Latitude and Longitude Lying in a Rectangular Area - python

While 2 corner points were given of an area, rectangular in this case, I was trying to find whether a custom given coordinates are going to be within that rectangle or not. However, the magic is the Earth being a sphere. I believe, even though it looks like a rectangle, it is really not as it bends down from the sides. So, my question is that how to find whether a given Latitude/Longitude is lying within another created Rectangle or not?
I have written a custom Python script to get the lower & upper corners of the rectangle in latitude and longitude already, which returns values as following:
(['35.805949', '25.552255'], ['42.278201', '44.817695'])
What is the algorithm lying behind this idea?

The projection geometry simply denies the earth's curvature. This is trivial plan geometry. Let you corners be (w, n) and (e, s). To find whether (x, y) is in the rectangle, use a trivial bounds check:
if w <= x <= e and
s <= y <= n:
You may need to adjust the comparisons if you use some other coordinate system; I'm using the standard Cartesian mapping.

Related

Implementing collisions using the Separating axis theorem and Pygame [duplicate]

This is what I am currently doing:
Creating 4 axis that are perpendicular to 4 edges of 2 rectangles. Since they are rectangles I do not need to generate an axis (normal) per edge.
I then loop over my 4 axes.
So for each axis:
I get the projection of every corner of a rectangle on to the axis.
There are 2 lists (arrays) containing those projections. One for each rectangle.
I then get the dot product of each projection and the axis. This returns a scalar value
that can be used to to determine the min and max.
Now the 2 lists contain scalars and not vectors. I sort the lists so I can easily select the min and max values. If the min of box B >= the max of box A OR the max of box B <= the min of box A then there is no collision on that axis and no collision between the objects.
At this point the function finishes and the loop breaks.
If those conditions are never met for all the axis then we have a collision
I hope this was the correct way of doing it.
The python code itself can be found here http://pastebin.com/vNFP3mAb
Also:
http://www.gamedev.net/page/reference/index.html/_/reference/programming/game-programming/collision-detection/2d-rotated-rectangle-collision-r2604
The problem i was having is that the code above does not work. It always detects a a collision even where there is not a collision. What i typed out is exactly what the code is doing. If I am missing any steps or just not understanding how SAT works please let me know.
In general it is necessary to carry out the steps outlined in the Question to determine if the rectangles "collide" (intersect), noting as the OP does that we can break (with a conclusion of non-intersection) as soon as a separating axis is found.
There are a couple of simple ways to "optimize" in the sense of providing chances for earlier exits. The practical value of these depends on the distribution of rectangles being checked, but both are easily incorporated in the existing framework.
(1) Bounding Circle Check
One quick way to prove non-intersection is by showing the bounding circles of the two rectangles do not intersect. The bounding circle of a rectangle shares its center, the midpoint of either diagonal, and has diameter equal to the length of either diagonal. If the distance between the two centers exceeds the sum of the two circles' radii, then the circles do not intersect. Thus the rectangles also cannot intersect. If the purpose was to find an axis of separation, we haven't accomplished that yet. However if we only want to know if the rectangles "collide", this allows an early exit.
(2) Vertex of one rectangle inside the other
The projection of a vertex of one rectangle on axes parallel to the other rectangle's edges provides enough information to detect when that vertex is inside the other rectangle. This check is especially easy when the latter rectangle has been translated and unrotated to the origin (with edges parallel to the ordinary axes). If it happens that a vertex of one rectangle is inside the other, the rectangles obviously intersect. Of course this is a sufficient condition for intersection, not a necessary one. But it allows for an early exit with a conclusion of intersection (and of course without finding an axis of separation because none will exist).
I see two things wrong. First, the projection should simply be the dot product of a vertex with the axis. What you're doing is way too complicated. Second, the way you get your axis is incorrect. You write:
Axis1 = [ -(A_TR[0] - A_TL[0]),
A_TR[1] - A_TL[1] ]
Where it should read:
Axis1 = [ -(A_TR[1] - A_TL[1]),
A_TR[0] - A_TL[0] ]
The difference is coordinates does give you a vector, but to get the perpendicular you need to exchange the x and y values and negate one of them.
Hope that helps.
EDIT Found another bug
In this code:
if not ( B_Scalars[0] <= A_Scalars[3] or B_Scalars[3] >= A_Scalars[0] ):
#no overlap so no collision
return 0
That should read:
if not ( B_Scalars[3] <= A_Scalars[0] or A_Scalars[3] <= B_Scalars[0] ):
Sort gives you a list increasing in value. So [1,2,3,4] and [10,11,12,13] do not overlap because the minimum of the later is greater than the maximum of the former. The second comparison is for when the input sets are swapped.

