I solve the motion in gravitational field around the sun with scipy and mathplotlib and have a problem. My solution is not correct. It is not like in example. Formulas that I used.
from scipy.integrate import odeint
import scipy.constants as constants
import numpy as np
import matplotlib.pyplot as plt
M = 1.989 * (10 ** 30)
G = constants.G
alpha = 30
alpha0 = (alpha / 180) * np.pi
v00 = 0.7
v0 = v00 * 1000
def dqdt(q, t):
x = q[0]
y = q[2]
ax = - G * M * (x / ((x ** 2 + y ** 2) ** 1.5))
ay = - G * M * (y / ((x ** 2 + y ** 2) ** 1.5))
return [q[1], ax, q[3], ay]
vx0 = v0 * np.cos(alpha0)
vy0 = v0 * np.sin(alpha0)
x0 = -150 * (10 ** 11)
y0 = 0 * (10 ** 11)
q0 = [x0, vx0, y0, vy0]
N = 1000000
t = np.linspace(0.0, 100000000000.0, N)
pos = odeint(dqdt, q0, t)
x1 = pos[:, 0]
y1 = pos[:, 2]
plt.plot(x1, y1, 0, 0, 'ro')
plt.ylabel('y')
plt.xlabel('x')
plt.grid(True)
plt.show()
How can I fix this?
Maybe you can tell me solution with another method for example with Euler's formula or with using other library.
I will be very greatful if you help me.
Related
I'm trying to reproduce a 2D vector map with components
v = 100/a * exp(-1/a^2 * ((x+0.55)^2+y^2))(-y,x) - 100/a * exp(-1/a^2 * ((x-0.55)^2+y^2))(-y,x)
and here are my codes. It did not give the map I want (see attached vector map). Could someone please help me with it?
import numpy as np
import matplotlib.pyplot as plt
import math
grid_resolution = 25
grid_size = 2*grid_resolution+1
a = 0.2
x = np.linspace(-1,1,grid_size)
y = np.linspace(-1,1,grid_size)
X,Y = np.meshgrid(x, y)
vx = np.zeros((grid_size,grid_size))
vy = np.zeros((grid_size,grid_size))
for i in range(0,grid_size):
for j in range(0,grid_size):
x0 = x[j]
y0 = y[i]
xx = (x0 + 0.55) ** 2 + y0 ** 2
yy = (x0 - 0.55) ** 2 + y0 ** 2
expf1 = math.exp(-xx / (a ** 2))
expf2 = math.exp(-yy / (a ** 2))
vx[i,j] = 100 / a * (-expf1 + expf2) * y0
vy[i,j] = 100 / a * (expf1 - expf2) * x0
fig, ax = plt.subplots()
ax.quiver(X, Y, vx, vy)
ax.set_aspect('equal')
plt.show()
In the last passage, when you compute vx[i,j] and vy[i,j], you are computing vector field components in (x0, y0), while you should compute it in the current point, so (x0 ± 0.55, y0). Moreover, you should change the sign of vx and vy in order to draw a vector field like the one you linked.
import numpy as np
import matplotlib.pyplot as plt
import math
grid_resolution = 25
grid_size = 2*grid_resolution + 1
a = 0.2
x = np.linspace(-1, 1, grid_size)
y = np.linspace(-1, 1, grid_size)
X, Y = np.meshgrid(x, y)
vx = np.zeros((grid_size, grid_size))
vy = np.zeros((grid_size, grid_size))
for i in range(0, grid_size):
for j in range(0, grid_size):
x0 = x[j]
y0 = y[i]
xx = (x0 + 0.55)**2 + y0**2
yy = (x0 - 0.55)**2 + y0**2
expf1 = math.exp(-xx/(a**2))
expf2 = math.exp(-yy/(a**2))
vx[i, j] = -100/a*(-expf1 + expf2)*y0
if x0 > 0:
vy[i, j] = -100/a*(expf1 - expf2)*(x0 - 0.55)
else:
vy[i, j] = -100/a*(expf1 - expf2)*(x0 + 0.55)
fig, ax = plt.subplots()
ax.quiver(X,Y,vx,vy)
ax.set_aspect('equal')
plt.show()
I'm trying to simulate an exoplanet transit and to determine its orbital characteristics with curve fitting. However, the intersection area between two circles needs to distinguish two cases: if the center of the smallest circle is in the biggest or not. This is a problem for scipy with the function curve_fit, calling an array in my function cacl_aire. The function transit simulates the smallest disc's evolution with time.
