Scipy odeint. Gravitational motion - python

I solve the motion in gravitational field around the sun with scipy and mathplotlib and have a problem. My solution is not correct. It is not like in example. Formulas that I used.
from scipy.integrate import odeint
import scipy.constants as constants
import numpy as np
import matplotlib.pyplot as plt
M = 1.989 * (10 ** 30)
G = constants.G
alpha = 30
alpha0 = (alpha / 180) * np.pi
v00 = 0.7
v0 = v00 * 1000
def dqdt(q, t):
x = q[0]
y = q[2]
ax = - G * M * (x / ((x ** 2 + y ** 2) ** 1.5))
ay = - G * M * (y / ((x ** 2 + y ** 2) ** 1.5))
return [q[1], ax, q[3], ay]
vx0 = v0 * np.cos(alpha0)
vy0 = v0 * np.sin(alpha0)
x0 = -150 * (10 ** 11)
y0 = 0 * (10 ** 11)
q0 = [x0, vx0, y0, vy0]
N = 1000000
t = np.linspace(0.0, 100000000000.0, N)
pos = odeint(dqdt, q0, t)
x1 = pos[:, 0]
y1 = pos[:, 2]
plt.plot(x1, y1, 0, 0, 'ro')
plt.ylabel('y')
plt.xlabel('x')
plt.grid(True)
plt.show()
How can I fix this?
Maybe you can tell me solution with another method for example with Euler's formula or with using other library.
I will be very greatful if you help me.

Related

Plotting a vector field using quiver

I'm trying to reproduce a 2D vector map with components
v = 100/a * exp(-1/a^2 * ((x+0.55)^2+y^2))(-y,x) - 100/a * exp(-1/a^2 * ((x-0.55)^2+y^2))(-y,x)
and here are my codes. It did not give the map I want (see attached vector map). Could someone please help me with it?
import numpy as np
import matplotlib.pyplot as plt
import math
grid_resolution = 25
grid_size = 2*grid_resolution+1
a = 0.2
x = np.linspace(-1,1,grid_size)
y = np.linspace(-1,1,grid_size)
X,Y = np.meshgrid(x, y)
vx = np.zeros((grid_size,grid_size))
vy = np.zeros((grid_size,grid_size))
for i in range(0,grid_size):
for j in range(0,grid_size):
x0 = x[j]
y0 = y[i]
xx = (x0 + 0.55) ** 2 + y0 ** 2
yy = (x0 - 0.55) ** 2 + y0 ** 2
expf1 = math.exp(-xx / (a ** 2))
expf2 = math.exp(-yy / (a ** 2))
vx[i,j] = 100 / a * (-expf1 + expf2) * y0
vy[i,j] = 100 / a * (expf1 - expf2) * x0
fig, ax = plt.subplots()
ax.quiver(X, Y, vx, vy)
ax.set_aspect('equal')
plt.show()
In the last passage, when you compute vx[i,j] and vy[i,j], you are computing vector field components in (x0, y0), while you should compute it in the current point, so (x0 ± 0.55, y0). Moreover, you should change the sign of vx and vy in order to draw a vector field like the one you linked.
import numpy as np
import matplotlib.pyplot as plt
import math
grid_resolution = 25
grid_size = 2*grid_resolution + 1
a = 0.2
x = np.linspace(-1, 1, grid_size)
y = np.linspace(-1, 1, grid_size)
X, Y = np.meshgrid(x, y)
vx = np.zeros((grid_size, grid_size))
vy = np.zeros((grid_size, grid_size))
for i in range(0, grid_size):
for j in range(0, grid_size):
x0 = x[j]
y0 = y[i]
xx = (x0 + 0.55)**2 + y0**2
yy = (x0 - 0.55)**2 + y0**2
expf1 = math.exp(-xx/(a**2))
expf2 = math.exp(-yy/(a**2))
vx[i, j] = -100/a*(-expf1 + expf2)*y0
if x0 > 0:
vy[i, j] = -100/a*(expf1 - expf2)*(x0 - 0.55)
else:
vy[i, j] = -100/a*(expf1 - expf2)*(x0 + 0.55)
fig, ax = plt.subplots()
ax.quiver(X,Y,vx,vy)
ax.set_aspect('equal')
plt.show()