Point in Spherical Polygon using Python [duplicate]

Say I have an arbitrary set of latitude and longitude pairs representing points on some simple, closed curve. In Cartesian space I could easily calculate the area enclosed by such a curve using Green's Theorem. What is the analogous approach to calculating the area on the surface of a sphere? I guess what I am after is (even some approximation of) the algorithm behind Matlab's areaint function.
There several ways to do this.
1) Integrate the contributions from latitudinal strips. Here the area of each strip will be (Rcos(A)(B1-B0))(RdA), where A is the latitude, B1 and B0 are the starting and ending longitudes, and all angles are in radians.
2) Break the surface into spherical triangles, and calculate the area using Girard's Theorem, and add these up.
3) As suggested here by James Schek, in GIS work they use an area preserving projection onto a flat space and calculate the area in there.
From the description of your data, in sounds like the first method might be the easiest. (Of course, there may be other easier methods I don't know of.)
Edit – comparing these two methods:
On first inspection, it may seem that the spherical triangle approach is easiest, but, in general, this is not the case. The problem is that one not only needs to break the region up into triangles, but into spherical triangles, that is, triangles whose sides are great circle arcs. For example, latitudinal boundaries don't qualify, so these boundaries need to be broken up into edges that better approximate great circle arcs. And this becomes more difficult to do for arbitrary edges where the great circles require specific combinations of spherical angles. Consider, for example, how one would break up a middle band around a sphere, say all the area between lat 0 and 45deg into spherical triangles.
In the end, if one is to do this properly with similar errors for each method, method 2 will give fewer triangles, but they will be harder to determine. Method 1 gives more strips, but they are trivial to determine. Therefore, I suggest method 1 as the better approach.
I rewrote the MATLAB's "areaint" function in java, which has exactly the same result.
"areaint" calculates the "suface per unit", so I multiplied the answer by Earth's Surface Area (5.10072e14 sq m).
private double area(ArrayList<Double> lats,ArrayList<Double> lons)
{
double sum=0;
double prevcolat=0;
double prevaz=0;
double colat0=0;
double az0=0;
for (int i=0;i<lats.size();i++)
{
double colat=2*Math.atan2(Math.sqrt(Math.pow(Math.sin(lats.get(i)*Math.PI/180/2), 2)+ Math.cos(lats.get(i)*Math.PI/180)*Math.pow(Math.sin(lons.get(i)*Math.PI/180/2), 2)),Math.sqrt(1- Math.pow(Math.sin(lats.get(i)*Math.PI/180/2), 2)- Math.cos(lats.get(i)*Math.PI/180)*Math.pow(Math.sin(lons.get(i)*Math.PI/180/2), 2)));
double az=0;
if (lats.get(i)>=90)
{
az=0;
}
else if (lats.get(i)<=-90)
{
az=Math.PI;
}
else
{
az=Math.atan2(Math.cos(lats.get(i)*Math.PI/180) * Math.sin(lons.get(i)*Math.PI/180),Math.sin(lats.get(i)*Math.PI/180))% (2*Math.PI);
}
if(i==0)
{
colat0=colat;
az0=az;
}
if(i>0 && i<lats.size())
{
sum=sum+(1-Math.cos(prevcolat + (colat-prevcolat)/2))*Math.PI*((Math.abs(az-prevaz)/Math.PI)-2*Math.ceil(((Math.abs(az-prevaz)/Math.PI)-1)/2))* Math.signum(az-prevaz);
}
prevcolat=colat;
prevaz=az;
}
sum=sum+(1-Math.cos(prevcolat + (colat0-prevcolat)/2))*(az0-prevaz);
return 5.10072E14* Math.min(Math.abs(sum)/4/Math.PI,1-Math.abs(sum)/4/Math.PI);
}
You mention "geography" in one of your tags so I can only assume you are after the area of a polygon on the surface of a geoid. Normally, this is done using a projected coordinate system rather than a geographic coordinate system (i.e. lon/lat). If you were to do it in lon/lat, then I would assume the unit-of-measure returned would be percent of sphere surface.