Here's my code:
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
import xlrd
dt = 0.1
Vx = 0.08
Vy = 0
X0 = -5
Y0 = 0
R = 2
r = 0.7
X = X0
Y = Y0
doc = xlrd.open_workbook("transit data.xlsx")
feuille_1 = doc.sheet_by_index(0)
mag = [feuille_1.cell_value(rowx=k, colx=4) for k in range(115)]
T = [feuille_1.cell_value(rowx=k, colx=3) for k in range(115)]
def calc_aire(r, x, y):
D2 = x * x + y * y
if D2 >= (r + R)**2:
return 0
d = (r**2 - R**2 + D2) / (2 * (D2**0.5))
d2 = D2**0.5 - d
if abs(d) >= r:
return min([r * r * np.pi, R * R * np.pi])
H = (r * r - d * d)**0.5
As = np.arccos(d / r) * r * r - d * H
As2 = R * R * np.arccos(d2 / R) - d2 * H
return As + As2
def transit(t, r, X0, Y0, Vx, Vy):
return -calc_aire(r, X0 + Vx * t, Y0 + Vy * t)
best_vals = curve_fit(transit, T, mag)[0]
print('best_vals: {}'.format(best_vals))
plt.figure()
plt.plot(T, mag)
plt.draw()
I have the following error :
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() with the line 28 :
if D2 >= (r + R)**2:
Here is my database:
https://drive.google.com/file/d/1SP12rrHGjjpHfKBQ0l3nVMJDIRCPlkuf/view?usp=sharing
I don't see any trick to solve my problem.
I need to draw a circle that's not perfect, I mean at some points on the circle the radius needs to change (be greater or lower) in order to cause the desired deformation.
This image for instance shows a circle with 1 single deformation:
The number of the deformations is random and the positions also.
I am using the code below to draw a normal circle :
import numpy as np
import matplotlib.pyplot as plt
theta = np.linspace(0, 2*np.pi, 200)
radius = 0.4
a = radius * np.cos(theta)
b = radius * np.sin(theta)
figure, axes = plt.subplots(1)
axes.plot(a, b)
axes.set_aspect(1)
plt.show()
Do you have any ideas how can I achieve this?
Making the radius depend on theta, we could have a function f such that:
When further than 2 steps away from an angle theta1: f(t) = 1
At 1 and 2 steps away f(1) = f(2) = 1
At theta1 there is a deformation such that f(0) = k, for some k
At 0 and 2, the tangent to the deformation should be zero
For negative t, we can use f on the absolute value
If f would be a polynomial, it could be of degree 4, so f = a*t**4 + b*t**3 + c*t**2 + d*t + e. The symbolic math library, sympy, can find suitable values for these parameters with the given constraints.
from sympy import Eq, solve
from sympy.abc import a, b, c, d, e, t, k
f = a * t ** 4 + b * t ** 3 + c * t ** 2 + d * t + e
eq1 = Eq(f.subs(t, 0), k)
eq2 = Eq(f.subs(t, 1), 1)
eq3 = Eq(f.subs(t, 2), 1)
eq4 = Eq(f.diff(t).subs(t, 0), 0)
eq5 = Eq(f.diff(t).subs(t, 2), 0)
sol = solve([eq1, eq2, eq3, eq4, eq5], (a, b, c, d, e))
This generates (after some rewriting), the following expression for f:
k + (2 * t ** 2 - 9 * t + 11) * t ** 2 * (1 - k) / 4
Now, use this function to draw the deformed circle:
import matplotlib.pyplot as plt
import numpy as np
theta = np.linspace(0, 2 * np.pi)
k = 0.8
theta1 = 80 * np.pi / 180 # a deformation at theta 80 degrees
alpha = 36 * np.pi / 180 # have a special point every 36 degrees (10 on the circle)
th = theta - theta1 # the difference between the angles, still needs to be careful to make this difference symmetrical to zero
t = np.abs(np.where(th < np.pi, th, th - 2 * np.pi)) / alpha # use absolute value and let alpha represent a step of 1
r = np.where(t > 2, 1, k + (2 * t ** 2 - 9 * t + 11) * t ** 2 * (1 - k) / 4) # the deformed radius
plt.plot(np.cos(theta), np.sin(theta), ':r')
plt.plot(r * np.cos(theta), r * np.sin(theta), '-b')
plt.fill(r * np.cos(theta), r * np.sin(theta), color='blue', alpha=0.2)
for i in range(-5, 5):
plt.plot(np.cos(theta1 + i * alpha), np.sin(theta1 + i * alpha), 'xk')
plt.axis('equal')
plt.show()
Below is my code, I'm supposed to use the electric field equation and the given variables to create a density plot and surface plot of the equation. I'm getting "invalid dimensions for image data" probably because the function E takes multiple variables and is trying to display them all as multiple dimensions. I know the issue is that I have to turn E into an array so that the density plot can be displayed, but I cannot figure out how to do so. Please help.
