How do I evaluate a function in n variables in numpy? For simplicity, let n = 3. Consider the following example:
x, y, z = numpy.linspace(0, 1, 100), numpy.linspace(0, 1, 100), numpy.linspace(0, 1, 100)
def F(a, b, c): # Test function in 3 variables
return a + b + c
F_over_xyz = ... # How to get an array that contains F evaluated at all points in [0;1]³?
Somehow, I am also having a hard time wrapping my head around which shape the generated array would have?.
A general way to get Cartesian product of any wanted number of arrays is:
np.stack(np.meshgrid(*arrays), axis=-1).reshape(-1, len(arrays))
So you could list all the points in [0;1]³:
import numpy as np
arrays = np.linspace(0, 1, 100), np.linspace(0, 1, 100), np.linspace(0, 1, 100)
list_of_points = np.stack(np.meshgrid(*arrays), axis=-1).reshape(-1, len(arrays))
Shape of list_of_points is (1000000, 3): 1M points, 3 coordinates each.
Then you can calculate sum of coordinates like so:
np.sum(list_of_points, axis=1)
You could also try:
import numpy as np
nn = 4
x,y,z=np.linspace(0,1,nn),np.linspace(0,1,nn),np.linspace(0,1,nn)
def F(a, b, c): # Test function in 3 variables
return a + b + c
# this creates your grid
xgrid,ygrid,zgrid = np.meshgrid(x,y,z)
# output[i,j,k] will be F(xgrid[i,j,k],ygrid[i,j,k],zgrid[i,j,k])
output = F(xgrid,ygrid,zgrid)
Related
I am iteratively solving this implicit equation
using fsolve within a for loop over a range of values of the independent variable, V.
I also want to vary I_L and run the for loop over each value and generate an individual text files.
I know how to use the open and write text files, what I'm struggling with is setting loops up correctly to output what I want.
I have coded a simpler example below to allow for ease of understanding since it's just the loops I'm stuck on.
import numpy as np
from scipy.optimize import fsolve
import scipy.constants as sc
x = np.linspace(-1, 1, 1001)
C_vary = [0, 1, 2, 3]
def equation(y, x, C):
return C - np.exp(x+y) - y
for C in C_vary:
y = []
Solve equation at each value of C_vary and output y values to new list of
results
I have introduced an initial guess for the function y(x), but you can check the details further. The output y is a list, with each element corresponding to a value of the C_vary parameters, for each x.
import numpy as np
from scipy.optimize import fsolve
import scipy.constants as sc
x = np.linspace(-1, 1, 1001)
C_vary = [0, 1, 2, 3]
def equation(y, x, C):
return C - np.exp(x+y) - y
y0 = np.exp( 0.5*x ) #initial guess
y = [ fsolve( equation, y0, (x,ci) ) for ci in C_vary ]
If you are after I as a function of V and other parameters, you can solve the equation by means of the Lambert W function.
It has the form
z = e^(a z + b)
where z is linear in I, and this is
- a z e^(- a z) = - a e^b
or
z = - W(-a e^b) / a.
I am trying to create a matrix in python that is 30 × 10 and has randomly generated numbers inside of it. But my numbers in the matrix have to follow the condition:
Randomly generate 30 data points from the sine function, where each data point (x,y) has the form
x = [x0, x1, x2,..., x10], x ∈ [0, 2π]
y = sin(x) + ε, ε ∈ N(0,0.3)
How might I be able to go about this?
Right now I only have a 1 × 10 matrix
def generate_sin_data():
x = np.random.rand()
y = np.sin(x)
features = [x**0, x**1, x**2, x**3, x**4,x**5, x**6, x**7, x**8, x**9,x**10]
return x,y,features
I'm not 100% certain I follow everything, but we can break it down. Here's how you can generate 30 random numbers between 0 and 2π:
import numpy as np
x = np.random.random(30) * 2*np.pi
Here, x is a 1D array of 30 numbers. Check this with x.shape.
