Pytorch different outputs between with transpose - python

Let I have a tensor dimension of (B, N^2, C)
and I reshape it into (B, C, N, N).
I think that I have two choices below
A = torch.rand(5, 100, 20) # Original Tensor
# First Method
B = torch.transpose(2, 1)
B = B.view(5, 20, 10, 10)
# Second Method
C = A.view(5, 20, 10, 10)
Both methods work but the outputs are slightly different and I cannot catch the difference between them.
Thanks

The difference between B and C is that you have used torch.transpose which means you have swapped two axes, this means you have changed the layout of the memory. The view at the end is just a nice interface for you to access your data but it has no effect on the underlying data of your tensor. What it comes down to is a contiguous memory data buffer.
If you take a smaller example, something we can grasp more easily:
>>> A = torch.rand(1, 4, 3)
tensor([[[0.2656, 0.5920, 0.3774],
[0.8447, 0.5984, 0.0614],
[0.5160, 0.8048, 0.6260],
[0.1644, 0.3144, 0.1040]]])
Here swapping axis=1 and axis=2 comes down to a batched transpose (in mathematical terms):
>>> B = A.transpose(2, 1)
tensor([[[0.4543, 0.7447, 0.7814, 0.3444],
[0.9766, 0.2732, 0.4766, 0.0387],
[0.0123, 0.7260, 0.8939, 0.8581]]])
In terms of memory layout A has the following memory arangement:
>>> A.flatten()
tensor([0.4543, 0.9766, 0.0123, 0.7447, 0.2732, 0.7260, 0.7814, 0.4766, 0.8939,
0.3444, 0.0387, 0.8581])
While B has a different layout. By layout I mean memory arrangement, I am not referring to its shape which is irrelevant:
>>> B.flatten()
tensor([0.4543, 0.7447, 0.7814, 0.3444, 0.9766, 0.2732, 0.4766, 0.0387, 0.0123,
0.7260, 0.8939, 0.8581])
As I said reshaping i.e. building a view on top of a tensor doesn't change its memory layout, it's an abstraction level to better manipulate tensors.
So in the end, yes you end up with two different results: C shares the same data as A, while B is a copy and has a different memory layout.

Transposing/permuting and view/reshape are NOT the same!
reshape and view only affect the shape of a tensor, but d not change the underlying order of elements.
In contrast, transpose and permute change the underlying order of elements in the tensor. See this answer, and this one for more details.
Here's an example, with B=1, N=3 and C=2, the first channel has even numbers 0..16, and the second channel has odd numbers 1..17:
A = torch.arange(2*9).view(1,9,2)
tensor([[[ 0, 1],
[ 2, 3],
[ 4, 5],
[ 6, 7],
[ 8, 9],
[10, 11],
[12, 13],
[14, 15],
[16, 17]]])
If you correctly transpose and then reshape, you get the correct split into even and odd channels:
A.transpose(1,2).view(1,2,3,3)
tensor([[[[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]],
[[ 1, 3, 5],
[ 7, 9, 11],
[13, 15, 17]]]])
However, if you only change the shape (i.e., using view or reshape) you incorrectly "mix" the values from the two channels:
A.view(1,2,3,3)
tensor([[[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]]])
Update (Aug 31st, 2022)
Take a look at this simple example:
# original tensor
x = torch.arange(12).view(3,4)
x.data_ptr() # -> 94308398597888
x.stride() # -> (4, 1)
# transpose
x1 = x.transpose(0, 1)
x1.data_ptr() # -> 94308398597888 (same data)
x1.stride() # -> (1, 4) efficient stride representation can handle this
# messing around a bit more:
x1.view(3,4)
# strides cannot cut it anymore - we get an error
RuntimeError: view size is not compatible with input tensor''s size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
# using reshape:
x2 = x1.reshape(3, 4)
x2.data_ptr() # -> 94308399099200 (NOT the same data)
x2.stride() # -> (4, 1)

