Getting an Error When Trying to Solve Systems of ODEs [duplicate] - python

This question already has an answer here:
Returning function values as float Python 3.6.1
(1 answer)
Closed 1 year ago.
Here is my code:
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
def VectorField(w, t, p):
"""
Defines the differential equations to find a in terms of eta.
Arguments:
w : vector of the state variables:
w = [eta, a]
t : time
p : vector of the parameters:
p = [H_0, m, r, d]
"""
eta, a = w
H_0, m, r, d = p
# Create f = (eta', a'):
f = [a, H_0 * (m*a^(-1) + r*a^(-2) + d* a^2)^(1/2)]
return f
# Parameter values
H_0 = 0.000000000000000002184057032
m = 0.315
r = 0.0000926
d = 0.685
# Initial Conditions
a0 = eta_0 = 0
# ODE solver parameters
abserr = 1.0e-8
relerr = 1.0e-6
stoptime = 10.0
numpoints = 250
#x axis values
t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
# Pack up the parameters and initial conditions:
initials = [eta_0, a0]
p = [H_0, m, r, d]
# Call the ODE solver.
wsol = odeint(VectorField, initials, t, args=(p,), atol=abserr, rtol=relerr)
However, when I run the code, I can the error message
TypeError: ufunc 'bitwise_xor' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
The code points to my vector f. I am not sure what I did wrong when declaring this vector f. Can anyone tell me what I did incorrectly? How can I get rid of this error? Thanks

This one trips me up sometimes when I go back and forth between languages.
This line, for example:
f = [a, H_0 * (m*a^(-1) + r*a^(-2) + d* a^2)^(1/2)]
should be
f = [a, H_0 * (m*a**(-1) + r*a**(-2) + d* a**2)**(1/2)]
Because ** is the power operator, not ^.

Related

solve_ivp discards imaginary part of complex solution

I am computing a solution to the free basis expansion of the dirac equation for electron-positron pairproduction. For this i need to solve a system of equations that looks like this:
Equation for pairproduction, from Mocken at al.
EDIT: This has been solved by passing y0 as complex type into the solver. As is stated in this issue: https://github.com/scipy/scipy/issues/8453 I would definitely consider this a bug but it seems like it has gone under the rock for at least 4 years
for this i am using SciPy's solve_ivp integrator in the following way:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from scipy.integrate import solve_ivp
import scipy.constants as constants
#Impulse
px, py = 0 , 0
#physics constants
e = constants.e
m = constants.m_e # electronmass
c = constants.c
hbar = constants.hbar
#relativistic energy
E = np.sqrt(m**2 *c**4 + (px**2+py**2) * c**2) # E_p
#adiabatic parameter
xi = 1
#Parameter of the system
w = 0.840 #frequency in 1/m_e
N = 8 # amount of amplitudes in window
T = 2* np.pi/w
#unit system
c = 1
hbar = 1
m = 1
#strength of electric field
E_0 = xi*m*c*w/e
print(E_0)
#vectorpotential
A = lambda t,F: -E_0/w *np.sin(t)*F
def linearFenster2(t):
conditions = [t <=0, (t/w>=0) and (t/w <= T/2), (t/w >= T/2) and (t/w<=T*(N+1/2)), (t/w>=T*(N+1/2)) and (t/w<=T*(N+1)), t/w>=T*(N+1)]
funcs = [lambda t: 0, lambda t: 1/np.pi *t, lambda t: 1, lambda t: 1-w/np.pi * (t/w-T*(N+1/2)), lambda t: 0]
return np.piecewise(t,conditions,funcs)
#Coefficient functions
nu = lambda t: -1j/hbar *e*A(w*t,linearFenster2(w*t)) *np.exp(2*1j/hbar * E*t) *(px*py*c**2 /(E*(E+m*c**2)) + 1j*(1- c**2 *py**2/(E*(E+m*c**2))))
kappa = lambda t: 1j*e*A(t,linearFenster2(w*t))* c*py/(E * hbar)
#System to solve
def System(t, y, nu, kappa):
df = kappa(t) *y[0] + nu(t) * y[1]
dg = -np.conjugate(nu(t)) * y[0] + np.conjugate(kappa(t))*y[1]
return np.array([df,dg], dtype=np.cdouble)
def solver(tmin, tmax,teval=None,f0=0,g0=1):
'''solves the system.
#tmin: starttime
#tmax: endtime
#f0: starting percentage of already present electrons of positive energy usually 0
#g0: starting percentage of already present electrons of negative energy, usually 1, therefore full vaccuum
'''
y0=[f0,g0]
tspan = np.array([tmin, tmax])
koeff = np.array([nu,kappa])
sol = solve_ivp(System,tspan,y0,t_eval= teval,args=koeff)
return sol
#Plotting of windowfunction
amount = 10**2
t = np.arange(0, T*(N+1), 1/amount)
vlinearFenster2 = np.array([linearFenster2(w*a) for a in t ], dtype = float)
fig3, ax3 = plt.subplots(1,1,figsize=[24,8])
ax3.plot(t,E_0/w * vlinearFenster2)
ax3.plot(t,A(w*t,vlinearFenster2))
ax3.plot(t,-E_0 /w * vlinearFenster2)
ax3.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax3.set_xlabel("t in s")
ax3.grid(which = 'both')
plt.show()
sol = solver(0, 70,teval = t)
ts= sol.t
f=sol.y[0]
fsquared = 2* np.absolute(f)**2
plt.plot(ts,fsquared)
plt.show()
The plot for the window function looks like this (and is correct)
window function
however the plot for the solution looks like this:
Plot of pairproduction probability
This is not correct based on the papers graphs (and further testing using mathematica instead).
When running the line 'sol = solver(..)' it says:
\numpy\core\_asarray.py:102: ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)
I simply do not know why solve_ivp discard the imaginary part. Its absolutely necessary.
Can someone enlighten me who knows more or sees the mistake?
According to the documentation, the y0 passed to solve_ivp must be of type complex in order for the integration to be over the complex domain. A robust way of ensuring this is to add the following to your code:
def solver(tmin, tmax,teval=None,f0=0,g0=1):
'''solves the system.
#tmin: starttime
#tmax: endtime
#f0: starting percentage of already present electrons of positive energy usually 0
#g0: starting percentage of already present electrons of negative energy, usually 1, therefore full vaccuum
'''
f0 = complex(f0) # <-- added
g0 = complex(g0) # <-- added
y0=[f0,g0]
tspan = np.array([tmin, tmax])
koeff = np.array([nu,kappa])
sol = solve_ivp(System,tspan,y0,t_eval= teval,args=koeff)
return sol
I tried the above, and it indeed made the warning disappear. However, the result of the integration seems to be the same regardless.