Now if you add a dimension, it's easy to generate a matrix of powers up to 10 using NumPy's broadcasting feature. The question seems to ask for 11 numbers (0 to 10) not 10, so I'll do that:
X = x.reshape(-1, 1) ** np.arange(0, 11)
That reshape effectively turns x into a column vector. Now check X.shape and it's (30, 11), which is what I think you were after. Notice we use a big X for a matrix — this convention will help you keep track of things. Each column of X is the original function raised to a power from 0 to 10. (Note that each column comes from the same set of random numbers — I'm not sure if that's what you want?)
If you want y as a function of x (the vector) then do like so:
ϵ = np.random.random(30) * 0.3
y = np.sin(x) + ϵ
import numpy as np
# 30 random uniform values in [0, 2*pi)
_x = np.random.uniform(0, 2*np.pi, 30)
# matrix of 30x10:
x = np.array([
[v ** i for i in range(10)]
for v in _x
])
# random 30x10 normal noise:
eps = np.random.normal(0, 0.3, [30, 10])
# final result 30x10 matrix:
y = np.sin(x) + eps
Usually I use Scipy.optimize.curve_fit to fit custom functions to data.
Data in this case was always a 1 dimensional array.
Is there a similiar function for a two dimensional array?
So, for example, I have a 10x10 numpy array. Then I have a function that does some stuff and creates a 10x10 numpy array, and I want to fit the function, so that the resulting 10x10 array has the best fit to the input array.
Maybe an example is better :)
data = pyfits.getdata('data.fits') #fits is an image format, this gives me a NxM numpy array
mod1 = pyfits.getdata('mod1.fits')
mod2 = pyfits.getdata('mod2.fits')
mod3 = pyfits.getdata('mod3.fits')
mod1_1D = numpy.ravel(mod1)
mod2_1D = numpy.ravel(mod2)
mod3_1D = numpy.ravel(mod3)
def dostuff(a,b): #originaly this is a function for 2D arrays
newdata = (mod1_1D*12)+(mod2_1D)**a - mod3_1D/b
return newdata
Now a and b should be fitted, so that newdata is as close as possible to data.
What I got so far:
data1D = numpy.ravel(data)
data_X = numpy.arange(data1D.size)
fit = curve_fit(dostuff,data_X,data1D)
But print fit only gives me
(array([ 1.]), inf)
I do have some nans in the arrays, maybe thats a problem?
The goal is to express the 2D function as a 1D function: g(x, y, ...) --> f(xy, ...)
Converting the coordinate pair (x, y) into a single number xy may seem tricky at first. But it's actually quite simple. Just enumerate all data points and you have a single number that uniquely defines each coordinate pair. The fitted function simply has to reconstruct the original coordinates, do it's calculations and return the result.
Example that fits a 2D linear gradient in a 20x10 image:
import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
n, m = 10, 20
# noisy example data
x = np.arange(m).reshape(1, m)
y = np.arange(n).reshape(n, 1)
z = x + y * 2 + np.random.randn(n, m) * 3
def f(xy, a, b):
i = xy // m # reconstruct y coordinates
j = xy % m # reconstruct x coordinates
out = i * a + j * b
return out
xy = np.arange(z.size) # 0 is the top left pixel and 199 is the top right pixel
res = sp.optimize.curve_fit(f, xy, np.ravel(z))
z_est = f(xy, *res[0])
z_est2d = z_est.reshape(n, m)
plt.subplot(2, 1, 1)
plt.plot(np.ravel(z), label='original')
plt.plot(z_est, label='fitted')
plt.legend()
plt.subplot(2, 2, 3)
plt.imshow(z)
plt.xlabel('original')
plt.subplot(2, 2, 4)
plt.imshow(z_est2d)
plt.xlabel('fitted')
I would recommend using symfit for this, I wrote that to take care of all of the magic for you automatically.
In symfit you would just write the equation pretty much as you would on paper, and then you can run the fit.