Related

Numpy convolving along an axis for 2 2D-arrays

I have 2 2D-arrays. I am trying to convolve along the axis 1. np.convolve doesn't provide the axis argument. The answer here, convolves 1 2D-array with a 1D array using np.apply_along_axis. But it cannot be directly applied to my use case. The question here doesn't have an answer.
MWE is as follows.
import numpy as np
a = np.random.randint(0, 5, (2, 5))
"""
a=
array([[4, 2, 0, 4, 3],
[2, 2, 2, 3, 1]])
"""
b = np.random.randint(0, 5, (2, 2))
"""
b=
array([[4, 3],
[4, 0]])
"""
# What I want
c = np.convolve(a, b, axis=1) # axis is not supported as an argument
"""
c=
array([[16, 20, 6, 16, 24, 9],
[ 8, 8, 8, 12, 4, 0]])
"""
I know I can do it using np.fft.fft, but it seems like an unnecessary step to get a simple thing done. Is there a simple way to do this? Thanks.
Why not just do a list comprehension with zip?
>>> np.array([np.convolve(x, y) for x, y in zip(a, b)])
array([[16, 20, 6, 16, 24, 9],
[ 8, 8, 8, 12, 4, 0]])
>>>
Or with scipy.signal.convolve2d:
>>> from scipy.signal import convolve2d
>>> convolve2d(a, b)[[0, 2]]
array([[16, 20, 6, 16, 24, 9],
[ 8, 8, 8, 12, 4, 0]])
>>>
One possibility could be to manually go the way to the Fourier spectrum, and back:
n = np.max([a.shape, b.shape]) + 1
np.abs(np.fft.ifft(np.fft.fft(a, n=n) * np.fft.fft(b, n=n))).astype(int)
# array([[16, 20, 6, 16, 24, 9],
# [ 8, 8, 8, 12, 4, 0]])
Would it be considered too ugly to loop over the orthogonal dimension? That would not add much overhead unless the main dimension is very short. Creating the output array ahead of time ensures that no memory needs to be copied about.
def convolvesecond(a, b):
N1, L1 = a.shape
N2, L2 = b.shape
if N1 != N2:
raise ValueError("Not compatible")
c = np.zeros((N1, L1 + L2 - 1), dtype=a.dtype)
for n in range(N1):
c[n,:] = np.convolve(a[n,:], b[n,:], 'full')
return c
For the generic case (convolving along the k-th axis of a pair of multidimensional arrays), I would resort to a pair of helper functions I always keep on hand to convert multidimensional problems to the basic 2d case:
def semiflatten(x, d=0):
'''SEMIFLATTEN - Permute and reshape an array to convenient matrix form
y, s = SEMIFLATTEN(x, d) permutes and reshapes the arbitrary array X so
that input dimension D (default: 0) becomes the second dimension of the
output, and all other dimensions (if any) are combined into the first
dimension of the output. The output is always 2-D, even if the input is
only 1-D.
If D<0, dimensions are counted from the end.
Return value S can be used to invert the operation using SEMIUNFLATTEN.
This is useful to facilitate looping over arrays with unknown shape.'''
x = np.array(x)
shp = x.shape
ndims = x.ndim
if d<0:
d = ndims + d
perm = list(range(ndims))
perm.pop(d)
perm.append(d)
y = np.transpose(x, perm)
# Y has the original D-th axis last, preceded by the other axes, in order
rest = np.array(shp, int)[perm[:-1]]
y = np.reshape(y, [np.prod(rest), y.shape[-1]])
return y, (d, rest)
def semiunflatten(y, s):
'''SEMIUNFLATTEN - Reverse the operation of SEMIFLATTEN
x = SEMIUNFLATTEN(y, s), where Y, S are as returned from SEMIFLATTEN,
reverses the reshaping and permutation.'''
d, rest = s
x = np.reshape(y, np.append(rest, y.shape[-1]))
perm = list(range(x.ndim))
perm.pop()
perm.insert(d, x.ndim-1)
x = np.transpose(x, perm)
return x
(Note that reshape and transpose do not create copies, so these functions are extremely fast.)
With those, the generic form can be written as:
def convolvealong(a, b, axis=-1):
a, S1 = semiflatten(a, axis)
b, S2 = semiflatten(b, axis)
c = convolvesecond(a, b)
return semiunflatten(c, S1)

