Python: Check if a method uses #staticmethod [duplicate] - python

assume following class definition:
class A:
def f(self):
return 'this is f'
#staticmethod
def g():
return 'this is g'
a = A()
So f is a normal method and g is a static method.
Now, how can I check if the funcion objects a.f and a.g are static or not? Is there a "isstatic" funcion in Python?
I have to know this because I have lists containing many different function (method) objects, and to call them I have to know if they are expecting "self" as a parameter or not.

Lets experiment a bit:
>>> import types
>>> class A:
... def f(self):
... return 'this is f'
... #staticmethod
... def g():
... return 'this is g'
...
>>> a = A()
>>> a.f
<bound method A.f of <__main__.A instance at 0x800f21320>>
>>> a.g
<function g at 0x800eb28c0>
>>> isinstance(a.g, types.FunctionType)
True
>>> isinstance(a.f, types.FunctionType)
False
So it looks like you can use types.FunctionType to distinguish static methods.

Your approach seems a bit flawed to me, but you can check class attributes:
(in Python 2.7):
>>> type(A.f)
<type 'instancemethod'>
>>> type(A.g)
<type 'function'>
or instance attributes in Python 3.x
>>> a = A()
>>> type(a.f)
<type 'method'>
>>> type(a.g)
<type 'function'>

To supplement the answers here, in Python 3 the best way is like so:
import inspect
class Test:
#staticmethod
def test(): pass
isstatic = isinstance(inspect.getattr_static(Test, "test"), staticmethod)
We use getattr_static rather than getattr, since getattr will retrieve the bound method or function, not the staticmethod class object. You can do a similar check for classmethod types and property's (e.g. attributes defined using the #property decorator)
Note that even though it is a staticmethod, don't assume it was defined inside the class. The method source may have originated from another class. To get the true source, you can look at the underlying function's qualified name and module. For example:
class A:
#staticmethod:
def test(): pass
class B: pass
B.test = inspect.getattr_static(A, "test")
print("true source: ", B.test.__qualname__)
Technically, any method can be used as "static" methods, so long as they are called on the class itself, so just keep that in mind. For example, this will work perfectly fine:
class Test:
def test():
print("works!")
Test.test()
That example will not work with instances of Test, since the method will be bound to the instance and called as Test.test(self) instead.
Instance and class methods can be used as static methods as well in some cases, so long as the first arg is handled properly.
class Test:
def test(self):
print("works!")
Test.test(None)
Perhaps another rare case is a staticmethod that is also bound to a class or instance. For example:
class Test:
#classmethod
def test(cls): pass
Test.static_test = staticmethod(Test.test)
Though technically it is a staticmethod, it is really behaving like a classmethod. So in your introspection, you may consider checking the __self__ (recursively on __func__) to see if the method is bound to a class or instance.

I happens to have a module to solve this. And it's Python2/3 compatible solution. And it allows to test with method inherit from parent class.
Plus, this module can also test:
regular attribute
property style method
regular method
staticmethod
classmethod
For example:
class Base(object):
attribute = "attribute"
#property
def property_method(self):
return "property_method"
def regular_method(self):
return "regular_method"
#staticmethod
def static_method():
return "static_method"
#classmethod
def class_method(cls):
return "class_method"
class MyClass(Base):
pass
Here's the solution for staticmethod only. But I recommend to use the module posted here.
import inspect
def is_static_method(klass, attr, value=None):
"""Test if a value of a class is static method.
example::
class MyClass(object):
#staticmethod
def method():
...
:param klass: the class
:param attr: attribute name
:param value: attribute value
"""
if value is None:
value = getattr(klass, attr)
assert getattr(klass, attr) == value
for cls in inspect.getmro(klass):
if inspect.isroutine(value):
if attr in cls.__dict__:
bound_value = cls.__dict__[attr]
if isinstance(bound_value, staticmethod):
return True
return False

Why bother? You can just call g like you call f:
a = A()
a.f()
a.g()

Related

In Python can isinstance() be used to detect a class method?