I would do something like this:
from symfit import parameters, variables, Fit
# Assuming all this data is in the form of NxM arrays
data = pyfits.getdata('data.fits')
mod1 = pyfits.getdata('mod1.fits')
mod2 = pyfits.getdata('mod2.fits')
mod3 = pyfits.getdata('mod3.fits')
a, b = parameters('a, b')
x, y, z, u = variables('x, y, z, u')
model = {u: (x * 12) + y**a - z / b}
fit = Fit(model, x=mod1, y=mod2, z=mod3, u=data)
fit_result = fit.execute()
print(fit_result)
Unfortunatelly I have not yet included examples of the kind you need in the docs yet, but if you just look at the docs I think you can figure it out in case this doesn't work out of the box.
What is a good way to produce a numpy array containing the values of a function evaluated on an n-dimensional grid of points?
For example, suppose I want to evaluate the function defined by
def func(x, y):
return <some function of x and y>
Suppose I want to evaluate it on a two dimensional array of points with the x values going from 0 to 4 in ten steps, and the y values going from -1 to 1 in twenty steps. What's a good way to do this in numpy?
P.S. This has been asked in various forms on StackOverflow many times, but I couldn't find a concisely stated question and answer. I posted this to provide a concise simple solution (below).
shorter, faster and clearer answer, avoiding meshgrid:
import numpy as np
def func(x, y):
return np.sin(y * x)
xaxis = np.linspace(0, 4, 10)
yaxis = np.linspace(-1, 1, 20)
result = func(xaxis[:,None], yaxis[None,:])
This will be faster in memory if you get something like x^2+y as function, since than x^2 is done on a 1D array (instead of a 2D one), and the increase in dimension only happens when you do the "+". For meshgrid, x^2 will be done on a 2D array, in which essentially every row is the same, causing massive time increases.
Edit: the "x[:,None]", makes x to a 2D array, but with an empty second dimension. This "None" is the same as using "x[:,numpy.newaxis]". The same thing is done with Y, but with making an empty first dimension.
Edit: in 3 dimensions:
def func2(x, y, z):
return np.sin(y * x)+z
xaxis = np.linspace(0, 4, 10)
yaxis = np.linspace(-1, 1, 20)
zaxis = np.linspace(0, 1, 20)
result2 = func2(xaxis[:,None,None], yaxis[None,:,None],zaxis[None,None,:])
This way you can easily extend to n dimensions if you wish, using as many None or : as you have dimensions. Each : makes a dimension, and each None makes an "empty" dimension. The next example shows a bit more how these empty dimensions work. As you can see, the shape changes if you use None, showing that it is a 3D object in the next example, but the empty dimensions only get filled up whenever you multiply with an object that actually has something in those dimensions (sounds complicated, but the next example shows what i mean)
In [1]: import numpy
In [2]: a = numpy.linspace(-1,1,20)
In [3]: a.shape
Out[3]: (20,)
In [4]: a[None,:,None].shape
Out[4]: (1, 20, 1)
In [5]: b = a[None,:,None] # this is a 3D array, but with the first and third dimension being "empty"
In [6]: c = a[:,None,None] # same, but last two dimensions are "empty" here
In [7]: d=b*c
In [8]: d.shape # only the last dimension is "empty" here
Out[8]: (20, 20, 1)
edit: without needing to type the None yourself
def ndm(*args):
return [x[(None,)*i+(slice(None),)+(None,)*(len(args)-i-1)] for i, x in enumerate(args)]
x2,y2,z2 = ndm(xaxis,yaxis,zaxis)
result3 = func2(x2,y2,z2)
This way, you make the None-slicing to create the extra empty dimensions, by making the first argument you give to ndm as the first full dimension, the second as second full dimension etc- it does the same as the 'hardcoded' None-typed syntax used before.
Short explanation: doing x2, y2, z2 = ndm(xaxis, yaxis, zaxis) is the same as doing
x2 = xaxis[:,None,None]
y2 = yaxis[None,:,None]
z2 = zaxis[None,None,:]
but the ndm method should also work for more dimensions, without needing to hardcode the None-slices in multiple lines like just shown. This will also work in numpy versions before 1.8, while numpy.meshgrid only works for higher than 2 dimensions if you have numpy 1.8 or higher.
