function() looks like this:
def my_search_function(search_key, search_values):
for s in search_values:
if search_key in s:
return True
return False
Is there any way to increase the speed of processing? Binary Search would not work in this case, as lines and search_data are multidimensional lists and I need to preserve the indexes. I've tried an outside-in approach, i.e.
for line in lines:
negative_index = -1
positive_index = 0
middle_element = len(search_data) /2 if len(search_data) %2 == 0 else (len(search_data)-1) /2
found = False
while positive_index < middle_element:
# print str(positive_index)+","+str(negative_index)
if my_search_function(line[1], [search_data[positive_index][0],search_data[negative_index][0]]):
print "Found it!"
break
positive_index = positive_index +1
negative_index = negative_index -1
However, I'm not seeing any speed increases from this. Does anyone have a better approach? I'm looking to cut the processing speed in half as I'm working with large amounts of CSV and the processing time for one file is > 00:15 which is unacceptable as I'm processing batches of 30+ files. Basically the data I'm searching on is essentially SKUs. A value from lines[0] could be something like AS123JK and a valid match for that value could be AS123. So a HashMap would not work here, unless there exists a way to do partial matches in a HashMap lookup that wouldn't require me breaking down the values like ['AS123', 'AS123J', 'AS123JK'], which is not ideal in this scenario. Thanks!
Binary Search would not work in this case, as lines and search_data are multidimensional lists and I need to preserve the indexes.
Regardless, it may be worth your while to extract the strings (along with some reference to the original data structure) into a flat list, sort it, and perform fast binary searches on it with help of the bisect module.
Or, instead of a large number of searches, sort also a combined list of all the search keys and traverse both lists in parallel, looking for matches. (Proceeding in a similar manner to the merge step in merge sort, without actually outputting a merged list)
Code to illustrate the second approach:
lines = ['AS12', 'AS123', 'AS123J', 'AS123JK','AS124']
search_keys = ['AS123', 'AS125']
try:
iter_keys = iter(sorted(search_keys))
key = next(iter_keys)
for line in sorted(lines):
if line.startswith(key):
print('Line {} matches {}'.format(line, key))
else:
while key < line[:len(key)]:
key = next(iter_keys)
except StopIteration: # all keys processed
pass
Depends on problem detail.
For instance if you search for complete words, you could create a hashtable on searchable elements, and the final search would be a simple lookup.
Filling the hashtable is pseudo-linear.
Ultimately, I was broke down and implemented Binary Search on my multidimensional lists by sorting using the sorted() function with a lambda as a key argument.Here is the first pass code that I whipped up. It's not 100% efficient, but it's a vast improvement from where we were
def binary_search(master_row, source_data,master_search_index, source_search_index):
lower_bound = 0
upper_bound = len(source_data) - 1
found = False
while lower_bound <= upper_bound and not found:
middle_pos = (lower_bound + upper_bound) // 2
if source_data[middle_pos][source_search_index] < master_row[master_search_index]:
if search([source_data[middle_pos][source_search_index]],[master_row[master_search_index]]):
return {"result": True, "index": middle_pos}
break
lower_bound = middle_pos + 1
elif source_data[middle_pos][source_search_index] > master_row[master_search_index] :
if search([master_row[master_search_index]],[source_data[middle_pos][source_search_index]]):
return {"result": True, "index": middle_pos}
break
upper_bound = middle_pos - 1
else:
if len(source_data[middle_pos][source_search_index]) > 5:
return {"result": True, "index": middle_pos}
else:
break
and then where we actually make the Binary Search call
#where master_copy is the first multidimensional list, data_copy is the second
#the search columns are the columns we want to search against
for line in master_copy:
for m in master_search_columns:
found = False
for d in data_search_columns:
data_copy = sorted(data_copy, key=lambda x: x[d], reverse=False)
results = binary_search(line, data_copy,m, d)
found = results["result"]
if found:
line = update_row(line, data_copy[results["index"]], column_mapping)
found_count = found_count +1
break
if found:
break
Here's the info for sorting a multidimensional list Python Sort Multidimensional Array Based on 2nd Element of Subarray

Algorithmic / coding help for a PySpark markov model

I need some help getting my brain around designing an (efficient) markov chain in spark (via python). I've written it as best as I could, but the code I came up with doesn't scale.. Basically for the various map stages, I wrote custom functions and they work fine for sequences of a couple thousand, but when we get in the 20,000+ (and I've got some up to 800k) things slow to a crawl.