If you want to do this with a more "GIS" flavor, then you need to select an unit-of-measure for your area and find an appropriate projection that preserves area (not all do). Since you are talking about calculating an arbitrary polygon, I would use something like a Lambert Azimuthal Equal Area projection. Set the origin/center of the projection to be the center of your polygon, project the polygon to the new coordinate system, then calculate the area using standard planar techniques.
If you needed to do many polygons in a geographic area, there are likely other projections that will work (or will be close enough). UTM, for example, is an excellent approximation if all of your polygons are clustered around a single meridian.
I am not sure if any of this has anything to do with how Matlab's areaint function works.
I don't know anything about Matlab's function, but here we go. Consider splitting your spherical polygon into spherical triangles, say by drawing diagonals from a vertex. The surface area of a spherical triangle is given by
R^2 * ( A + B + C - \pi)
where R is the radius of the sphere, and A, B, and C are the interior angles of the triangle (in radians). The quantity in the parentheses is known as the "spherical excess".
Your n-sided polygon will be split into n-2 triangles. Summing over all the triangles, extracting the common factor of R^2, and bringing all of the \pi together, the area of your polygon is
R^2 * ( S - (n-2)\pi )
where S is the angle sum of your polygon. The quantity in parentheses is again the spherical excess of the polygon.
[edit] This is true whether or not the polygon is convex. All that matters is that it can be dissected into triangles.
You can determine the angles from a bit of vector math. Suppose you have three vertices A,B,C and are interested in the angle at B. We must therefore find two tangent vectors (their magnitudes are irrelevant) to the sphere from point B along the great circle segments (the polygon edges). Let's work it out for BA. The great circle lies in the plane defined by OA and OB, where O is the center of the sphere, so it should be perpendicular to the normal vector OA x OB. It should also be perpendicular to OB since it's tangent there. Such a vector is therefore given by OB x (OA x OB). You can use the right-hand rule to verify that this is in the appropriate direction. Note also that this simplifies to OA * (OB.OB) - OB * (OB.OA) = OA * |OB| - OB * (OB.OA).
You can then use the good ol' dot product to find the angle between sides: BA'.BC' = |BA'|*|BC'|*cos(B), where BA' and BC' are the tangent vectors from B along sides to A and C.
[edited to be clear that these are tangent vectors, not literal between the points]
Here is a Python 3 implementation, loosely inspired by the above answers:
def polygon_area(lats, lons, algorithm = 0, radius = 6378137):
"""
Computes area of spherical polygon, assuming spherical Earth.
Returns result in ratio of the sphere's area if the radius is specified.
Otherwise, in the units of provided radius.
lats and lons are in degrees.
"""
from numpy import arctan2, cos, sin, sqrt, pi, power, append, diff, deg2rad
lats = np.deg2rad(lats)
lons = np.deg2rad(lons)
# Line integral based on Green's Theorem, assumes spherical Earth
#close polygon
if lats[0]!=lats[-1]:
lats = append(lats, lats[0])
lons = append(lons, lons[0])
#colatitudes relative to (0,0)
a = sin(lats/2)**2 + cos(lats)* sin(lons/2)**2
colat = 2*arctan2( sqrt(a), sqrt(1-a) )
#azimuths relative to (0,0)
az = arctan2(cos(lats) * sin(lons), sin(lats)) % (2*pi)
# Calculate diffs
# daz = diff(az) % (2*pi)
daz = diff(az)
daz = (daz + pi) % (2 * pi) - pi
deltas=diff(colat)/2
colat=colat[0:-1]+deltas
# Perform integral
integrands = (1-cos(colat)) * daz
# Integrate
area = abs(sum(integrands))/(4*pi)
area = min(area,1-area)
if radius is not None: #return in units of radius
return area * 4*pi*radius**2
else: #return in ratio of sphere total area
return area
Please find a somewhat more explicit version (and with many more references and TODOs...) here.
You could also have a look at this code of the spherical_geometry package: Here and here. It does provide two different methods for calculating the area of a spherical polygon.

