column select from transpose data in data frame [closed] - python

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 2 years ago.
Improve this question
hi all i have date frame with columns name dates, the problem was i want to get the 4 weak form every column , so i try to transpose the date then i when columns become in rows so it will bw in one column i can select 4 weak from it ,
but when i transpose it the columns become rows but don’t add to data frame index data and i cant select it any more
i attach the picture for more clear view
any help for that, regards
firts image data frame before transpose
seconde image after transpose

It is still not clear to me what you want to do with the 5th weeks, but this will get you the number for the week of the month.
# this will only work if the first date belongs to the first week of that month
# and if there is only one date per week
wom = ( # week of month
df.index.to_series()
.groupby([df.index.year, df.index.month])
.cumcount() + 1 # create the 1, 2, 3, 4, 5 tags for week of month
)
# you can keep it as a separate indexer
sales_month_over = df.loc[wom < 5, :]
# or you can create a MultiIndex
df.index = pd.MultiIndex.from_arrays([df.index, wom], names=['date', 'wom'])
sales_month_over = df.loc[df.index.get_level_values('wom') < 5]
fifth_weeks = df.loc[~df.index.isin(sales_month_over.index)]
>>> print(sales_month_over)
0 1 2 3 4 5 6 7 ... 107 108 109 110 111 112 113 114
date wom ...
2019-01-05 1 78 135 66 68 64 69 109 70 ... 58 166 122 81 162 193 74 196
2019-01-12 2 138 191 130 80 177 60 139 114 ... 147 188 59 149 126 131 133 178
2019-01-19 3 198 111 181 145 91 60 128 184 ... 80 54 110 152 114 165 86 68
2019-01-26 4 154 169 134 90 173 122 140 182 ... 186 140 150 65 68 92 128 169
2019-02-02 1 105 55 82 74 125 163 91 95 ... 199 67 116 155 128 162 133 110
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2020-05-23 4 163 176 92 78 88 64 55 79 ... 142 156 134 158 63 157 77 75
2020-06-06 1 133 167 117 91 180 106 169 154 ... 58 170 115 101 108 89 57 56
2020-06-13 2 78 86 93 192 53 143 182 184 ... 193 139 68 179 55 61 131 167
2020-06-20 3 119 123 91 145 71 193 97 182 ... 146 163 52 120 195 56 153 126
2020-06-27 4 50 191 72 89 76 151 166 89 ... 132 95 111 134 83 64 188 150
[72 rows x 115 columns]
>>> print(fifth_weeks)
0 1 2 3 4 5 6 7 ... 107 108 109 110 111 112 113 114
date wom ...
2019-03-30 5 199 120 147 81 61 85 132 174 ... 99 162 177 104 118 168 117 92
2019-06-29 5 113 72 92 64 192 188 51 164 ... 143 137 126 117 162 157 53 102
2019-08-31 5 129 192 60 156 153 137 183 117 ... 155 115 57 92 124 99 143 119
2019-11-30 5 133 190 156 179 79 107 158 118 ... 165 180 91 139 176 159 61 103
2020-02-29 5 123 195 182 170 155 145 189 84 ... 152 115 74 128 190 72 53 104
2020-05-30 5 176 121 132 155 60 57 120 182 ... 57 136 52 190 152 168 65 164
[6 rows x 115 columns]
Now you can take the percentage change compared to the previous month
sales_month_over = sales_month_over.groupby(level='wom').pct_change()
>>> print(sales_month_over)
0 1 2 3 ... 111 112 113 114
date wom ...
2019-01-05 1 NaN NaN NaN NaN ... NaN NaN NaN NaN
2019-01-12 2 NaN NaN NaN NaN ... NaN NaN NaN NaN
2019-01-19 3 NaN NaN NaN NaN ... NaN NaN NaN NaN
2019-01-26 4 NaN NaN NaN NaN ... NaN NaN NaN NaN
2019-02-02 1 -0.063953 -0.259259 -0.259067 -0.401961 ... 0.084416 0.452055 -0.481250 0.012579
... ... ... ... ... ... ... ... ... ...
2020-05-23 4 -0.554878 -0.191860 0.285714 0.265734 ... -0.658824 0.943820 0.444444 0.950000
2020-06-06 1 -0.598540 1.763889 -0.155844 -0.338983 ... -0.248000 -0.006757 -0.512821 -0.043243
2020-06-13 2 0.130435 0.390244 0.423358 -0.460177 ... -0.013158 -0.167702 0.015385 0.305785
2020-06-20 3 -0.437500 -0.100000 1.650000 0.175439 ... 0.666667 -0.088235 0.155556 0.246753
2020-06-27 4 0.452055 -0.474820 -0.374269 -0.414365 ... 1.172414 -0.710983 -0.525641 -0.521368
[72 rows x 115 columns]

You can use df.index to select the index column.