For those of you not familiar with markov moodels, this is the gist of it..
This is my data.. I've got the actual data (no header) in an RDD at this point.
ID, SEQ
500, HNL, LNH, MLH, HML
We look at sequences in tuples, so
(HNL, LNH), (LNH,MLH), etc..
And I need to get to this point.. where I return a dictionary (for each row of data) that I then serialize and store in an in memory database.
{500:
{HNLLNH : 0.333},
{LNHMLH : 0.333},
{MLHHML : 0.333},
{LNHHNL : 0.000},
etc..
}
So in essence, each sequence is combined with the next (HNL,LNH become 'HNLLNH'), then for all possible transitions (combinations of sequences) we count their occurrence and then divide by the total number of transitions (3 in this case) and get their frequency of occurrence.
There were 3 transitions above, and one of those was HNLLNH.. So for HNLLNH, 1/3 = 0.333
As a side not, and I'm not sure if it's relevant, but the values for each position in a sequence are limited.. 1st position (H/M/L), 2nd position (M/L), 3rd position (H,M,L).
What my code had previously done was to collect() the rdd, and map it a couple times using functions I wrote. Those functions first turned the string into a list, then merged list[1] with list[2], then list[2] with list[3], then list[3] with list[4], etc.. so I ended up with something like this..
[HNLLNH],[LNHMLH],[MHLHML], etc..
Then the next function created a dictionary out of that list, using the list item as a key and then counted the total ocurrence of that key in the full list, divided by len(list) to get the frequency. I then wrapped that dictionary in another dictionary, along with it's ID number (resulting in the 2nd code block, up a above).
Like I said, this worked well for small-ish sequences, but not so well for lists with a length of 100k+.
Also, keep in mind, this is just one row of data. I have to perform this operation on anywhere from 10-20k rows of data, with rows of data varying between lengths of 500-800,000 sequences per row.
Any suggestions on how I can write pyspark code (using the API map/reduce/agg/etc.. functions) to do this efficiently?
EDIT
Code as follows.. Probably makes sense to start at the bottom. Please keep in mind I'm learning this(Python and Spark) as I go, and I don't do this for a living, so my coding standards are not great..
def f(x):
# Custom RDD map function
# Combines two separate transactions
# into a single transition state
cust_id = x[0]
trans = ','.join(x[1])
y = trans.split(",")
s = ''
for i in range(len(y)-1):
s= s + str(y[i] + str(y[i+1]))+","
return str(cust_id+','+s[:-1])
def g(x):
# Custom RDD map function
# Calculates the transition state probabilities
# by adding up state-transition occurrences
# and dividing by total transitions
cust_id=str(x.split(",")[0])
trans = x.split(",")[1:]
temp_list=[]
middle = int((len(trans[0])+1)/2)
for i in trans:
temp_list.append( (''.join(i)[:middle], ''.join(i)[middle:]) )
state_trans = {}
for i in temp_list:
state_trans[i] = temp_list.count(i)/(len(temp_list))
my_dict = {}
my_dict[cust_id]=state_trans
return my_dict
def gen_tsm_dict_spark(lines):
# Takes RDD/string input with format CUST_ID(or)PROFILE_ID,SEQ,SEQ,SEQ....
# Returns RDD of dict with CUST_ID and tsm per customer
# i.e. {cust_id : { ('NLN', 'LNN') : 0.33, ('HPN', 'NPN') : 0.66}
# creates a tuple ([cust/profile_id], [SEQ,SEQ,SEQ])
cust_trans = lines.map(lambda s: (s.split(",")[0],s.split(",")[1:]))
with_seq = cust_trans.map(f)
full_tsm_dict = with_seq.map(g)
return full_tsm_dict
def main():
result = gen_tsm_spark(my_rdd)
# Insert into DB
for x in result.collect():
for k,v in x.iteritems():
db_insert(k,v)
You can try something like below. It depends heavily on tooolz but if you prefer to avoid external dependencies you can easily replace it with some standard Python libraries.