Area of polygon with list of (x,y) coordinates

It might seem a bit odd that I am asking for python code to calculate the area of a polygon with a list of (x,y) coordinates given that there have been solutions offered in stackoverflow in the past. However, I have found that all the solutions provided are sensitive to the order of the list of (x,y) coordinates given. For example, with the code below to find an area of a polygon:
def area(p):
return 0.5 * abs(sum(x0*y1 - x1*y0
for ((x0, y0), (x1, y1)) in segments(p)))
def segments(p):
return zip(p, p[1:] + [p[0]])
coordinates1 = [(0.5,0.5), (1.5,0.5), (0.5,1.5), (1.5,1.5)]
coordinates2 = [(0.5,0.5), (1.5,0.5), (1.5,1.5), (0.5,1.5)]
print "coordinates1", area(coordinates1)
print "coordinates2", area(coordinates2)
This returns
coordinates1 0.0
coordinates2 1.0 #This is the correct area
For the same set of coordinates but with a different order. How would I correct this in order to get the area of the non-intersecting full polygon with a list of random (x,y) coordinates that I want to make into a non-intersecting polygon?
EDIT: I realise now that there can be multiple non-intersecting polygons from a set of coodinates. Basically I am using scipy.spatial.Voronoi to create Voronoi cells and I wish to calculate the area of the cells once I've fed the coordinates to the scipy Voronoi function - unfortunately the function doesn't always output the coordinates in the order that will allow me to calculate the correct area.
Several non-intersecting polygons can be created from a random list of coordinates (depending on its order), and each polygon will have a different area, so it is essential that you specify the order of the coordinates to build the polygon (see attached picture for an example).
The Voronoi cells are convex, so that the polygon is unambiguously defined.
You can compute the convex hull of the points, but as there are no reflex vertices to be removed, the procedure is simpler.
1) sort the points by increasing abscissa; in case of ties, sort on ordinates (this is a lexicographical ordering);
2) consider the straight line from the first point to the last and split the point sequence in a left and a right subsequence (with respect to the line);
3) the requested polygon is the concatenation of the left subsequence and the right one, reversed.