How to determine if an object is a class method? Isn't it best practice to use isinstance(), and how does one make that work?
class Foo:
class_var = 0
#classmethod
def bar(cls):
cls.class_var += 1
print("class variable value:", cls.class_var)
def wrapper(wrapped: classmethod):
"""
Call the wrapped method.
:param wrapped (classmethod, required)
"""
wrapped()
Foo.bar()
wrapper(Foo.bar)
print("the type is:", type(Foo.bar))
print("instance check success:", isinstance(Foo.bar, classmethod))
Output:
class variable value: 1
class variable value: 2
the type is: <class 'method'>
instance check success: False
Process finished with exit code 0
If you just want to tell class methods apart from regular methods and static methods, then you can check this with inspect.ismethod(f).
class A:
def method(self): pass
#classmethod
def class_method(cls): pass
#staticmethod
def static_method(): pass
In the REPL:
>>> from inspect import ismethod
>>> ismethod(A.method)
False
>>> ismethod(A.class_method)
True
>>> ismethod(A.static_method)
False
If you prefer to do this with isinstance, then that's possible using typing.types.MethodType:
>>> from typing import types
>>> isinstance(A.method, types.MethodType)
False
>>> isinstance(A.class_method, types.MethodType)
True
>>> isinstance(A.static_method, types.MethodType)
False
Note that these tests will incorrectly identify e.g. A().method because really we're just testing for a bound method as opposed to an unbound function. So the above solutions only work assuming that you are checking A.something where A is a class and something is either a regular method, a class method or a static method.
As you know Python fills the first parameter of the classmethods with a reference to the class itself and it doesn't matter if you call that method from the class or the instance of the class. A method object is a function which has an object bound to it.
That object can be retrieved by .__self__ attribute. So you can simply check that if the .__self__ attribute is a class or not. If it is a class , it's class is type.
One way of doing it:
class Foo:
#classmethod
def fn1(cls):
pass
def fn2(self):
pass
def is_classmethod(m):
first_parameter = getattr(m, '__self__', None)
if not first_parameter:
return False
type_ = type(first_parameter)
return type_ is type
print(is_classmethod(Foo.fn1))
print(is_classmethod(Foo().fn1))
print("-----------------------------------")
print(is_classmethod(Foo.fn2))
print(is_classmethod(Foo().fn2))
output:
True
True
-----------------------------------
False
False
There is a ismethod function in inspect module that specifically checks that if the object is a bound method. You can use this as well before checking for the type of the first parameter.
NOTE: There is a caveat with the above solution, I'll mention it at the end.
Solution number 2:
Your isinstance solution didn't work because classmethod is a descriptor. If you want to get the actual classmethod instance, you should check the Foo's namespace and get the methods from there.
class Foo:
#classmethod
def fn1(cls):
pass
def fn2(self):
pass
def is_classmethod(cls, m):
return isinstance(cls.__dict__[m.__name__], classmethod)
print(is_classmethod(Foo, Foo.fn1))
print(is_classmethod(Foo, Foo().fn1))
print("-----------------------------------")
print(is_classmethod(Foo, Foo.fn2))
print(is_classmethod(Foo, Foo().fn2))
Solution number 1 caveat: For example if you have a simple MethodType object whose bound object is a different class like int here, this solution isn't going to work. Because remember we just checked that if the first parameter is of type type:
from types import MethodType
class Foo:
def fn2(self):
pass
fn2 = MethodType(fn2, int)
#classmethod
def fn1(cls):
pass
Now only solution number 2 works.