from __future__ import division
from collections import Counter
from itertools import product
from toolz.curried import sliding_window, map, pipe, concat
from toolz.dicttoolz import merge
# Generate all possible transitions
defaults = sc.broadcast(dict(map(
lambda x: ("".join(concat(x)), 0.0),
product(product("HNL", "NL", "HNL"), repeat=2))))
rdd = sc.parallelize(["500, HNL, LNH, NLH, HNL", "600, HNN, NNN, NNN, HNN, LNH"])
def process(line):
"""
>>> process("000, HHH, LLL, NNN")
('000', {'LLLNNN': 0.5, 'HHHLLL': 0.5})
"""
bits = line.split(", ")
transactions = bits[1:]
n = len(transactions) - 1
frequencies = pipe(
sliding_window(2, transactions), # Get all transitions
map(lambda p: "".join(p)), # Joins strings
Counter, # Count
lambda cnt: {k: v / n for (k, v) in cnt.items()} # Get frequencies
)
return bits[0], frequencies
def store_partition(iter):
for (k, v) in iter:
db_insert(k, merge([defaults.value, v]))
rdd.map(process).foreachPartition(store_partition)
Since you know all possible transitions I would recommend using a sparse representation and ignore zeros. Moreover you can replace dictionaries with sparse vectors to reduce memory footprint.
you can achieve this result by using pure Pyspark, i did using it using pyspark.
To create frequencies, let say you have already achieved and these are input RDDs
ID, SEQ
500, [HNL, LNH, MLH, HML ...]
and to get frequencies like, (HNL, LNH),(LNH, MLH)....
inputRDD..map(lambda (k, list): get_frequencies(list)).flatMap(lambda x: x) \
.reduceByKey(lambda v1,v2: v1 +v2)
get_frequencies(states_list):
"""
:param states_list: Its a list of Customer States.
:return: State Frequencies List.
"""
rest = []
tuples_list = []
for idx in range(0,len(states_list)):
if idx + 1 < len(states_list):
tuples_list.append((states_list[idx],states_list[idx+1]))
unique = set(tuples_list)
for value in unique:
rest.append((value, tuples_list.count(value)))
return rest
and you will get results
((HNL, LNH), 98),((LNH, MLH), 458),() ......
after this you may convert result RDDs into Dataframes or yu can directly insert into DB using RDDs mapPartitions

Optimizing searches in very large csv files

I have a csv file with a single column, but 6.2 million rows, all containing strings between 6 and 20ish letters. Some strings will be found in duplicate (or more) entries, and I want to write these to a new csv file - a guess is that there should be around 1 million non-unique strings. That's it, really. Continuously searching through a dictionary of 6 million entries does take its time, however, and I'd appreciate any tips on how to do it. Any script I've written so far takes at least a week (!) to run, according to some timings I did.
First try:
in_file_1 = open('UniProt Trypsinome (full).csv','r')
in_list_1 = list(csv.reader(in_file_1))
out_file_1 = open('UniProt Non-Unique Reference Trypsinome.csv','w+')
out_file_2 = open('UniProt Unique Trypsin Peptides.csv','w+')
writer_1 = csv.writer(out_file_1)
writer_2 = csv.writer(out_file_2)
# Create trypsinome dictionary construct
ref_dict = {}
for row in range(len(in_list_1)):
ref_dict[row] = in_list_1[row]
# Find unique/non-unique peptides from trypsinome
Peptide_list = []
Uniques = []
for n in range(len(in_list_1)):
Peptide = ref_dict.pop(n)
if Peptide in ref_dict.values(): # Non-unique peptides
Peptide_list.append(Peptide)
else:
Uniques.append(Peptide) # Unique peptides
for m in range(len(Peptide_list)):
Write_list = (str(Peptide_list[m]).replace("'","").replace("[",'').replace("]",''),'')
writer_1.writerow(Write_list)
Second try:
in_file_1 = open('UniProt Trypsinome (full).csv','r')
in_list_1 = list(csv.reader(in_file_1))
out_file_1 = open('UniProt Non-Unique Reference Trypsinome.csv','w+')
writer_1 = csv.writer(out_file_1)
ref_dict = {}
for row in range(len(in_list_1)):
Peptide = in_list_1[row]
if Peptide in ref_dict.values():
write = (in_list_1[row],'')
writer_1.writerow(write)
else:
ref_dict[row] = in_list_1[row]
EDIT: here's a few lines from the csv file:
SELVQK
AKLAEQAER
AKLAEQAERR
LAEQAER
LAEQAERYDDMAAAMK
LAEQAERYDDMAAAMKK
MTMDKSELVQK
YDDMAAAMKAVTEQGHELSNEER
YDDMAAAMKAVTEQGHELSNEERR
Do it with Numpy. Roughly:
import numpy as np
column = 42
mat = np.loadtxt("thefile", dtype=[TODO])
uniq = set(np.unique(mat[:,column]))
for row in mat:
if row[column] not in uniq:
print row
You could even vectorize the output stage using numpy.savetxt and the char-array operators, but it probably won't make very much difference.