How to slice arrays with a percantage of overlapping

I have a set of data like this:
numpy.array([[3, 7],[5, 8],[6, 19],[8, 59],[10, 42],[12, 54], [13, 32], [14, 19], [99, 19]])
which I want to split into number of chunkcs with a percantage of overlapping, for each column separatly... for example for column 1, splitting into 3 chunkcs with %50 overlapping (results in a 2-d array):
[[3, 5, 6, 8,],
[6, 8, 10, 12,],
[10, 12, 13, 14,]]
(ignoring last row which will result in [13, 14, 99] not identical in size as the rest).
I'm trying to make a function that takes the array, number of chunkcs and overlpapping percantage and returns the results.
That's a window function, so use skimage.util.view_as_windows:
from skimage.util import view_as_windows
out = view_as_windows(in_arr[:, 0], window_shape = 4, step = 2)
If you need numpy only, you can use this recipe
For numpy only, quite fast approach is:
def rolling(a, window, step):
shape = ((a.size - window)//step + 1, window)
strides = (step*a.itemsize, a.itemsize)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
And you can call it like so:
rolling(arr[:,0].copy(), 4, 2)
Remark: I've got unexpected outputs for rolling(arr[:,0], 4, 2) so just took a copy instead.

How can I quickly fancy-reorder a flattened "jagged" numpy array

So I have lots of data in a single, flat array that is grouped into irregularly sized chunks. The sizes of these chunks are given in another array. What I need to do is rearrange the chunks based on a third index array (think fancy indexing)
These chunks are always >= 3 long, usually 4, but technically unbounded, so it's not feasible to pad up to a max length and mask. Also, due to technical reasons I only have access to numpy, so nothing like scipy or pandas.
Just to be easier to read, the data in this example is easily grouped. In the real data, the numbers can be anything and do not follow this pattern.
[EDIT] Updated with less confusing data
data = np.array([1,2,3,4, 11,12,13, 21,22,23,24, 31,32,33,34, 41,42,43, 51,52,53,54])
chunkSizes = np.array([4, 3, 4, 4, 3, 4])
newOrder = np.array([0, 5, 4, 5, 2, 1])
The expected output in this case would be
np.array([1,2,3,4, 51,52,53,54, 41,42,43, 51,52,53,54, 21,22,23,24, 11,12,13])
Since the real data can be millions long, I'm hoping for some kind of numpy magic that can do this without python loops.
Approach #1
Here's a vectorized one based on creating a regular array and masking -
def chunk_rearrange(data, chunkSizes, newOrder):
m = chunkSizes[:,None] > np.arange(chunkSizes.max())
d1 = np.empty(m.shape, dtype=data.dtype)
d1[m] = data
return d1[newOrder][m[newOrder]]
Output for given sample -
In [4]: chunk_rearrange(data, chunkSizes, newOrder)
Out[4]: array([0, 0, 0, 0, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 2, 2, 2, 2, 1, 1, 1])
Approach #2
Another vectorized one based on cumsum and with smaller footprint for those very-ragged chunksizes -
def chunk_rearrange_cumsum(data, chunkSizes, newOrder):
# Setup ID array that will hold specific values at those interval starts,
# such that a final cumsum would lead us to the indices which when indexed
# by the input array gives us the re-arranged o/p
idar = np.ones(len(data), dtype=int)
# New chunk lengths
newlens = chunkSizes[newOrder]
# Original chunk intervals
c = np.r_[0,chunkSizes[:-1].cumsum()]
# Indices from original order that form the interval starts in new arrangement
d1 = c[newOrder]
# Starts of chunks in new arrangement where those from d1 are to be assigned
c2 = np.r_[0,newlens[:-1].cumsum()]
# Offset required for the starts in new arrangement for final cumsum to work
diffs = np.diff(d1)+1-np.diff(c2)
idar[c2[1:]] = diffs
idar[0] = d1[0]
# Final cumsum and indexing leads to desired new arrangement
out = data[idar.cumsum()]
return out
You can use np.split to create views into your data array corresponding to the chunkSizes, if you build up the indices with np.cumsum. You can then reorder the views according to the newOrder indices using fancy indexing. This should be reasonably efficient since the data is only copied to the new array when you call np.concatenate on the reordered views:
import numpy as np
data = np.array([0,0,0,0, 1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4, 5,5,5,5])
chunkSizes = np.array([4, 3, 4, 4, 3, 4])
newOrder = np.array([0, 5, 4, 5, 2, 1])
cumIndices = np.cumsum(chunkSizes)
splitArray = np.array(np.split(data, cumIndices[:-1]))
targetArray = np.concatenate(splitArray[newOrder])
# >>> targetArray
# array([0, 0, 0, 0, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 2, 2, 2, 2, 1, 1, 1])