Plotting a System of Two Differential Eqns Python

I am having some trouble with a model I want to analyze. I am trying to plot two differential equations however I am very new to doing this and am not getting it to work. Any help is appreciated
#Polyaneuploid cell development during cancer
#two eqns
#Fixed Points:
#13.37526
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
def modelC(C,t):
λc = 0.0601
K = 2000
α = 1 * (10**-4)
ν = 1 * (10**-6)
λp = 0.1
γ = 2
def modelP(P,t):
λc = 0.0601
K = 2000
α = 1 * (10**-4)
ν = 1 * (10**-6)
λp = 0.1
γ = 2
#returning odes
dPdt = ((λp))*P(1-(C+(γ*P))/K)+ (α*C)
dCdt = ((λc)*C)(1-(C+(γ*P))/K)-(α*C) + (ν*P)
return dPdt, dCdt
#initial conditions
C0= 256
P0 = 0
#time points
t = np.linspace(0,30)
#solve odes
P = odeint(modelP,t,P0, args = (C0,))
C = odeint(modelC,t,C0, args= (P0,))
#P = odeint(modelP, P0 , t)
#P = P[:, 2]
#C = odeint(modelC, C0 , t)
#C = C[:, 2]
#plot results
plt.plot(t,np.log10(C0))
plt.plot(t,np.log10(P0))
plt.xlabel('time in days')
plt.ylabel('x(t)')
plt.show()
This is just what I have so far, and currently I am getting this error: ValueError: diff requires input that is at least one dimensional
Any tips on how to get the graphs to show?
You need to put your initial conditions in a list like so:
initial_conditions = [C0, P0]
P = odeint(modelP,t,initial_conditions)
you still have some error in your P function where try to access C which is not defined in the local scope of your function neither passed as an argument.
UPDATED
def modelP(P,t,C):
λc = 0.0601
K = 2000
α = 1 * (10**-4)
ν = 1 * (10**-6)
λp = 0.1
γ = 2
#returning odes
dPdt = ((λp))*P(1-(C+(γ*P))/K)+ (α*C)
dCdt = ((λc)*C)(1-(C+(γ*P))/K)-(α*C) + (ν*P)
return dPdt, dCdt
#initial conditions
C0= 256
P0 = 0
Pconds = [P0]
#time points
t = np.linspace(0,30)
#solve odes
P = odeint(modelP,t, Pconds, args=(C0,))
The solver deals with flat arrays with no inherent meaning in the components. You need to add that meaning, unpack the input vector into the state object, at the start of the model function, and remove that meaning, reduce the state to a flat array or list, at the end of the model function.
Here this is simple, the state consists of 2 scalars. Thus a structure for the model function is
def model(X,t):
P, C = X
....
return dPdt, dCdt
Then integrate as
X = odeint(model,(P0,C0),t)
P,C = X.T
plt.plot(t,P)