import numpy as np
def func(x, y):
return np.sin(y * x)
xaxis = np.linspace(0, 4, 10)
yaxis = np.linspace(-1, 1, 20)
x, y = np.meshgrid(xaxis, yaxis)
result = func(x, y)
I use this function to get X, Y, Z values ready for plotting:
def npmap2d(fun, xs, ys, doPrint=False):
Z = np.empty(len(xs) * len(ys))
i = 0
for y in ys:
for x in xs:
Z[i] = fun(x, y)
if doPrint: print([i, x, y, Z[i]])
i += 1
X, Y = np.meshgrid(xs, ys)
Z.shape = X.shape
return X, Y, Z
Usage:
def f(x, y):
# ...some function that can't handle numpy arrays
X, Y, Z = npmap2d(f, np.linspace(0, 0.5, 21), np.linspace(0.6, 0.4, 41))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(X, Y, Z)
The same result can be achieved using map:
xs = np.linspace(0, 4, 10)
ys = np.linspace(-1, 1, 20)
X, Y = np.meshgrid(xs, ys)
Z = np.fromiter(map(f, X.ravel(), Y.ravel()), X.dtype).reshape(X.shape)
In the case your function actually takes a tuple of d elements, i.e. f((x1,x2,x3,...xd)) (for example the scipy.stats.multivariate_normal function), and you want to evaluate f on N^d combinations/grid of N variables, you could also do the following (2D case):
x=np.arange(-1,1,0.2) # each variable is instantiated N=10 times
y=np.arange(-1,1,0.2)
Z=f(np.dstack(np.meshgrid(x,y))) # result is an NxN (10x10) matrix, whose entries are f((xi,yj))
Here np.dstack(np.meshgrid(x,y)) creates an 10x10 "matrix" (technically a 10x10x2 numpy array) whose entries are the 2-dimensional tuples to be evaluated by f.
My two cents:
import numpy as np
x = np.linspace(0, 4, 10)
y = np.linspace(-1, 1, 20)
[X, Y] = np.meshgrid(x, y, indexing = 'ij', sparse = 'true')
def func(x, y):
return x*y/(x**2 + y**2 + 4)
# I have defined a function of x and y.
func(X, Y)
I have some points and I am trying to fit curve for this points. I know that there exist scipy.optimize.curve_fit function, but I do not understand documentation, i.e how to use this function.
My points: np.array([(1, 1), (2, 4), (3, 1), (9, 3)])
Can anybody explain how to do that?
I suggest you to start with simple polynomial fit, scipy.optimize.curve_fit tries to fit a function f that you must know to a set of points.
This is a simple 3 degree polynomial fit using numpy.polyfit and poly1d, the first performs a least squares polynomial fit and the second calculates the new points:
import numpy as np
import matplotlib.pyplot as plt
points = np.array([(1, 1), (2, 4), (3, 1), (9, 3)])
# get x and y vectors
x = points[:,0]
y = points[:,1]
# calculate polynomial
z = np.polyfit(x, y, 3)
f = np.poly1d(z)
# calculate new x's and y's
x_new = np.linspace(x[0], x[-1], 50)
y_new = f(x_new)
plt.plot(x,y,'o', x_new, y_new)
plt.xlim([x[0]-1, x[-1] + 1 ])
plt.show()
You'll first need to separate your numpy array into two separate arrays containing x and y values.
x = [1, 2, 3, 9]
y = [1, 4, 1, 3]
curve_fit also requires a function that provides the type of fit you would like. For instance, a linear fit would use a function like
def func(x, a, b):
return a*x + b
scipy.optimize.curve_fit(func, x, y) will return a numpy array containing two arrays: the first will contain values for a and b that best fit your data, and the second will be the covariance of the optimal fit parameters.
Here's an example for a linear fit with the data you provided.
import numpy as np
from scipy.optimize import curve_fit
x = np.array([1, 2, 3, 9])
y = np.array([1, 4, 1, 3])
def fit_func(x, a, b):
return a*x + b
params = curve_fit(fit_func, x, y)
[a, b] = params[0]
This code will return a = 0.135483870968 and b = 1.74193548387
Here's a plot with your points and the linear fit... which is clearly a bad one, but you can change the fitting function to obtain whatever type of fit you would like.