First hint : Python has support for lazy evaluation, better to use it when dealing with huge datasets. So :
iterate over your csv.reader instead of building a huge in-memory list,
don't build huge in-memory lists with ranges - use enumerate(seq) instead if you need both the item and index, and just iterate over your sequence's items if you don't need the index.
Second hint : the main point of using a dict (hashtable) is to lookup on keys, not values... So don't build a huge dict that's used as a list.
Third hint : if you just want a way to store "already seen" values, use a Set.
I'm not so good in Python, so I don't know how the 'in' works, but your algorithm seems to run in n².
Try to sort your list after reading it, with an algo in n log(n), like quicksort, it should work better.
Once the list is ordered, you just have to check if two consecutive elements of the list are the same.
So you get the reading in n, the sorting in n log(n) (at best), and the comparison in n.
Although I think that the numpy solution is the best, I'm curious whether we can speed up the given example. My suggestions are:
skip csv.reader costs and just read the line
rb to skip the extra scan needed to fix newlines
use bigger file buffer sizes (read 1Meg, write 64K is probably good)
use the dict keys as an index - key lookup is much faster than value lookup
I'm not a numpy guy, so I'd do something like
in_file_1 = open('UniProt Trypsinome (full).csv','rb', 1048576)
out_file_1 = open('UniProt Non-Unique Reference Trypsinome.csv','w+', 65536)
ref_dict = {}
for line in in_file_1:
peptide = line.rstrip()
if peptide in ref_dict:
out_file_1.write(peptide + '\n')
else:
ref_dict[peptide] = None

How to compare clusters?

Hopefully this can be done with python! I used two clustering programs on the same data and now have a cluster file from both. I reformatted the files so that they look like this:
Cluster 0:
Brucellaceae(10)
Brucella(10)
abortus(1)
canis(1)
ceti(1)
inopinata(1)
melitensis(1)
microti(1)
neotomae(1)
ovis(1)
pinnipedialis(1)
suis(1)
Cluster 1:
Streptomycetaceae(28)
Streptomyces(28)
achromogenes(1)
albaduncus(1)
anthocyanicus(1)
etc.
These files contain bacterial species info. So I have the cluster number (Cluster 0), then right below it 'family' (Brucellaceae) and the number of bacteria in that family (10). Under that is the genera found in that family (name followed by number, Brucella(10)) and finally the species in each genera (abortus(1), etc.).
My question: I have 2 files formatted in this way and want to write a program that will look for differences between the two. The only problem is that the two programs cluster in different ways, so two cluster may be the same, even if the actual "Cluster Number" is different (so the contents of Cluster 1 in one file might match Cluster 43 in the other file, the only different being the actual cluster number). So I need something to ignore the cluster number and focus on the cluster contents.
Is there any way I could compare these 2 files to examine the differences? Is it even possible? Any ideas would be greatly appreciated!
Given:
file1 = '''Cluster 0:
giant(2)
red(2)
brick(1)
apple(1)
Cluster 1:
tiny(3)
green(1)
dot(1)
blue(2)
flower(1)
candy(1)'''.split('\n')
file2 = '''Cluster 18:
giant(2)
red(2)
brick(1)
tomato(1)
Cluster 19:
tiny(2)
blue(2)
flower(1)
candy(1)'''.split('\n')
Is this what you need?
def parse_file(open_file):
result = []
for line in open_file:
indent_level = len(line) - len(line.lstrip())
if indent_level == 0:
levels = ['','','']
item = line.lstrip().split('(', 1)[0]
levels[indent_level - 1] = item
if indent_level == 3:
result.append('.'.join(levels))
return result
data1 = set(parse_file(file1))
data2 = set(parse_file(file2))
differences = [
('common elements', data1 & data2),
('missing from file2', data1 - data2),
('missing from file1', data2 - data1) ]
To see the differences:
for desc, items in differences:
print desc
print
for item in items:
print '\t' + item
print
prints
common elements
giant.red.brick
tiny.blue.candy
tiny.blue.flower
missing from file2
tiny.green.dot
giant.red.apple
missing from file1
giant.red.tomato
So just for help, as I see lots of different answers in the comment, I'll give you a very, very simple implementation of a script that you can start from.