Munging PyTorch's tensor shape from (C, B, H) to (B, C*H)

Given an input tensor of shape (C, B, H) torch.Size([2, 5, 32]) of some neural net layers, where
channels = 2
batch_size = 5
hidden_size = 32
The goal is to flatten the channels and manipulate the input tensor to the shape (B, C*H) torch.Size([5, 2 * 32]), where:
batch_size = 5
hidden_size = 32 * 2
I've tried to do the following:
import torch
t = torch.rand([2, 5, 32])
# Changed from (channels, batch_size, hidden_size)
# -> (batch_size, channels, hidden_size)
t = t.permute(1, 0, 2)
# Reshape using view(), where batch_size is t.size(0)
# and -1 is to flatten the left over values to the other dimension.
z = t.contiguous().view(t.size(0), -1)
print(z.shape)
print(z)
[out]:
torch.Size([5, 64])
tensor([[0.3911, 0.9586, 0.2104, 0.3937, 0.9976, 0.3378, 0.0630, 0.6676, 0.0806,
0.9311, 0.5219, 0.1697, 0.7442, 0.5162, 0.2555, 0.0826, 0.5502, 0.9700,
0.3375, 0.5012, 0.9025, 0.8176, 0.1465, 0.1848, 0.3460, 0.9999, 0.7892,
0.7577, 0.6615, 0.2620, 0.6868, 0.2003, 0.4840, 0.8354, 0.9253, 0.3172,
0.9516, 0.8962, 0.1272, 0.2268, 0.6510, 0.5166, 0.6772, 0.9616, 0.9826,
0.5254, 0.9191, 0.4378, 0.7048, 0.8808, 0.0299, 0.1102, 0.9710, 0.8714,
0.7256, 0.9684, 0.6117, 0.1957, 0.8663, 0.4742, 0.2843, 0.6548, 0.9592,
0.1559],
[0.2333, 0.0858, 0.5284, 0.2965, 0.3863, 0.3370, 0.6940, 0.3387, 0.3513,
0.1022, 0.3731, 0.3575, 0.7095, 0.0053, 0.7024, 0.4091, 0.3289, 0.5808,
0.5640, 0.8847, 0.7584, 0.8878, 0.9873, 0.0525, 0.7731, 0.2501, 0.9926,
0.5226, 0.0925, 0.0300, 0.4176, 0.0456, 0.4643, 0.4497, 0.5920, 0.9519,
0.6647, 0.2379, 0.4927, 0.9666, 0.1675, 0.9887, 0.7741, 0.5668, 0.7376,
0.4452, 0.7449, 0.1298, 0.9065, 0.3561, 0.5813, 0.1439, 0.2115, 0.5874,
0.2038, 0.1066, 0.3843, 0.6179, 0.8321, 0.9428, 0.1067, 0.5045, 0.9324,
0.3326],
[0.6556, 0.1479, 0.9288, 0.9238, 0.1324, 0.0718, 0.6620, 0.2659, 0.7162,
0.7559, 0.7564, 0.2120, 0.3943, 0.9497, 0.7520, 0.8455, 0.4444, 0.4708,
0.8371, 0.6365, 0.3616, 0.0326, 0.1581, 0.4973, 0.6701, 0.9245, 0.8274,
0.3464, 0.7044, 0.5376, 0.0441, 0.5210, 0.8603, 0.7396, 0.2544, 0.3514,
0.5686, 0.3283, 0.7248, 0.4303, 0.9531, 0.5587, 0.8703, 0.1585, 0.9161,
0.9043, 0.9778, 0.4489, 0.9463, 0.8655, 0.5576, 0.1135, 0.1268, 0.3424,
0.1504, 0.2265, 0.1734, 0.1872, 0.3995, 0.1191, 0.0532, 0.6109, 0.1662,
0.6937],
[0.6342, 0.1922, 0.1758, 0.4625, 0.7654, 0.6509, 0.2908, 0.1546, 0.4768,
0.3779, 0.2490, 0.0086, 0.6170, 0.5425, 0.6953, 0.4730, 0.5834, 0.8326,
0.0165, 0.8236, 0.0023, 0.7479, 0.5621, 0.9894, 0.5957, 0.0857, 0.6087,
0.5667, 0.5478, 0.8197, 0.9228, 0.7329, 0.4434, 0.5894, 0.9860, 0.6133,
0.2395, 0.4718, 0.8830, 0.6361, 0.6104, 0.6630, 0.5084, 0.7604, 0.7591,
0.3601, 0.6888, 0.6767, 0.9178, 0.5291, 0.0591, 0.4320, 0.7875, 0.5038,
0.4419, 0.0319, 0.3719, 0.5843, 0.0334, 0.3525, 0.0023, 0.1205, 0.4040,
0.7908],
[0.0989, 0.8436, 0.0425, 0.6247, 0.6091, 0.4778, 0.2692, 0.4785, 0.9217,