Class with a registry of methods based on decorators

I have a class that has several methods which each have certain properties (in the sense of quality). I'd like these methods to be available in a list inside the class so they can be executed at once. Note that the properties can be interchangeable so this can't be solved by using further classes that would inherit from the original one. In an ideal world it would look something like this:
class MyClass:
def __init__():
red_rules = set()
blue_rules = set()
hard_rules = set()
soft_rules = set()
#red
def rule_one(self):
return 1
#blue
#hard
def rule_two(self):
return 2
#hard
def rule_three(self):
return 3
#blue
#soft
def rule_four(self):
return 4
When the class is instantiated, it should be easy to simply execute all red and soft rules by combining the sets and executing the methods. The decorators for this are tricky though since a regular registering decorator can fill out a global object but not the class attribute:
def red(fn):
red_rules.add(fn)
return fn
How do I go about implementing something like this?
You can subclass set and give it a decorator method:
class MySet(set):
def register(self, method):
self.add(method)
return method
class MyClass:
red_rules = MySet()
blue_rules = MySet()
hard_rules = MySet()
soft_rules = MySet()
#red_rules.register
def rule_one(self):
return 1
#blue_rules.register
#hard_rules.register
def rule_two(self):
return 2
#hard_rules.register
def rule_three(self):
return 3
#blue_rules.register
#soft_rules.register
def rule_four(self):
return 4
Or if you find using the .register method ugly, you can always define the __call__ method to use the set itself as a decorator:
class MySet(set):
def __call__(self, method):
"""Use set as a decorator to add elements to it."""
self.add(method)
return method
class MyClass:
red_rules = MySet()
...
#red_rules
def rule_one(self):
return 1
...
This looks better, but it's less explicit, so for other collaborators (or future yourself) it might be harder to grasp what's happening here.
To call the stored functions, you can just loop over the set you want and pass in the instance as the self argument:
my_instance = MyClass()
for rule in MyClass.red_rules:
rule(my_instance)
You can also create an utility function to do this for you, for example you can create a MySet.invoke() method:
class MySet(set):
...
def invoke(self, obj):
for rule in self:
rule(obj)
And now just call:
MyClass.red_rules.invoke(my_instance)
Or you could have MyClass handle this instead:
class MyClass:
...
def invoke_rules(self, rules):
for rule in rules:
rule(self)
And then call this on an instance of MyClass:
my_instance.invoke_rules(MyClass.red_rules)
Decorators are applied when the function is defined; in a class that's when the class is defined. At this point in time there are no instances yet!
You have three options:
Register your decorators at the class level. This is not as clean as it may sound; you either have to explicitly pass additional objects to your decorators (red_rules = set(), then #red(red_rules) so the decorator factory can then add the function to the right location), or you have to use some kind of class initialiser to pick up specially marked functions; you could do this with a base class that defines the __init_subclass__ class method, at which point you can iterate over the namespace and find those markers (attributes set by the decorators).
Have your __init__ method (or a __new__ method) loop over all the methods on the class and look for special attributes the decorators have put there.
The decorator would only need to add a _rule_name or similar attribute to decorated methods, and {getattr(self, name) for for name in dir(self) if getattr(getattr(self, name), '_rule_name', None) == rule_name} would pick up any method that has the right rule name defined in rule_name.
Make your decorators produce new descriptor objects; descriptors have their __set_name__() method called when the class object is created. This gives you access to the class, and thus you can add attributes to that class.
Note that __init_subclass__ and __set_name__ require Python 3.6 or newer; you'd have to resort to a metaclass to achieve similar functionality in earlier versions.
Also note that when you register functions at the class level, that you need to then explicitly bind them with function.__get__(self, type(cls)) to turn them into methods, or you can explicitly pass in self when calling them. You could automate this by making a dedicated class to hold the rule sets, and make this class a descriptor too:
import types
from collections.abc import MutableSet