Related

concat result of apply in python

I am trying to apply a function on a column of a dataframe.
After getting multiple results as dataframes, I want to concat them all in one.
Why does the first option work and the second not?
import numpy as np
import pandas as pd
def testdf(n):
test = pd.DataFrame(np.random.randint(0,n*100,size=(n*3, 3)), columns=list('ABC'))
test['index'] = n
return test
test = pd.DataFrame({'id': [1,2,3,4]})
testapply = test['id'].apply(func = testdf)
#option 1
pd.concat([testapply[0],testapply[1],testapply[2],testapply[3]])
#option2
pd.concat([testapply])
pd.concat expects a sequence of pandas objects, but your #2 case/option passes a sequence of single pd.Series object that contains multiple dataframes, so it doesn't make concatenation - you just get that series as is.To fix your 2nd approach use unpacking:
print(pd.concat([*testapply]))
A B C index
0 91 15 91 1
1 93 85 91 1
2 26 87 74 1
0 195 103 134 2
1 14 26 159 2
2 96 143 9 2
3 18 153 35 2
4 148 146 130 2
5 99 149 103 2
0 276 150 115 3
1 232 126 91 3
2 37 242 234 3
3 144 73 81 3
4 96 153 145 3
5 144 94 207 3
6 104 197 49 3
7 0 93 179 3
8 16 29 27 3
0 390 74 379 4
1 78 37 148 4
2 350 381 260 4
3 279 112 260 4
4 115 387 173 4
5 70 213 378 4
6 43 37 149 4
7 240 399 117 4
8 123 0 47 4
9 255 172 1 4
10 311 329 9 4
11 346 234 374 4

How to read binary file and convert it to text in Python

I have a time series from 1946-2020 for the discharges of gauge. The file is binary and if I open it in a text editor, or even in a hex-editor, I see values which do not make sense. I have searched a lot and found some code but I don't see any time series and values.
I can imagine that the time series is looking like that:
These values are also correct and are in the data.
t Q
17.11.1972 8,66
04.02.2020 28,2
I copied the beginning part of the file:
##4.00
à?š™™™™™é?ÍÌÌÌÌÌì?ffffffî?¸…ëQ¸î?\Âõ(\ï?®Gáz®ï?×£p=
×ï?V-²ïï?§èH.ÿï?Sš ä ÍÌL= ÿÿÍÌL= _ B €#
## NASIM26760601m³/sffûB°FAˆ¢A ¥¼x?  §=,ðñ=ÿ9jŒA´¯DA;Âò#¿‡Ø½ =|?0¥‡=?1=ÿ]”:A þA ¨ï¿eV4#)¡? i3|?`d‹=ek=ÿ‘_î#5Ý#¼˜DA
©]? cÂ{?Œ%¿=+>ÿÚÍ# %µ#À#•9AN? ýô{?h«=×Í­=ÿð½¢#»MAòöî# ¤¼x?¸~=Xä—=ÿ9jŒA
+BAïÕ#yBѾ ‚Äw?èrÈ=¯k“=ÿ]”:A¼/±#>. #„×9AG€
I copied the last part of the file, because I know there must be the time-discharge of 2020. Maybe it is in the end of the file.
×ï?V-²ïï?+‡ÙÎ÷ï? ÍÌL= ÿÿÍÌL= _ B €#
##
in the following screenshot you see the data , when I open it in Notepad++.
here is my python code and output
with open("time-serie_1946 bis 2020.hqr", "rb") as file:
data = file.read()
with open("out.txt", "w") as f:
f.write(" ".join(map(str,data)))
f.write("\n")
the beginning of output:
6 64 64 52 46 48 48 10 0 0 0 0 0 0 0 224 63 154 153 153 153 153 153 233 63 205 204 204 204 204 204 236 63 102 102 102 102 102 102 238 63 184 30 133 235 81 184 238 63 92 143 194 245 40 92 239 63 174 71 225 122 20 174 239 63 215 163 112 61 10 215 239 63 86 14 45 178 157 239 239 63 30 167 232 72 46 255 239 63 83 78 101 117 98 101 114 101 99 104 110 117 110 103 32 98 105 115 32 50 48 50 48 32 109 105 116 32 117 110 98 101 115 116 228 116 105 103 116 101 110 32 72 81 32 118 111 110 32 49 57 52 54 45 49 57 55 50 32 40 65 110 102 114 97 103 101 32 83 99 104 117 104 109 97 99 104 101 114 44 32 84 82 41 154 7 0 0 228 7 0 0 0 0 0 0
How can I decode it to get the time series?