Error using scicpy.integrate.odeint and sympy symbols

I'm trying to solve the following system: d²i/dt² + R'(i)/L di/dt + 1/LC i(t) = 1/L dE/dt as a set of coupled first order differential equations:
di/dt = k
dk/dt = 1/L dE/dt - R'(i)/L k - 1/LC i(t)
Here is the code I'm using:
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from scipy.integrate import odeint
#Define model: x = [i , k]
def RLC(x , t):
i = sp.Symbol('i')
t = sp.Symbol('t')
#Data:
E = sp.ln(t + 1)
dE_dt = E.diff(t)
R1 = 1000 #1 kOhm
R2 = 100 #100 Ohm
R = R1 * i + R2 * i**3
dR_di = R.diff(i)
i = x[0]
k = x[1]
L = 10e-3 #10 mHy
C = 1.56e-6 #1.56 uF
#Model
di_dt = k
dk_dt = 1/L * dE_dt - dR_di/L * k - 1/(L*C) * i
dx_dt = np.array([di_dt , dk_dt])
return dx_dt
#init cond:
x0 = np.array([0 , 0])
#time points:
time = np.linspace(0, 30, 1000)
#solve ODE:
x = odeint(RLC, x0, time)
i = x[: , 0]
However, I get the following error: TypeError: Cannot cast array data from dtype('O') to dtype('float64') according to the rule 'safe'
So, I don't know if sympy and odeint don't work well together. Or maybe is it a problem because I defined t as sp.Symbol?
When you differentiate a function, you get a function back. So you need to evaluate it at a point in order to get a number. To evaluate a sympy expression, you could use .subs() but I prefer .replace() which feels more powerful (at least for me).
You must try and make every single variable have its own name in order to avoid confusion. For example, you replace the float input t with a sympy Symbol from the very beginning, thus losing the value of t. The variables x and i are also repeated in the outer scope which is not good practice if they mean different things.
The following should avoid confusion and hopefully produce something that you were expecting:
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from scipy.integrate import odeint
# Define model: x = [i , k]
def RLC(x, t):
# define constants first
i = x[0]
k = x[1]
L = 10e-3 # 10 mHy
C = 1.56e-6 # 1.56 uF
R1 = 1000 # 1 kOhm
R2 = 100 # 100 Ohm
# define symbols (used to find derivatives)
i_symbol = sp.Symbol('i')
t_symbol = sp.Symbol('t')
# Data (differentiate and evaluate)
E = sp.ln(t_symbol + 1)
dE_dt = E.diff(t_symbol).replace(t_symbol, t)
R = R1 * i_symbol + R2 * i_symbol ** 3
dR_di = R.diff(i_symbol).replace(i_symbol, i)
# nothing should contain symbols from here onwards
# variables can however contain sympy expressions
# Model (convert sympy expressions to floats)
di_dt = float(k)
dk_dt = float(1 / L * dE_dt - dR_di / L * k - 1 / (L * C) * i)
dx_dt = np.array([di_dt, dk_dt])
return dx_dt
# init cond:
x0 = np.array([0, 0])
# time points:
time = np.linspace(0, 30, 1000)
# solve ODE:
solution = odeint(RLC, x0, time)
result = solution[:, 0]
print(result)
Just something to note: the value i = x[0] seemed to sit very close to 0 throughout each iteration. This means dR_di stayed basically at 1000 the whole time. I'm not familiar with odeint or your specific ODE, but hopefully this phenomenon is expected and isn't a problem.