class RulesSet(MutableSet):
def __init__(self, values=(), rules=None, instance=None, owner=None):
self._rules = rules or set() # can be a shared set!
self._instance = instance
self._owner = owner
self |= values
def __repr__(self):
bound = ''
if self._owner is not None:
bound = f', instance={self._instance!r}, owner={self._owner!r}'
rules = ', '.join([repr(v) for v in iter(self)])
return f'{type(self).__name__}({{{rules}}}{bound})'
def __contains__(self, ob):
try:
if ob.__self__ is self._instance or ob.__self__ is self._owner:
# test for the unbound function instead when both are bound, this requires staticmethod and classmethod to be unwrapped!
ob = ob.__func__
return any(ob is getattr(f, '__func__', f) for f in self._rules)
except AttributeError:
# not a method-like object
pass
return ob in self._rules
def __iter__(self):
if self._owner is not None:
return (f.__get__(self._instance, self._owner) for f in self._rules)
return iter(self._rules)
def __len__(self):
return len(self._rules)
def add(self, ob):
while isinstance(ob, Rule):
# remove any rule wrappers
ob = ob._function
assert isinstance(ob, (types.FunctionType, classmethod, staticmethod))
self._rules.add(ob)
def discard(self, ob):
self._rules.discard(ob)
def __get__(self, instance, owner):
# share the set with a new, bound instance.
return type(self)(rules=self._rules, instance=instance, owner=owner)
class Rule:
#classmethod
def make_decorator(cls, rulename):
ruleset_name = f'{rulename}_rules'
def decorator(f):
return cls(f, ruleset_name)
decorator.__name__ = rulename
return decorator
def __init__(self, function, ruleset_name):
self._function = function
self._ruleset_name = ruleset_name
def __get__(self, *args):
# this is mostly here just to make Python call __set_name__
return self._function.__get__(*args)
def __set_name__(self, owner, name):
# register, then replace the name with the original function
# to avoid being a performance bottleneck
ruleset = getattr(owner, self._ruleset_name, None)
if ruleset is None:
ruleset = RulesSet()
setattr(owner, self._ruleset_name, ruleset)
ruleset.add(self)
# transfer controrol to any further rule objects
if isinstance(self._function, Rule):
self._function.__set_name__(owner, name)
else:
setattr(owner, name, self._function)
red = Rule.make_decorator('red')
blue = Rule.make_decorator('blue')
hard = Rule.make_decorator('hard')
soft = Rule.make_decorator('soft')
Then just use:
class MyClass:
#red
def rule_one(self):
return 1
#blue
#hard
def rule_two(self):
return 2
#hard
def rule_three(self):
return 3
#blue
#soft
def rule_four(self):
return 4
and you can access self.red_rules, etc. as a set with bound methods:
>>> inst = MyClass()
>>> inst.red_rules
RulesSet({<bound method MyClass.rule_one of <__main__.MyClass object at 0x106fe7550>>}, instance=<__main__.MyClass object at 0x106fe7550>, owner=<class '__main__.MyClass'>)
>>> inst.blue_rules
RulesSet({<bound method MyClass.rule_two of <__main__.MyClass object at 0x106fe7550>>, <bound method MyClass.rule_four of <__main__.MyClass object at 0x106fe7550>>}, instance=<__main__.MyClass object at 0x106fe7550>, owner=<class '__main__.MyClass'>)
>>> inst.hard_rules
RulesSet({<bound method MyClass.rule_three of <__main__.MyClass object at 0x106fe7550>>, <bound method MyClass.rule_two of <__main__.MyClass object at 0x106fe7550>>}, instance=<__main__.MyClass object at 0x106fe7550>, owner=<class '__main__.MyClass'>)
>>> inst.soft_rules
RulesSet({<bound method MyClass.rule_four of <__main__.MyClass object at 0x106fe7550>>}, instance=<__main__.MyClass object at 0x106fe7550>, owner=<class '__main__.MyClass'>)
>>> for rule in inst.hard_rules:
... rule()
...
2
3
The same rules are accessible on the class; normal functions remain unbound:
>>> MyClass.blue_rules
RulesSet({<function MyClass.rule_two at 0x107077a60>, <function MyClass.rule_four at 0x107077b70>}, instance=None, owner=<class '__main__.MyClass'>)
>>> next(iter(MyClass.blue_rules))
<function MyClass.rule_two at 0x107077a60>
Containment testing works as expected:
>>> inst.rule_two in inst.hard_rules
True
>>> inst.rule_two in inst.soft_rules
False
>>> MyClass.rule_two in MyClass.hard_rules
True
>>> MyClass.rule_two in inst.hard_rules
True
You can use these rules to register classmethod and staticmethod objects too:
>>> class Foo:
... #hard
... #classmethod
... def rule_class(cls):
... return f'rule_class of {cls!r}'
...
>>> Foo.hard_rules
RulesSet({<bound method Foo.rule_class of <class '__main__.Foo'>>}, instance=None, owner=<class '__main__.Foo'>)
>>> next(iter(Foo.hard_rules))()
"rule_class of <class '__main__.Foo'>"
>>> Foo.rule_class in Foo.hard_rules
True