0.9604, 0.6355, 0.4686, 0.9414, 0.7722, 0.8013, 0.1660, 0.6578, 0.6414,
0.6814, 0.6212, 0.4124, 0.7102, 0.7416, 0.7404, 0.9842, 0.6542, 0.0106,
0.3826, 0.5529, 0.8079, 0.9855, 0.3012, 0.2341, 0.9353, 0.6597, 0.7177,
0.8214, 0.1438, 0.4729, 0.6747, 0.9310, 0.4167, 0.3689, 0.8464, 0.9395,
0.9407, 0.8419, 0.5486, 0.1786, 0.1423, 0.9900, 0.9365, 0.3996, 0.1862,
0.6232, 0.7547, 0.7779, 0.4767, 0.6218, 0.9079, 0.6153, 0.1488, 0.5960,
0.4015]])
Although the permute() + view() achieve the desired output, are there other ways to perform the same operation? Is there a better way that can directly rehape without first permutating the order of the shape?
Let's look "behind the curtain" and see why one must have both permute/transpose and view in order to go from a C-B-H to B-C*H:
Elements of tensors are stored as a long contiguous vector in memory. For instance, if you look at a 2-3-4 tensor it has 24 elements stored at 24 consecutive places in memory. This tensor also has a "header" that tells pytorch to treat these 24 values as a 2-by-3-by-4 tensor. This is done by storing not only the size of the tensor, but also "strides": what is the "stride" one need to jump in order to get to the next element along each dimension. In our example, size=(2,3,4) and strides=(12, 4, 1) (you can check this out yourself, and you can see more about it here).
Now, if you only want to change the size to 2-(3*4) you do not need to move any item of the tensor in memory, only to update the "header" of the tensor. By setting size=(2, 12) and strides=(12, 1) you are done!
Alternatively, if you want to "transpose" the tensor to 3-2-4 that's a bit more tricky, but you can still do that by manipulating the strides. Setting size=(3, 2, 4) and strides=(4, 12, 1) gives you exactly what you want without moving any of the real tensor elements in memory.
However, once you manipulated the strides, you cannot trivially change the size of the tensor - because now you will need to have two different "stride" values for one (or more) dimensions. This is why you must call contiguous() at this point.
Summary
If you want to move from shape (C, B, H) to (B, C*H) you must have permute, contiguous and view operations, otherwise you just scramble the entries of your tensor.
A small example with 2-3-4 tensor:
a =
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
If you just change the view of the tensor you get
a.view(3,8)
array([[ 0, 1, 2, 3, 4, 5, 6, 7],
[ 8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]])
Which is not what you want!
You need to have
a.permute(1,0,2).contiguous().view(3, 8)
array([[ 0, 1, 2, 3, 12, 13, 14, 15],
[ 4, 5, 6, 7, 16, 17, 18, 19],
[ 8, 9, 10, 11, 20, 21, 22, 23]])
Einops allows doing such element rearrangements in one (readable) line
from einops import rearrange
import torch
t = torch.rand([2, 5, 32])
y = rearrange(t, 'c b h -> b (c h)')
y.shape # prints torch.Size([5, 64])

