Plot a ball rolling down a curve - python

I want to "animate" a circle rolling over the sin graph, I made a code where the circle moves rapidly down a straight line, now I want the same but the acceleration will be changing.
My previous code:
import numpy as np
import matplotlib.pyplot as plt
theta = np.arange(0, np.pi * 2, (0.01 * np.pi))
x = np.arange(-50, 1, 1)
y = x - 7
plt.figure()
for t in np.arange(0, 4, 0.1):
plt.plot(x, y)
xc = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.cos(theta))
yc = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.sin(theta))
plt.plot(xc, yc, 'r')
xp = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.cos(np.pi * t))
yp = ((-9.81 * t**2 * np.sin(np.pi / 2)) / 3) + (5 * np.sin(np.pi * t))
plt.plot(xp, yp, 'bo')
plt.pause(0.01)
plt.cla()
plt.show()

You can do this by numerically integrating:
dt = 0.01
lst_x = []
lst_y = []
t = 0
while t < 10: #for instance
t += dt
a = get_acceleration(function, x)
x += v * dt + 0.5 * a * dt * dt
v += a * dt
y = get_position(fuction, x)
lst_x.append(x)
lst_y.append(y)
This is assuming the ball never leaves your slope! If it does, you'll also have to integrate in y in a similar way as done in x!!
Where your acceleration is going to be equal to g * cos(slope).

Related

Scipy odeint. Gravitational motion

I solve the motion in gravitational field around the sun with scipy and mathplotlib and have a problem. My solution is not correct. It is not like in example. Formulas that I used.
from scipy.integrate import odeint
import scipy.constants as constants
import numpy as np
import matplotlib.pyplot as plt
M = 1.989 * (10 ** 30)
G = constants.G
alpha = 30
alpha0 = (alpha / 180) * np.pi
v00 = 0.7
v0 = v00 * 1000
def dqdt(q, t):
x = q[0]
y = q[2]
ax = - G * M * (x / ((x ** 2 + y ** 2) ** 1.5))
ay = - G * M * (y / ((x ** 2 + y ** 2) ** 1.5))
return [q[1], ax, q[3], ay]
vx0 = v0 * np.cos(alpha0)
vy0 = v0 * np.sin(alpha0)
x0 = -150 * (10 ** 11)
y0 = 0 * (10 ** 11)
q0 = [x0, vx0, y0, vy0]
N = 1000000
t = np.linspace(0.0, 100000000000.0, N)
pos = odeint(dqdt, q0, t)
x1 = pos[:, 0]
y1 = pos[:, 2]
plt.plot(x1, y1, 0, 0, 'ro')
plt.ylabel('y')
plt.xlabel('x')
plt.grid(True)
plt.show()
How can I fix this?
Maybe you can tell me solution with another method for example with Euler's formula or with using other library.
I will be very greatful if you help me.

Using functions to create Electric Field array for 2d Density Plot and 3d Surface Plot

Below is my code, I'm supposed to use the electric field equation and the given variables to create a density plot and surface plot of the equation. I'm getting "invalid dimensions for image data" probably because the function E takes multiple variables and is trying to display them all as multiple dimensions. I know the issue is that I have to turn E into an array so that the density plot can be displayed, but I cannot figure out how to do so. Please help.
import numpy as np
from numpy import array,empty,linspace,exp,cos,sqrt,pi
import matplotlib.pyplot as plt
lam = 500 #Nanometers
x = linspace(-10*lam,10*lam,10)
z = linspace(-20*lam,20*lam,10)
w0 = lam
E0 = 5
def E(E0,w0,x,z,lam):
E = np.zeros((len(x),len(z)))
for i in z:
for j in x:
E = ((E0 * w0) / w(z,w0,zR(w0,lam)))
E = E * exp((-r(x)**2) / (w(z,w0,zR(w0,lam)))**2)
E = E * cos((2 * pi / lam) * (z + (r(x)**2 / (2 * Rz(z,zR,lam)))))
return E
def r(x):
r = sqrt(x**2)
return r
def w(z,w0,lam):
w = w0 * sqrt(1 + (z / zR(w0,lam))**2)
return w
def Rz(z,w0,lam):
Rz = z * (1 + (zR(w0,lam) / z)**2)
return Rz
def zR(w0,lam):
zR = pi * lam
return zR
p = E(E0,w0,x,z,lam)
plt.imshow(p)
It took me way too much time and thinking but I finally figured it out after searching for similar examples of codes for similar problems. The correct code looks like:
import numpy as np
from numpy import array,empty,linspace,exp,cos,sqrt,pi
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
lam = 500*10**-9 #Nanometers
x1 = linspace(-10*lam,10*lam,100)
z1 = linspace(-20*lam,20*lam,100)
[x,y] = np.meshgrid(x1,z1)
w0 = lam
E0 = 5
r = sqrt(x**2)
zR = pi * lam
w = w0 * sqrt(1 + (y / zR)**2)
Rz = y * (1 + (zR / y)**2)
E = (E0 * w0) / w
E = E * exp((-r**2 / w**2))
E = E * cos((2 * pi / lam) * (y + (r**2 / (2 * Rz))))
def field(x,y):
lam = 500*10**-9
k = (5 * lam) / lam * sqrt(1 + (y / (pi*lam))**2)
k *= exp(((-sqrt(x**2)**2 / (lam * sqrt(1 + (y / pi * lam)**2))**2)))
k *= cos((2 / lam) * (y + ((sqrt(x**2)**2 / (2 * y * (1 + (pi * lam / y)**2))))))
return k
#Density Plot
f = field(x,y)
plt.imshow(f)
plt.show()
#Surface Plot
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x,y,E,rstride=1,cstride=1)
plt.show