3D rotations to connect balls and cylinders

I've been tasked with writing a python based plugin for a graph drawing program that generates an STL model of a graph. A graph being an object made up of vertices and edges, where a vertex is represented by a 3D ball (a tessellated icosahedron), and an edge is represented with a cylinder that connects with two balls at either end. The end result of the 3D model is that it will get dumped out to an STL file for 3D printing. I'm able to generate the 3D models for the balls and cylinders without any issues, but I'm having some issues generating the overall model, and getting the balls and cylinders to connect properly.
My original idea was to create tessellated icosahedrons at the origin, then translate them out to the positions of the vertices. This works fine. I then, for each edge, I would create a cylinder at the origin, rotate it to the correct angle so that it points in the correct direction, then translate it to the midpoint between the two vertices so that the ends of the cylinders are embedded in the icosahedrons. This is where things are going wrong. I'm having some difficulties getting the rotations correct. To calculate the rotations, I'm doing the following:
First, I find the angle between the two points as follows (where source and target are both vertices in the graph, belonging to the edge that I'm currently processing):
deltaX = source.x - target.x
deltaY = source.y - target.y
deltaZ = source.z - target.z
xyAngle = math.atan2(deltaX, deltaY)
xzAngle = math.atan2(deltaX, deltaZ)
yzAngle = math.atan2(deltaY, deltaZ)
The angles being calculated seem reasonable, and as far as I can tell, do actually represent the angle between the vertices. For example, if I have a vertex at (1, 1, 0) and another vertex at (3, 3, 0), the angle edge connecting them does show up as a 45 degree angle between the two vertices. (That, or -135 degrees, depending which vertex is the source and which is the target).
Once I have the angles calculated, I create a cylinder and rotate it by the angles that have been calculated, like so, using some other classes that I've created:
c = cylinder()
c.createCylinder(edgeThickness, edgeLength)
c.rotateX(-yzAngle)
c.rotateY(xzAngle)
c.rotateZ(-xyAngle)
c.translate(edgePosition.x, edgePosition.y, edgePosition.z)
(Where edgePosition is the midpoint between the two vertices in the graph, edgeThickness is the radius of the cylinder being created, and edgeLength is the distance between the two vertices).
As mentioned, its the rotating of the cylinders that doesn't work as expected. It seems to do the correct rotation on the x/y plane, but as soon as an edge has vertices that differ in all three components (x, y, and z), the rotation fails. Here's an example of a graph that differs in the x, and y components, but not in the z component:
And here's the resulting STL file, as seen in Makerware (which is used to send the 3D models to the 3D printer):
(The extra cylinder looking bit in the bottom left is something I've currently left in for testing purposes - a cylinder that points in the direction of the z axis, located at the origin).
If I take that same graph and move the middle vertex out in the z axis, so now all the edges involve angles in all three axis, I get a result something like the following:
As show in the app:
The resulting STL file, as show in Makerware:
...and that same model as viewed from the side:
As you can see, the cylinders definitely aren't meeting up with the balls like I thought they would. My question is this: Is my approach to doing this flawed, or is it some small but critical mistake that I'm making somewhere in my rotations? I'm pretty sure it isn't a problem with the rotation functions themselves, as I've been able to independently verify that they work as expected. I also tried creating a rotate function that takes in a yaw, pitch, and roll and does all three at once, and it seemed to generate the same result, like so:
c.rotateYawPitchRoll(xzAngle, -yzAngle, -xyAngle)
So... anyone have any ideas on what I might be doing wrong?
UPDATE: As joojaa pointed out, it was a combination of calculating the correct angles as well as the order that they were applied. In order to get things working, I first calculate the rotation on the x axis, as follows:
zyAngle = math.atan2(deltaVector.z, deltaVector.y)
where deltaVector is the difference between the target and source vectors. This rotation is not yet applied though! The next step is to calculate the rotation on the y axis, as follows:
angle = vector.angleBetweenVectors(vector(target.x - source.x, target.y - source.y, target.z - source.z), vector(target.x - source.x, target.y - source.y, 0.0))
Once both rotations are calculated, they are then applied... in the reverse order! First, the x, then the y:
c.rotateY(angle)
c.rotateX(-zyAngle) #... where c is a cylinder object
There still seems to be a few bugs, but this seems to at least work for a simple test case.
Rotation happens in successive order, so the angles affect each other. It is not possible to use a Euler model to rotate them at once. This is why you can not just calculate the rotations based on the first static situation. Just imagine turning a cube so that it is standing on its corner upright. Yes the first rotation is 45 but the second is not since the cube is already turned by that time (draw a each step of the sequence and see what happens). Space rotations aren't trivial.
So you need to rotate one angle then re calculate the second angle and so forth. This is also why your first rotation works right. You only need 2 rotations unless your interested in making sure the rotation around the shaft has a certain direction.
I would suggest you use axis angles or matrices instead to do this. Mainly because in axis angles this is trivial the angle is the dot between the along tube start and end vectors and the axis is the cross between those 2. You can then convert those to Euler angles if you need. But probably you can just use the matrix directly. For ideas on how conversions and how the rotation could directly be calculated see: transformations.py by Christoph Gohlke. Also see the accompanying c source.
I think i need to expand this answer a bit
There is a really easy way out for this question that sidesteps all your and many other persons problems. The answer is do not use Euler angle rotation. Ive used a lot of brainpower to try to explain Euler rotations to problems that are ultimately solved more easily without Euler rotations. To justify i will leave just one reason for this if you want more think up of some more answers.
The reason most to use Euler rotation sequences is that you probably don't understand Euler angles. There are in fact only a handful of situations where they are good. No self respecting programmer uses Euler rotations to solve this issue. What you do is you use vector math instead.
So you have the direction vector from the source to target which is usually calculated:
along = normalize(target-source)
this is simply one of your matrix rows (or column notation is up to model maker), the one that corresponds to your cylinders original direction (the rows are just x y z w), then you need another vector perpendicular to this one. Choose a arbitrary vector like up (or left if your along is pointing close to up). cross product this up vector by your along for the second row direction. and finally put your source as the last row with 1 in the last column. Done fully formed affine matrix describing the cylinders prition. Much easier to understand since you can draw the vectors.
There are shorter ways but this one is easy to understand.