Note that this does not answer your full question but points you in one of the directions in the comments.
Normally if you have no experience I'd argue to go a head and read up on Python (which i'll do anyways, and i'll throw in a few links in the bottom of the answer)
On to the fun stuffs! :)
class Cluster(object):
'''
This is a class that will contain your information about the Clusters.
'''
def __init__(self, number):
'''
This is what some languages call a constructor, but it's not.
This method initializes the properties with values from the method call.
'''
self.cluster_number = number
self.family_name = None
self.bacteria_name = None
self.bacteria = []
#This part below isn't a part of the class, this is the actual script.
with open('bacteria.txt', 'r') as file:
cluster = None
clusters = []
for index, line in enumerate(file):
if line.startswith('Cluster'):
cluster = Cluster(index)
clusters.append(cluster)
else:
if not cluster.family_name:
cluster.family_name = line
elif not cluster.bacteria_name:
cluster.bacteria_name = line
else:
cluster.bacteria.append(line)
I wrote this as dumb and overly simple as I could without any fancy stuff and for Python 2.7.2
You could copy this file into a .py file and run it directly from command line python bacteria.py for example.
Hope this helps a bit and don't hesitate to come by our Python chat room if you have any questions! :)
http://learnpythonthehardway.org/
http://www.diveintopython.net/
http://docs.python.org/2/tutorial/inputoutput.html
check if all elements in a list are identical
Retaining order while using Python's set difference
You have to write some code to parse the file. If you ignore the cluster, you should be able to distinguish between family, genera and species based on indentation.
The easiest way it to define a named tuple:
import collections
Bacterium = collections.namedtuple('Bacterium', ['family', 'genera', 'species'])
You can make in instance of this object like this:
b = Bacterium('Brucellaceae', 'Brucella', 'canis')
Your parser should read a file line by line, and set the family and genera. If it then finds a species, it should add a Bacterium to a list;
with open('cluster0.txt', 'r') as infile:
lines = infile.readlines()
family = None
genera = None
bacteria = []
for line in lines:
# set family and genera.
# if you detect a bacterium:
bacteria.append(Bacterium(family, genera, species))
Once you have a list of all bacteria in each file or cluster, you can select from all the bacteria like this:
s = [b for b in bacteria if b.genera == 'Streptomycetaceae']
Comparing two clusterings is not trivial task and reinventing the wheel is unlikely to be successful. Check out this package which has lots of different cluster similarity metrics and can compare dendrograms (the data structure you have).
The library is called CluSim and can be found here:
https://github.com/Hoosier-Clusters/clusim/
After learning so much from Stackoverflow, finally I have an opportunity to give back! A different approach from those offered so far is to relabel clusters to maximize alignment, and then comparison becomes easy. For example, if one algorithm assigns labels to a set of six items as L1=[0,0,1,1,2,2] and another assigns L2=[2,2,0,0,1,1], you want these two labelings to be equivalent since L1 and L2 are essentially segmenting items into clusters identically. This approach relabels L2 to maximize alignment, and in the example above, will result in L2==L1.