Fitting curve with conditions

I'm trying to simulate an exoplanet transit and to determine its orbital characteristics with curve fitting. However, the intersection area between two circles needs to distinguish two cases: if the center of the smallest circle is in the biggest or not. This is a problem for scipy with the function curve_fit, calling an array in my function cacl_aire. The function transit simulates the smallest disc's evolution with time.
Here's my code:
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
import xlrd
dt = 0.1
Vx = 0.08
Vy = 0
X0 = -5
Y0 = 0
R = 2
r = 0.7
X = X0
Y = Y0
doc = xlrd.open_workbook("transit data.xlsx")
feuille_1 = doc.sheet_by_index(0)
mag = [feuille_1.cell_value(rowx=k, colx=4) for k in range(115)]
T = [feuille_1.cell_value(rowx=k, colx=3) for k in range(115)]
def calc_aire(r, x, y):
D2 = x * x + y * y
if D2 >= (r + R)**2:
return 0
d = (r**2 - R**2 + D2) / (2 * (D2**0.5))
d2 = D2**0.5 - d
if abs(d) >= r:
return min([r * r * np.pi, R * R * np.pi])
H = (r * r - d * d)**0.5
As = np.arccos(d / r) * r * r - d * H
As2 = R * R * np.arccos(d2 / R) - d2 * H
return As + As2
def transit(t, r, X0, Y0, Vx, Vy):
return -calc_aire(r, X0 + Vx * t, Y0 + Vy * t)
best_vals = curve_fit(transit, T, mag)[0]
print('best_vals: {}'.format(best_vals))
plt.figure()
plt.plot(T, mag)
plt.draw()
I have the following error :
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() with the line 28 :
if D2 >= (r + R)**2:
Here is my database:
https://drive.google.com/file/d/1SP12rrHGjjpHfKBQ0l3nVMJDIRCPlkuf/view?usp=sharing
I don't see any trick to solve my problem.

matplotlib : How can I draw a circle with random x deformations?

I need to draw a circle that's not perfect, I mean at some points on the circle the radius needs to change (be greater or lower) in order to cause the desired deformation.
This image for instance shows a circle with 1 single deformation:
The number of the deformations is random and the positions also.
I am using the code below to draw a normal circle :
import numpy as np
import matplotlib.pyplot as plt
theta = np.linspace(0, 2*np.pi, 200)
radius = 0.4
a = radius * np.cos(theta)
b = radius * np.sin(theta)
figure, axes = plt.subplots(1)
axes.plot(a, b)
axes.set_aspect(1)
plt.show()
Do you have any ideas how can I achieve this?
Making the radius depend on theta, we could have a function f such that:
When further than 2 steps away from an angle theta1: f(t) = 1
At 1 and 2 steps away f(1) = f(2) = 1
At theta1 there is a deformation such that f(0) = k, for some k
At 0 and 2, the tangent to the deformation should be zero
For negative t, we can use f on the absolute value
If f would be a polynomial, it could be of degree 4, so f = a*t**4 + b*t**3 + c*t**2 + d*t + e. The symbolic math library, sympy, can find suitable values for these parameters with the given constraints.
from sympy import Eq, solve
from sympy.abc import a, b, c, d, e, t, k
f = a * t ** 4 + b * t ** 3 + c * t ** 2 + d * t + e
eq1 = Eq(f.subs(t, 0), k)
eq2 = Eq(f.subs(t, 1), 1)
eq3 = Eq(f.subs(t, 2), 1)
eq4 = Eq(f.diff(t).subs(t, 0), 0)
eq5 = Eq(f.diff(t).subs(t, 2), 0)
sol = solve([eq1, eq2, eq3, eq4, eq5], (a, b, c, d, e))
This generates (after some rewriting), the following expression for f:
k + (2 * t ** 2 - 9 * t + 11) * t ** 2 * (1 - k) / 4
Now, use this function to draw the deformed circle:
import matplotlib.pyplot as plt
import numpy as np
theta = np.linspace(0, 2 * np.pi)
k = 0.8
theta1 = 80 * np.pi / 180 # a deformation at theta 80 degrees
alpha = 36 * np.pi / 180 # have a special point every 36 degrees (10 on the circle)
th = theta - theta1 # the difference between the angles, still needs to be careful to make this difference symmetrical to zero
t = np.abs(np.where(th < np.pi, th, th - 2 * np.pi)) / alpha # use absolute value and let alpha represent a step of 1
r = np.where(t > 2, 1, k + (2 * t ** 2 - 9 * t + 11) * t ** 2 * (1 - k) / 4) # the deformed radius
plt.plot(np.cos(theta), np.sin(theta), ':r')
plt.plot(r * np.cos(theta), r * np.sin(theta), '-b')
plt.fill(r * np.cos(theta), r * np.sin(theta), color='blue', alpha=0.2)
for i in range(-5, 5):
plt.plot(np.cos(theta1 + i * alpha), np.sin(theta1 + i * alpha), 'xk')
plt.axis('equal')
plt.show()