How to turn a dictionary into a dataframe with all the keys in a column

def weights():
saved = {}
for i in range(len(bread_pairs["key_id"])):
drawing = np.array(bread_pairs['bitmap'][i], dtype=np.uint8)
new_test_cnn = drawing.reshape(1, 28, 28, 1).astype('float32')
new_cnn_predict = model.predict(new_test_cnn, batch_size=32, verbose=0)
w = model.layers[8].get_weights()
w = list(w[0].flatten())
saved[bread_pairs["key_id"][i]] = w
return saved
I have this function that is creating a dictionary of key_ids and mapping them to an associated list of values of length 200. So for example my dictionary looks something like saved = {key_id_1: [1,2,3...200], key_id_2: [1,2,...,200], ....}
I would like to turn this dictionary into a dataframe with a column of key_ids and each element in the associated list of 200 becomes its own column. So there is a total of 201 columns where the first column is the first key_id and then the second column is the first element of the list, the third column is the second element of the list etc. And then the second row first column is the second key_id and then the second row second column is the first element of the key_id's second list and so on. Is there a way to convert this dictionary to a df? I have 10000 key_ids do the dimensions would be 10000x201. Thanks!
Load the dict into a DataFrame using pandas.DataFrame.from_dict with the orient parameter, and reset the index with .reset_index()
This will create the DataFrame as requested, however, I recommend leaving the keys as the index, which should make it easier to perform calculations and address specific rows.
If the columns should be named 0...201, then use df.columns = list(range(202)), or use pandas.DataFrame.rename to rename specific columns.
import pandas as pd
# test data
saved = {'key_id_1': list(range(201)), 'key_id_2': list(range(201))}
# create the DataFrame
df = pd.DataFrame.from_dict(saved, orient='index')
# reset the index
df = df.reset_index()
# display(df)
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
0 key_id_1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
1 key_id_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
Alternative Implementation
Create the DataFrame with pandas.DataFrame, transpose the DataFrame with pandas.DataFrame.T, and then reset with .reset_index().
df = pd.DataFrame(saved)
df = df.T.reset_index()