NumPy: A General Vectorized Method to Apply a Function Returning a Matrix to Each Row of a Matrix

I am looking for a vectorized method to apply a function returning a 2-dimensional array to each row of a 2-dimensional array and produce a 3-dimensional array.
More specifically, I have a function that takes a vector of length p and returns a 2-dimensional array (m by n). The following is a stylized version of my function:
import numpy as np
def test_func(x, m, n):
# this function is just an example and does not do anything useful.
# but, the dimensions of input and output is what I want to convey.
np.random.seed(x.sum())
return np.random.randint(5, size=(m, n))
I have a t by p 2-dimensional input data:
t = 5
p = 6
input_data = np.arange(t*p).reshape(t, p)
input_data
Out[403]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29]])
I want to apply test_func to each row of the input_data. Since test_func returns a matrix, I expect to create a 3-dimensional (t by m by n) array. I can produce my desired result with the following code:
output_data = np.array([test_func(x, m=3, n=2) for x in input_data])
output_data
Out[405]:
array([[[0, 4],
[0, 4],
[3, 3],
[1, 0]],
[[1, 0],
[1, 0],
[4, 1],
[2, 4]],
[[3, 3],
[3, 0],
[1, 4],
[0, 2]],
[[2, 4],
[2, 1],
[3, 2],
[3, 1]],
[[3, 4],
[4, 3],
[0, 3],
[3, 0]]])
However, this code does not seem to be the most optimal code. It has an explicit for which reduces the speed and it uses an intermediary list which unnecessarily allocates extra memory. So, I like to find a vectorized solution. My best guess was the following code, but it does not work.
output = np.apply_along_axis(test_func, m=3, n=2, axis=1, arr=input_data)
Traceback (most recent call last):
File "<ipython-input-406-5bef44da348f>", line 1, in <module>
output = np.apply_along_axis(test_func, m=3, n=2, axis=1, arr=input_data)
File "C:\Anaconda\lib\site-packages\numpy\lib\shape_base.py", line 117, in apply_along_axis
outarr[tuple(i.tolist())] = res
ValueError: could not broadcast input array from shape (3,2) into shape (3)
Would you please suggest an efficient way to this problem.
UPDATE
Below is the actual function that I want to apply. It performs Multidimensional Classical Scaling. The objective of the question was not to optimize the internal workings of the function, but to find a generalize method for vectorizing the function apply. But, in the spirit of full disclosure I put the actual function here. Note that this function only works if p == m*(m-1)/2
def mds_classical_scaling(v, m, n):
# create a symmetric distance matrix from the elements in vector v
D = np.zeros((m, m))
D[np.triu_indices(4, k=1)] = v
D = (D + D.T)
# Transform the symmetric matrix
A = -0.5 * (D**2)
# Create centering matrix
H = np.eye(m) - np.ones((m, m))/m
# Doubly center A and store in B
B = H*A*H
# B should be positive definite otherwise the function
# would not work.
mu, V = eig(B)
#index of largest eigen values
ndx = (-mu).argsort()
# calculate the point configuration from largest eigen values
# and corresponding eigen vectors
Mu1 = diag(mu[ndx][:n])
V1 = V[:, ndx[:n]]
X = V1*sqrt(Mu1)
return X
Any performance boost I get from vectorization is negligible comparing to the actual function. The main reason was learning:)
ali_m's comment is spot-on: for serious speed gains, you should be more specific about what the function does.
That being said, if you still want to use np.apply_along_axis to get a (possibly) small speed-boost, then consider (after rereading that function's docstring) that you can easily
wrap your function to produce 1D arrays,
use np.apply_along_axis with that wrapper and
reshape the resulting array:
def test_func_wrapper(*args, **kwargs):
return test_func(*args, **kwargs).ravel()
output = np.apply_along_axis(test_func_wrapper, m=3, n=2, axis=1, arr=input_data)
np.allclose(output.reshape(5,3, -1), output_data)
# output: True
Note that this is a generic way to speed up such loops. You'll probably get better performance if you use functionality more specific to the actual problem.

Categories