import numpy as np
from numpy import array,empty,linspace,exp,cos,sqrt,pi
import matplotlib.pyplot as plt
lam = 500 #Nanometers
x = linspace(-10*lam,10*lam,10)
z = linspace(-20*lam,20*lam,10)
w0 = lam
E0 = 5
def E(E0,w0,x,z,lam):
E = np.zeros((len(x),len(z)))
for i in z:
for j in x:
E = ((E0 * w0) / w(z,w0,zR(w0,lam)))
E = E * exp((-r(x)**2) / (w(z,w0,zR(w0,lam)))**2)
E = E * cos((2 * pi / lam) * (z + (r(x)**2 / (2 * Rz(z,zR,lam)))))
return E
def r(x):
r = sqrt(x**2)
return r
def w(z,w0,lam):
w = w0 * sqrt(1 + (z / zR(w0,lam))**2)
return w
def Rz(z,w0,lam):
Rz = z * (1 + (zR(w0,lam) / z)**2)
return Rz
def zR(w0,lam):
zR = pi * lam
return zR
p = E(E0,w0,x,z,lam)
plt.imshow(p)
It took me way too much time and thinking but I finally figured it out after searching for similar examples of codes for similar problems. The correct code looks like:
import numpy as np
from numpy import array,empty,linspace,exp,cos,sqrt,pi
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
lam = 500*10**-9 #Nanometers
x1 = linspace(-10*lam,10*lam,100)
z1 = linspace(-20*lam,20*lam,100)
[x,y] = np.meshgrid(x1,z1)
w0 = lam
E0 = 5
r = sqrt(x**2)
zR = pi * lam
w = w0 * sqrt(1 + (y / zR)**2)
Rz = y * (1 + (zR / y)**2)
E = (E0 * w0) / w
E = E * exp((-r**2 / w**2))
E = E * cos((2 * pi / lam) * (y + (r**2 / (2 * Rz))))
def field(x,y):
lam = 500*10**-9
k = (5 * lam) / lam * sqrt(1 + (y / (pi*lam))**2)
k *= exp(((-sqrt(x**2)**2 / (lam * sqrt(1 + (y / pi * lam)**2))**2)))
k *= cos((2 / lam) * (y + ((sqrt(x**2)**2 / (2 * y * (1 + (pi * lam / y)**2))))))
return k
#Density Plot
f = field(x,y)
plt.imshow(f)
plt.show()
#Surface Plot
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x,y,E,rstride=1,cstride=1)
plt.show
I want to "animate" a circle rolling over the sin graph, I made a code where the circle moves rapidly down a straight line, now I want the same but the acceleration will be changing.
My previous code:
import numpy as np
import matplotlib.pyplot as plt
theta = np.arange(0, np.pi * 2, (0.01 * np.pi))
x = np.arange(-50, 1, 1)
y = x - 7
plt.figure()
for t in np.arange(0, 4, 0.1):
plt.plot(x, y)
xc = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.cos(theta))
yc = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.sin(theta))
plt.plot(xc, yc, 'r')
xp = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.cos(np.pi * t))
yp = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.sin(np.pi * t))
plt.plot(xp, yp, 'bo')
plt.pause(0.01)
plt.cla()
plt.show()
You can do this by numerically integrating:
dt = 0.01
lst_x = []
lst_y = []
t = 0
while t < 10: #for instance
t += dt
a = get_acceleration(function, x)
x += v * dt + 0.5 * a * dt * dt
v += a * dt
y = get_position(fuction, x)
lst_x.append(x)
lst_y.append(y)
This is assuming the ball never leaves your slope! If it does, you'll also have to integrate in y in a similar way as done in x!!
Where your acceleration is going to be equal to g * cos(slope).