I found a soution to this problem in "Menéndez, Héctor D. A genetic approach to the graph and spectral clustering problem. MS thesis. 2012." and below is an implementation in Python using numpy. I'm relatively new to Python, so there may be better implementations, but I think this gets the job done:
def alignClusters(clstr1,clstr2):
"""Given 2 cluster assignments, this funciton will rename the second to
maximize alignment of elements within each cluster. This method is
described in in Menéndez, Héctor D. A genetic approach to the graph and
spectral clustering problem. MS thesis. 2012. (Assumes cluster labels
are consecutive integers starting with zero)
INPUTS:
clstr1 - The first clustering assignment
clstr2 - The second clustering assignment
OUTPUTS:
clstr2_temp - The second clustering assignment with clusters renumbered to
maximize alignment with the first clustering assignment """
K = np.max(clstr1)+1
simdist = np.zeros((K,K))
for i in range(K):
for j in range(K):
dcix = clstr1==i
dcjx = clstr2==j
dd = np.dot(dcix.astype(int),dcjx.astype(int))
simdist[i,j] = (dd/np.sum(dcix!=0) + dd/np.sum(dcjx!=0))/2
mask = np.zeros((K,K))
for i in range(K):
simdist_vec = np.reshape(simdist.T,(K**2,1))
I = np.argmax(simdist_vec)
xy = np.unravel_index(I,simdist.shape,order='F')
x = xy[0]
y = xy[1]
mask[x,y] = 1
simdist[x,:] = 0
simdist[:,y] = 0
swapIJ = np.unravel_index(np.where(mask.T),simdist.shape,order='F')
swapI = swapIJ[0][1,:]
swapJ = swapIJ[0][0,:]
clstr2_temp = np.copy(clstr2)
for k in range(swapI.shape[0]):
swapj = [swapJ[k]==i for i in clstr2]
clstr2_temp[swapj] = swapI[k]
return clstr2_temp

For-loop to count differences in lines with python

I have a file filled with lines like this (this is just a small bit of the file):
9 Hyphomicrobium facile Hyphomicrobiaceae
9 Hyphomicrobium facile Hyphomicrobiaceae
7 Mycobacterium kansasii Mycobacteriaceae
7 Mycobacterium gastri Mycobacteriaceae
10 Streptomyces olivaceiscleroticus Streptomycetaceae
10 Streptomyces niger Streptomycetaceae
1 Streptomyces geysiriensis Streptomycetaceae
1 Streptomyces minutiscleroticus Streptomycetaceae
0 Brucella neotomae Brucellaceae
0 Brucella melitensis Brucellaceae
2 Mycobacterium phocaicum Mycobacteriaceae
The number refers to a cluster, and then it goes 'Genus' 'Species' 'Family'.
What I want to do is write a program that will look through each line and report back to me: a list of the different genera in each cluster, and how many of each of those genera are in the cluster. So I'm interested in cluster number and the first 'word' in each line.
My trouble is that I'm not sure how to get this information. I think I need to use a for-loop, starting at lines that begin with '0.'The output would be a file that looks something like:
Cluster 0: Brucella(2) # Lists cluster, followed by genera in cluster with number, something like that.
Cluster 1: Streptomyces(2)
Cluster 2: Brucella(1)
etc.
Eventually I want to do the same kind of count with the Families in each cluster, and then Genera and Species together. Any thoughts on how to start would be greatly appreciated!
I thought this would be a fun little toy project, so I wrote a little hack to read in an input file like yours from stdin, count and format the output recursively and spit out output that looks a little like yours, but with a nested format, like so:
Cluster 0:
Brucella(2)
melitensis(1)
Brucellaceae(1)
neotomae(1)
Brucellaceae(1)
Streptomyces(1)
neotomae(1)
Brucellaceae(1)
Cluster 1:
Streptomyces(2)
geysiriensis(1)
Streptomycetaceae(1)
minutiscleroticus(1)
Streptomycetaceae(1)
Cluster 2:
Mycobacterium(1)
phocaicum(1)
Mycobacteriaceae(1)
Cluster 7:
Mycobacterium(2)
gastri(1)
Mycobacteriaceae(1)
kansasii(1)
Mycobacteriaceae(1)
Cluster 9:
Hyphomicrobium(2)
facile(2)
Hyphomicrobiaceae(2)
Cluster 10:
Streptomyces(2)
niger(1)
Streptomycetaceae(1)
olivaceiscleroticus(1)
Streptomycetaceae(1)
I also added some junk data to my table so that I could see an extra entry in Cluster 0, separated from the other two... The idea here is that you should be able to see a top level "Cluster" entry and then nested, indented entries for genus, species, family... it shouldn't be hard to extend for deeper trees, either, I hope.
# Sys for stdio stuff
import sys
# re for the re.split -- this can go if you find another way to parse your data
import re
# A global (shame on me) for storing the data we're going to parse from stdin
data = []
# read lines from standard input until it's empty (end-of-file)
for line in sys.stdin:
# Split lines on spaces (gobbling multiple spaces for robustness)
# and trim whitespace off the beginning and end of input (strip)
entry = re.split("\s+", line.strip())
# Throw the array into my global data array, it'll look like this:
# [ "0", "Brucella", "melitensis", "Brucellaceae" ]
# A lot of this code assumes that the first field is an integer, what
# you call "cluster" in your problem description
data.append(entry)
# Sort, first key is expected to be an integer, and we want a numerical
# sort rather than a string sort, so convert to int, then sort by
# each subsequent column. The lamba is a function that returns a tuple
# of keys we care about for each item
data.sort(key=lambda item: (int(item[0]), item[1], item[2], item[3]))