How do i use python to plot fouries series graph?

I have no idea about how to plot fourier series graph from equation like this
I try to use matplotlib to plot this but there are so many values. Here are code that I used. Not sure about algorithm.
import numpy as np
import matplotlib.pyplot as plt
x_ = np.linspace(0, 30, 10000)
a0 = 3/5
##an = 1/n * np.pi * (np.sin(0.4 * n * np.pi) + np.sin(0.8 * n * np.pi))
##bn = 1/n * np.pi * (2 - np.cos(0.4 * n * np.pi) - np.cos(0.8 * n * np.pi))
f0 = 5
def a(n):
return 1/n * np.pi * (np.sin(0.4 * n * np.pi) + np.sin(0.8 * n * np.pi))
def b(n):
return 1/n * np.pi * (2 - np.cos(0.4 * n * np.pi) - np.cos(0.8 * n * np.pi))
def s(t, n):
temp = 0
for i in range (1, n + 1):
temp = temp + (a(i) * np.cos(2 * np.pi * i * f0 * t) \
+ b(i) * np.sin(2 * np.pi * n * f0 * t))
temp += a0
return temp
st = []
for i in range (1, 6):
st.append(s(1, 6))
plt.title("Test")
plt.plot(x_, st, color="red")
plt.show()
Tried this then got this error
ValueError: x and y must have same first dimension, but have shapes (10000,) and (5,)
thanks for any help

How to generate random sine stripe on an image using python?

I have an image read in with python and I wish to add some different sine stripes on this image as a noise. I wish the frequency and the rotation degree of a sine is totally random. I tried numpy module but it might not be the model I need here.
Can anyone tell me any python module has such function to add random sine curve to a image?
The result should somewhat similar to this image below:
Finally I find I can finish all of this using Numpy module:
def sineimg(img, color='black', linewidth=1.5, linestyle="-"):
'''
frequency = X / random.uniform(10.0, 20.0)
amplitude = randint(35, 50)
phase = random.uniform(1.0, 16.0)
rotation = random.uniform(-pi / 2, pi / 2)
'''
#Random rotation angle
rot = random.randint(-90, 90)
x_ = img.shape[0] / np.cos(np.pi * rot / 180)
X = np.linspace(-1 * x_, x_, 512)
axes = plt.subplot(111)
np.cos(np.pi * rot / 180)
#Random amplitude
amp1 = random.randint(35, 50)
amp2 = random.randint(35, 50)
#Random frequency
frequency1 = X / random.uniform(10.0, 20.0)
frequency2 = X / random.uniform(10.0, 20.0)
#Random offset phase
phase1 = np.pi / random.uniform(1.0, 16.0) + np.pi / 2
phase2 = np.pi / random.uniform(1.0, 16.0) + np.pi / 3
#random distance between line cluster
distance = random.randint(90, 115)
#I need roughly 8 times of them
for i in range(8):
Y1 = amp1 * np.sin(frequency1 + phase1) - 450 + i * distance
Y2 = amp2 * np.sin(frequency2 + phase2) - 420 + i * distance
x1_trans = X * np.cos(np.pi * rot / 180) - Y1* np.sin(np.pi * rot / 180)
y1_trans = X * np.sin(np.pi * rot / 180) + Y1* np.cos(np.pi * rot / 180)
x2_trans = X * np.cos(np.pi * rot / 180) - Y2* np.sin(np.pi * rot / 180)
y2_trans = X * np.sin(np.pi * rot / 180) + Y2* np.cos(np.pi * rot / 180)
#Remove label
axes.set_xticks([])
axes.set_yticks([])
axes.spines['right'].set_color('none')
axes.spines['top'].set_color('none')
axes.spines['bottom'].set_color('none')
axes.spines['left'].set_color('none')
axes.plot(x1_trans, y1_trans, color = color, linewidth=linewidth, linestyle=linestyle)
axes.plot(x2_trans, y2_trans, color = color, linewidth=linewidth, linestyle=linestyle)
plt.imshow(img, zorder=0, extent=[148, -148, -225, 225])
Them:
img=mpimg.imread('me.jpg')
sineimg(img)
I get images like:

find the distance between a point and a curve python

How can I find the closet distance between my trajectory and (384400,0,0)?
Also, how can I the distance from (384400,0,0) to the path at time t = 197465?
I understand that the arrays have the data but is there a way to have it check the distance of all the points (x,y,z) and return what I am looking for?
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
me = 5.974 * 10 ** (24) # mass of the earth
mm = 7.348 * 10 ** (22) # mass of the moon
G = 6.67259 * 10 ** (-20) # gravitational parameter
re = 6378.0 # radius of the earth in km
rm = 1737.0 # radius of the moon in km
r12 = 384400.0 # distance between the CoM of the earth and moon
M = me + mm
pi1 = me / M
pi2 = mm / M
mue = 398600.0 # gravitational parameter of earth km^3/sec^2
mum = G * mm # grav param of the moon
mu = mue + mum
omega = np.sqrt(mu / r12 ** 3)
nu = -129.21 * np.pi / 180 # true anomaly angle in radian
x = 327156.0 - 4671
# x location where the moon's SOI effects the spacecraft with the offset of the
# Earth not being at (0,0) in the Earth-Moon system
y = 33050.0 # y location
vbo = 10.85 # velocity at burnout
gamma = 0 * np.pi / 180 # angle in radians of the flight path
vx = vbo * (np.sin(gamma) * np.cos(nu) - np.cos(gamma) * np.sin(nu))
# velocity of the bo in the x direction
vy = vbo * (np.sin(gamma) * np.sin(nu) + np.cos(gamma) * np.cos(nu))
# velocity of the bo in the y direction
xrel = (re + 300.0) * np.cos(nu) - pi2 * r12
# spacecraft x location relative to the earth
yrel = (re + 300.0) * np.sin(nu)
# r0 = [xrel, yrel, 0]
# v0 = [vx, vy, 0]
u0 = [xrel, yrel, 0, vx, vy, 0]
def deriv(u, dt):
n1 = -((mue * (u[0] + pi2 * r12) / np.sqrt((u[0] + pi2 * r12) ** 2
+ u[1] ** 2) ** 3)
- (mum * (u[0] - pi1 * r12) / np.sqrt((u[0] - pi1 * r12) ** 2
+ u[1] ** 2) ** 3))
n2 = -((mue * u[1] / np.sqrt((u[0] + pi2 * r12) ** 2 + u[1] ** 2) ** 3)
- (mum * u[1] / np.sqrt((u[0] - pi1 * r12) ** 2 + u[1] ** 2) ** 3))
return [u[3], # dotu[0] = u[3]
u[4], # dotu[1] = u[4]
u[5], # dotu[2] = u[5]
2 * omega * u[5] + omega ** 2 * u[0] + n1, # dotu[3] = that
omega ** 2 * u[1] - 2 * omega * u[4] + n2, # dotu[4] = that
0] # dotu[5] = 0
dt = np.arange(0.0, 320000.0, 1) # 200000 secs to run the simulation
u = odeint(deriv, u0, dt)
x, y, z, x2, y2, z2 = u.T
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z)
plt.show()
To find the distance along each point in the trajectory:
my_x, my_y, my_z = (384400,0,0)
delta_x = x - my_x
delta_y = y - my_y
delta_z = z - my_z
distance = np.sqrt(np.power(delta_x, 2) +
np.power(delta_y, 2) +
np.power(delta_z, 2))
And then to find the min and that specific distance:
i = np.argmin(distance)
t_min = i / UNITS_SCALE # I can't tell how many units to a second. Is it 1.6?
d_197465 = distance[int(197465 * UNITS_SCALE)]
PS, I'm no rocket scientist, and thus haven't actually checked the stuff above x, y, z, x2, y2, z2 = u.T. I'm assuming that those are your trajectory's position and velocity?

Categories