Separating Axis Theorem and Python

This is what I am currently doing:
Creating 4 axis that are perpendicular to 4 edges of 2 rectangles. Since they are rectangles I do not need to generate an axis (normal) per edge.
I then loop over my 4 axes.
So for each axis:
I get the projection of every corner of a rectangle on to the axis.
There are 2 lists (arrays) containing those projections. One for each rectangle.
I then get the dot product of each projection and the axis. This returns a scalar value
that can be used to to determine the min and max.
Now the 2 lists contain scalars and not vectors. I sort the lists so I can easily select the min and max values. If the min of box B >= the max of box A OR the max of box B <= the min of box A then there is no collision on that axis and no collision between the objects.
At this point the function finishes and the loop breaks.
If those conditions are never met for all the axis then we have a collision
I hope this was the correct way of doing it.
The python code itself can be found here http://pastebin.com/vNFP3mAb
Also:
http://www.gamedev.net/page/reference/index.html/_/reference/programming/game-programming/collision-detection/2d-rotated-rectangle-collision-r2604
The problem i was having is that the code above does not work. It always detects a a collision even where there is not a collision. What i typed out is exactly what the code is doing. If I am missing any steps or just not understanding how SAT works please let me know.
In general it is necessary to carry out the steps outlined in the Question to determine if the rectangles "collide" (intersect), noting as the OP does that we can break (with a conclusion of non-intersection) as soon as a separating axis is found.
There are a couple of simple ways to "optimize" in the sense of providing chances for earlier exits. The practical value of these depends on the distribution of rectangles being checked, but both are easily incorporated in the existing framework.
(1) Bounding Circle Check
One quick way to prove non-intersection is by showing the bounding circles of the two rectangles do not intersect. The bounding circle of a rectangle shares its center, the midpoint of either diagonal, and has diameter equal to the length of either diagonal. If the distance between the two centers exceeds the sum of the two circles' radii, then the circles do not intersect. Thus the rectangles also cannot intersect. If the purpose was to find an axis of separation, we haven't accomplished that yet. However if we only want to know if the rectangles "collide", this allows an early exit.
(2) Vertex of one rectangle inside the other
The projection of a vertex of one rectangle on axes parallel to the other rectangle's edges provides enough information to detect when that vertex is inside the other rectangle. This check is especially easy when the latter rectangle has been translated and unrotated to the origin (with edges parallel to the ordinary axes). If it happens that a vertex of one rectangle is inside the other, the rectangles obviously intersect. Of course this is a sufficient condition for intersection, not a necessary one. But it allows for an early exit with a conclusion of intersection (and of course without finding an axis of separation because none will exist).
I see two things wrong. First, the projection should simply be the dot product of a vertex with the axis. What you're doing is way too complicated. Second, the way you get your axis is incorrect. You write:
Axis1 = [ -(A_TR[0] - A_TL[0]),
A_TR[1] - A_TL[1] ]
Where it should read:
Axis1 = [ -(A_TR[1] - A_TL[1]),
A_TR[0] - A_TL[0] ]
The difference is coordinates does give you a vector, but to get the perpendicular you need to exchange the x and y values and negate one of them.
Hope that helps.
EDIT Found another bug
In this code:
if not ( B_Scalars[0] <= A_Scalars[3] or B_Scalars[3] >= A_Scalars[0] ):
#no overlap so no collision
return 0
That should read:
if not ( B_Scalars[3] <= A_Scalars[0] or A_Scalars[3] <= B_Scalars[0] ):
Sort gives you a list increasing in value. So [1,2,3,4] and [10,11,12,13] do not overlap because the minimum of the later is greater than the maximum of the former. The second comparison is for when the input sets are swapped.

Categories