fmin_slsqp returns initial guess finding the minimum of cubic spline

I am trying to find the minimum of a natural cubic spline. I have written the following code to find the natural cubic spline. (I have been given test data and have confirmed this method is correct.) Now I can not figure out how to find the minimum of this function.
This is the data
xdata = np.linspace(0.25, 2, 8)
ydata = 10**(-12) * np.array([1,2,1,2,3,1,1,2])
This is the function
import scipy as sp
import numpy as np
import math
from numpy.linalg import inv
from scipy.optimize import fmin_slsqp
from scipy.optimize import minimize, rosen, rosen_der
def phi(x, xd,yd):
n = len(xd)
h = np.array(xd[1:n] - xd[0:n-1])
f = np.divide(yd[1:n] - yd[0:(n-1)],h)
q = [0]*(n-2)
for i in range(n-2):
q[i] = 3*(f[i+1] - f[i])
A = np.zeros(((n-2),(n-2)))
#define A for j=0
A[0,0] = 2*(h[0] + h[1])
A[0,1] = h[1]
#define A for j = n-2
A[-1,-2] = h[-2]
A[-1,-1] = 2*(h[-2] + h[-1])
#define A for in the middle
for j in range(1,(n-3)):
A[j,j-1] = h[j]
A[j,j] = 2*(h[j] + h[j+1])
A[j,j+1] = h[j+1]
Ainv = inv(A)
B = Ainv.dot(q)
b = (n)*[0]
b[1:(n-1)] = B
# now we find a, b, c and d
a = [0]*(n-1)
c = [0]*(n-1)
d = [0]*(n-1)
s = [0]*(n-1)
for r in range(n-1):
a[r] = 1/(3*h[r]) * (b[r + 1] - b[r])
c[r] = f[r] - h[r]*((2*b[r] + b[r+1])/3)
d[r] = yd[r]
#solution 1 start
for m in range(n-1):
if xd[m] <= x <= xd[m+1]:
s = a[m]*(x - xd[m])**3 + b[m]*(x-xd[m])**2 + c[m]*(x-xd[m]) + d[m]
return(s)
#solution 1 end
I want to find the minimum on the domain of my xdata, so a fmin didn't work as you can not define bounds there. I tried both fmin_slsqp and minimize. They are not compatible with the phi function I wrote so I rewrote phi(x, xd,yd) and added an extra variable such that phi is phi(x, xd,yd, m). M indicates in which subfunction of the spline we are calculating a solution (from x_m to x_m+1). In the code we replaced #solution 1 by the following
# solution 2 start
return(a[m]*(x - xd[m])**3 + b[m]*(x-xd[m])**2 + c[m]*(x-xd[m]) + d[m])
# solution 2 end
To find the minimum in a domain x_m to x_(m+1) we use the following code: (we use an instance where m=0, so x from 0.25 to 0.5. The initial guess is 0.3)
fmin_slsqp(phi, x0 = 0.3, bounds=([(0.25,0.5)]), args=(xdata, ydata, 0))
What I would then do (I know it's crude), is iterate this with a for loop to find the minimum on all subdomains and then take the overall minimum. However, the function fmin_slsqp constantly returns the initial guess as the minimum. So there is something wrong, which I do not know how to fix. If you could help me this would be greatly appreciated. Thanks for reading this far.
When I plot your function phi and the data you feed in, I see that its range is of the order of 1e-12. However, fmin_slsqp is unable to handle that level of precision and fails to find any change in your objective.
The solution I propose is scaling the return of your objective by the same order of precision like so:
return(s*1e12)
Then you get good results.
>>> sol = fmin_slsqp(phi, x0=0.3, bounds=([(0.25, 0.5)]), args=(xdata, ydata))
>>> print(sol)
Optimization terminated successfully. (Exit mode 0)
Current function value: 1.0
Iterations: 2
Function evaluations: 6
Gradient evaluations: 2
[ 0.25]

Finding the roots of an equation numerically returns the initial guess

I am trying to find the root of a cubic equation using fsolve. This is my code:
from scipy import *
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
import numpy as np
#These are all parameters
g = 5.61
gamma = 6.45
kappa = 6.45
J = 6.45
rs = 10.0
m = 5.0*10**(-11)
wm = 2*3.14*23.4
r2 = np.linspace(0, 0.02, 1000)
deltaW = 0
A = 1j*g**2*(kappa + 1j*deltaW)*r2*r2/(m*wm**2)
B = J**2 + (1j*deltaW - gamma)*(1j*deltaW + kappa)
C = A + B
D = abs(C)*r2 - J*np.sqrt(2*kappa)*rs
def func(x):
D = abs(C)*r2 - J*np.sqrt(2*kappa)*rs
return D
x0 = fsolve(func, 0.0)
print x0
plt.plot(r2, D)
plt.show()
I can see from the plot that there is at least one r2 that makes D zero. However, the return value x0 I get from fsolve is always the guess value I set.
Can anyone tell me why this is happening and how to fix it?
You are passing to fsolve a function that isn't a function at all: it doesn't do anything with the inputs x. Yet, fsolve needs that, because it will test a series of values and each time check the return value from the function call with that test value. In your case, func(x) never changes, so fsolve stops with an error message of
The iteration is not making good progress, as measured by the improvement from the last ten iterations.
You could see that message if you would add full_output=True in the call to fsolve.
To solve it, define your function like this:
def func(x):
A = 1j*g**2*(kappa + 1j*deltaW)*x*x/(m*wm**2)
B = J**2 + (1j*deltaW - gamma)*(1j*deltaW + kappa)
C = A + B
D = abs(C)*x - J*np.sqrt(2*kappa)*rs
return D

Categories