Efficient finite field multiplication with log-antilog-table lookup in numpy

I am trying to implement efficient multiplication in GF(2^8), which elements are most naturally represented as uint8-numpy-values, in a numpy-thonic way. Therefore, I implemented GF-Arithmetics (in pure Python, not numpy) in order to build log-antilog-tables (I took a ranom generator, 9); in particular, I implemented a (non-numpy) Python-Function multGF which implements GF-Multiplication, which works great but is slow (since it uses polynomial modulo calcs). A common trick to speed up multiplication is to use the following equation:
Building the log-antilog-uint8-ndarrays is easily performed like this:
gen = 9 ; K = [1] ; g = gen
for i in range(1,255):
K.append(g)
g = multGF(g,gen)
antilog = np.array(K, dtype='uint8')
log = np.full(256,0, dtype='uint8')
for i in range(255): log[antilog[i]] = i
But, and that is my question, how to implement the multiplication in a numpy-thonic way? Both, the log table and the antilog table are of size 255 (not 256; no log for 0) and the exponents have to be added modulo 255 - and not mod 256. I came up with the following IMHO non numpy-thonic solution:
def multGF2(a,b):
return antilog[(int(log[a]) + log[b]) % 255]
I had to convert the uint8-addition (which works mod-256 naturally) into an int-addtion in order to perform mod-255-addition. This is neither elegant nor efficient and I am quite sure, that any has a better solution?
For testing: here are both logtables as arrays:
log = [ nan 0 250 214 245 173 209 42 240 1 168 71 204 187 37 132 235 91
251 191 163 84 66 146 199 212 182 215 32 30 127 247 230 206 86 229
246 65 186 244 158 87 79 171 61 174 141 180 194 113 207 50 177 150
210 54 27 105 25 231 122 93 242 43 225 2 201 156 81 142 224 52
241 53 60 64 181 190 239 254 153 119 82 72 74 9 166 62 56 13
169 143 136 34 175 109 189 80 108 165 202 188 45 99 172 203 145 126
205 157 49 24 22 139 100 159 20 111 226 133 117 233 88 46 237 130
38 3 220 217 252 35 196 96 151 89 76 6 137 192 219 5 47 178
236 110 48 98 55 118 59 155 176 92 185 179 234 211 249 70 148 18
114 39 77 124 67 14 69 58 4 195 161 7 57 147 51 238 8 135
164 144 138 116 131 208 29 162 170 85 104 193 184 97 75 216 103 115
160 123 197 11 183 10 40 222 94 101 167 213 198 90 140 243 121 149
200 63 152 12 44 23 19 129 17 68 134 28 95 218 154 248 15 16
106 227 221 102 128 120 112 26 228 78 83 31 41 36 232 21 125 107
33 73 253 223]
antilog = [ 1 9 65 127 170 141 137 173 178 85 203 201 219 89 167 232 233 224
161 222 116 249 112 221 111 58 241 56 227 186 29 245 28 252 93 131
247 14 126 163 204 246 7 63 220 102 123 142 146 110 51 176 71 73
55 148 88 174 169 150 74 44 87 217 75 37 22 166 225 168 159 11
83 253 84 194 136 164 243 42 97 68 82 244 21 189 34 41 122 135
211 17 153 61 206 228 133 193 147 103 114 207 237 196 190 57 234 251
98 95 145 117 240 49 162 197 183 120 149 81 239 214 60 199 165 250
107 30 238 223 125 184 15 119 226 179 92 138 182 113 212 46 69 91
181 106 23 175 160 215 53 134 218 80 230 151 67 109 40 115 198 172
187 20 180 99 86 208 10 90 188 43 104 5 45 94 152 52 143 155
47 76 26 202 192 154 38 13 101 96 77 19 139 191 48 171 132 200
210 24 216 66 100 105 12 108 33 50 185 6 54 157 25 209 3 27
195 129 229 140 128 236 205 255 70 64 118 235 242 35 32 59 248 121
156 16 144 124 177 78 8 72 62 213 39 4 36 31 231 158 2 18
130 254 79 ]

Multiplication table format

I've created a simple script that will make a multiplication table and output it. It works and is pretty cool but I would like to know if there's a way I could fix it for when it goes higher then 10. After 10 (on the row) it will be a whitespace off of the rest of the table, how can I fix this little format issue?
if __name__ == '__main__':
for row in range(1, 20+1):
table = ''
for column in range(1, 20+1):
table += '{:4} '.format(row * column)
print(table.strip())
Example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
You can left adjust string with spaces with {:<6}
for row in range(1, 20+1):
table = ''
for column in range(1, 20+1):
table += '{:<6} '.format(row * column)
print table.strip()
Output
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
So a simple way of doing this is using generators (I find it more readable right justified):
>>> n = 10
>>> print('\n'.join(''.join(format(i*j, ' >4') for i in range(1, n+1)) for j in range(1, n+1)))
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
If you need to work out the maximum width dynamically then you can use math.log10():
>>> import math
>>> n = 9
>>> w = int(math.log10(n**2))+1
>>> print('\n'.join(' '.join(format(i*j, ' >'+str(w)) for i in range(1, n+1)) for j in range(1, n+1)))
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
Your code example is not working due to the last "strip", which is removing whitespace through the left and shifting your results.
Just removing the strip:
if __name__ == '__main__':
for row in range(1, 20+1):
table = ''
for column in range(1, 20+1):
table += '{:4} '.format(row * column)
print(table)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Another possible approach would be to use list comprehensions as follows:
for row in [['{:4}'.format(row * col) for col in range(1, 21)] for row in range(1, 21)]:
print ''.join(row)
This would give you the following output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Categories