# Our recursive function -- we're basically going to treat "data" as a tree,
# even though it's not.
# parameters:
# start - an integer telling us what line to begin working from so we needn't
# walk the whole tree each time to figure out where we are.
# super - An array that captures where we are in the search. This array
# will have more elements in it as we deepen our traversal of the "tree"
# Initially, it will be []
# In the next ply of the tree, it will be [ '0' ]
# Then something like [ '0', 'Brucella' ] and so on.
# data - The global data structure -- this never mutates after the sort above,
# I could have just used the global directly
def groupedReport(start, super, data):
# Figure out what ply we're on in our depth-first traversal of the tree
depth = len(super)
# Count entries in the super class, starting from "start" index in the array:
count = 0
# For the few records in the data file that match our "super" exactly, we count
# occurrences.
if depth != 0:
for i in range(start, len(data)):
if (data[i][0:depth] == data[start][0:depth]):
count = count + 1
else:
break; # We can stop counting as soon as a match fails,
# because of the way our input data is sorted
else:
count = len(data)
# At depth == 1, we're reporting about clusters -- this is the only piece of
# the algorithm that's not truly abstract, and it's only for presentation
if (depth == 1):
sys.stdout.write("Cluster " + super[0] + ":\n")
elif (depth > 0):
# Every other depth: indent with 4 spaces for every ply of depth, then
# output the unique field we just counted, and its count
sys.stdout.write((' ' * ((depth - 1) * 4)) +
data[start][depth - 1] + '(' + str(count) + ')\n')
# Recursion: we're going to figure out a new depth and a new "super"
# and then call ourselves again. We break out on depth == 4 because
# of one other assumption (I lied before about the abstract thing) I'm
# making about our input data here. This could
# be made more robust/flexible without a lot of work
subsuper = None
substart = start
for i in range(start, start + count):
record = data[i] # The original record from our data
newdepth = depth + 1
if (newdepth > 4): break;
# array splice creates a new copy
newsuper = record[0:newdepth]
if newsuper != subsuper:
# Recursion here!
groupedReport(substart, newsuper, data)
# Track our new "subsuper" for subsequent comparisons
# as we loop through matches
subsuper = newsuper
# Track position in the data for next recursion, so we can start on
# the right line
substart = substart + 1
# First call to groupedReport starts the recursion
groupedReport(0, [], data)
If you make my Python code into a file like "classifier.py", then you can run your input.txt file (or whatever you call it) through it like so:
cat input.txt | python classifier.py
Most of the magic of the recursion, if you care, is implemented using slices of arrays and leans heavily on the ability to compare array slices, as well as the fact that I can order the input data meaningfully with my sort routine. You may want to convert your input data to all-lowercase, if it is possible that case inconsistencies could yield mismatches.
It is easy to do.
create an empty dict {} to store your result, lets call it 'result'
Loop over the data line by line.
Split the line on space to get 4 elements as per your structure, cluster,genus,species,family
Increment counts of genus inside each cluster key when they are found in the current loop, they have to be set to 1 for the first occurence though.
result = { '0': { 'Brucella': 2} ,'1':{'Streptomyces':2}..... }
Code:
my_data = """9 Hyphomicrobium facile Hyphomicrobiaceae
9 Hyphomicrobium facile Hyphomicrobiaceae
7 Mycobacterium kansasii Mycobacteriaceae
7 Mycobacterium gastri Mycobacteriaceae
10 Streptomyces olivaceiscleroticus Streptomycetaceae
10 Streptomyces niger Streptomycetaceae
1 Streptomyces geysiriensis Streptomycetaceae
1 Streptomyces minutiscleroticus Streptomycetaceae
0 Brucella neotomae Brucellaceae
0 Brucella melitensis Brucellaceae
2 Mycobacterium phocaicum Mycobacteriaceae"""
result = {}
for line in my_data.split("\n"):
cluster,genus,species,family = line.split(" ")
result.setdefault(cluster,{}).setdefault(genus,0)
result[cluster][genus] += 1
print(result)
{'10': {'Streptomyces': 2}, '1': {'Streptomyces': 2}, '0': {'Brucella': 2}, '2': {'Mycobacterium': 1}, '7': {'Mycobacterium': 2}, '9': {'Hyphomicrobium': 2}}

Categories