Using functions to create Electric Field array for 2d Density Plot and 3d Surface Plot

Below is my code, I'm supposed to use the electric field equation and the given variables to create a density plot and surface plot of the equation. I'm getting "invalid dimensions for image data" probably because the function E takes multiple variables and is trying to display them all as multiple dimensions. I know the issue is that I have to turn E into an array so that the density plot can be displayed, but I cannot figure out how to do so. Please help.
import numpy as np
from numpy import array,empty,linspace,exp,cos,sqrt,pi
import matplotlib.pyplot as plt
lam = 500 #Nanometers
x = linspace(-10*lam,10*lam,10)
z = linspace(-20*lam,20*lam,10)
w0 = lam
E0 = 5
def E(E0,w0,x,z,lam):
E = np.zeros((len(x),len(z)))
for i in z:
for j in x:
E = ((E0 * w0) / w(z,w0,zR(w0,lam)))
E = E * exp((-r(x)**2) / (w(z,w0,zR(w0,lam)))**2)
E = E * cos((2 * pi / lam) * (z + (r(x)**2 / (2 * Rz(z,zR,lam)))))
return E
def r(x):
r = sqrt(x**2)
return r
def w(z,w0,lam):
w = w0 * sqrt(1 + (z / zR(w0,lam))**2)
return w
def Rz(z,w0,lam):
Rz = z * (1 + (zR(w0,lam) / z)**2)
return Rz
def zR(w0,lam):
zR = pi * lam
return zR
p = E(E0,w0,x,z,lam)
plt.imshow(p)
It took me way too much time and thinking but I finally figured it out after searching for similar examples of codes for similar problems. The correct code looks like:
import numpy as np
from numpy import array,empty,linspace,exp,cos,sqrt,pi
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
lam = 500*10**-9 #Nanometers
x1 = linspace(-10*lam,10*lam,100)
z1 = linspace(-20*lam,20*lam,100)
[x,y] = np.meshgrid(x1,z1)
w0 = lam
E0 = 5
r = sqrt(x**2)
zR = pi * lam
w = w0 * sqrt(1 + (y / zR)**2)
Rz = y * (1 + (zR / y)**2)
E = (E0 * w0) / w
E = E * exp((-r**2 / w**2))
E = E * cos((2 * pi / lam) * (y + (r**2 / (2 * Rz))))
def field(x,y):
lam = 500*10**-9
k = (5 * lam) / lam * sqrt(1 + (y / (pi*lam))**2)
k *= exp(((-sqrt(x**2)**2 / (lam * sqrt(1 + (y / pi * lam)**2))**2)))
k *= cos((2 / lam) * (y + ((sqrt(x**2)**2 / (2 * y * (1 + (pi * lam / y)**2))))))
return k
#Density Plot
f = field(x,y)
plt.imshow(f)
plt.show()
#Surface Plot
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x,y,E,rstride=1,cstride=1)
plt.show

Plot a ball rolling down a curve

I want to "animate" a circle rolling over the sin graph, I made a code where the circle moves rapidly down a straight line, now I want the same but the acceleration will be changing.
My previous code:
import numpy as np
import matplotlib.pyplot as plt
theta = np.arange(0, np.pi * 2, (0.01 * np.pi))
x = np.arange(-50, 1, 1)
y = x - 7
plt.figure()
for t in np.arange(0, 4, 0.1):
plt.plot(x, y)
xc = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.cos(theta))
yc = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.sin(theta))
plt.plot(xc, yc, 'r')
xp = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.cos(np.pi * t))
yp = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.sin(np.pi * t))
plt.plot(xp, yp, 'bo')
plt.pause(0.01)
plt.cla()
plt.show()
You can do this by numerically integrating:
dt = 0.01
lst_x = []
lst_y = []
t = 0
while t < 10: #for instance
t += dt
a = get_acceleration(function, x)
x += v * dt + 0.5 * a * dt * dt
v += a * dt
y = get_position(fuction, x)
lst_x.append(x)
lst_y.append(y)
This is assuming the ball never leaves your slope! If it does, you'll also have to integrate in y in a similar way as done in x!!
Where your acceleration is going to be equal to g * cos(slope).

Categories