Same name for classmethod and instancemethod

I'd like to do something like this:
class X:
#classmethod
def id(cls):
return cls.__name__
def id(self):
return self.__class__.__name__
And now call id() for either the class or an instance of it:
>>> X.id()
'X'
>>> X().id()
'X'
Obviously, this exact code doesn't work, but is there a similar way to make it work?
Or any other workarounds to get such behavior without too much "hacky" stuff?
Class and instance methods live in the same namespace and you cannot reuse names like that; the last definition of id will win in that case.
The class method will continue to work on instances however, there is no need to create a separate instance method; just use:
class X:
#classmethod
def id(cls):
return cls.__name__
because the method continues to be bound to the class:
>>> class X:
... #classmethod
... def id(cls):
... return cls.__name__
...
>>> X.id()
'X'
>>> X().id()
'X'
This is explicitly documented:
It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is ignored except for its class.
If you do need distinguish between binding to the class and an instance
If you need a method to work differently based on where it is being used on; bound to a class when accessed on the class, bound to the instance when accessed on the instance, you'll need to create a custom descriptor object.
The descriptor API is how Python causes functions to be bound as methods, and bind classmethod objects to the class; see the descriptor howto.
You can provide your own descriptor for methods by creating an object that has a __get__ method. Here is a simple one that switches what the method is bound to based on context, if the first argument to __get__ is None, then the descriptor is being bound to a class, otherwise it is being bound to an instance:
class class_or_instancemethod(classmethod):
def __get__(self, instance, type_):
descr_get = super().__get__ if instance is None else self.__func__.__get__
return descr_get(instance, type_)
This re-uses classmethod and only re-defines how it handles binding, delegating the original implementation for instance is None, and to the standard function __get__ implementation otherwise.
Note that in the method itself, you may then have to test, what it is bound to. isinstance(firstargument, type) is a good test for this:
>>> class X:
... #class_or_instancemethod
... def foo(self_or_cls):
... if isinstance(self_or_cls, type):
... return f"bound to the class, {self_or_cls}"
... else:
... return f"bound to the instance, {self_or_cls"
...
>>> X.foo()
"bound to the class, <class '__main__.X'>"
>>> X().foo()
'bound to the instance, <__main__.X object at 0x10ac7d580>'
An alternative implementation could use two functions, one for when bound to a class, the other when bound to an instance:
class hybridmethod:
def __init__(self, fclass, finstance=None, doc=None):
self.fclass = fclass
self.finstance = finstance
self.__doc__ = doc or fclass.__doc__
# support use on abstract base classes
self.__isabstractmethod__ = bool(
getattr(fclass, '__isabstractmethod__', False)
)
def classmethod(self, fclass):
return type(self)(fclass, self.finstance, None)
def instancemethod(self, finstance):
return type(self)(self.fclass, finstance, self.__doc__)
def __get__(self, instance, cls):
if instance is None or self.finstance is None:
# either bound to the class, or no instance method available
return self.fclass.__get__(cls, None)
return self.finstance.__get__(instance, cls)
This then is a classmethod with an optional instance method. Use it like you'd use a property object; decorate the instance method with #<name>.instancemethod:
>>> class X:
... #hybridmethod
... def bar(cls):
... return f"bound to the class, {cls}"
... #bar.instancemethod
... def bar(self):
... return f"bound to the instance, {self}"
...
>>> X.bar()
"bound to the class, <class '__main__.X'>"
>>> X().bar()
'bound to the instance, <__main__.X object at 0x10a010f70>'
Personally, my advice is to be cautious about using this; the exact same method altering behaviour based on the context can be confusing to use. However, there are use-cases for this, such as SQLAlchemy's differentiation between SQL objects and SQL values, where column objects in a model switch behaviour like this; see their Hybrid Attributes documentation. The implementation for this follows the exact same pattern as my hybridmethod class above.
I have no idea what's your actual use case is, but you can do something like this using a descriptor:
class Desc(object):
def __get__(self, ins, typ):
if ins is None:
print 'Called by a class.'
return lambda : typ.__name__
else:
print 'Called by an instance.'
return lambda : ins.__class__.__name__
class X(object):
id = Desc()
x = X()
print x.id()
print X.id()
Output
Called by an instance.
X
Called by a class.
X
It can be done, quite succinctly, by binding the instance-bound version of your method explicitly to the instance (rather than to the class). Python will invoke the instance attribute found in Class().__dict__ when Class().foo() is called (because it searches the instance's __dict__ before the class'), and the class-bound method found in Class.__dict__ when Class.foo() is called.
This has a number of potential use cases, though whether they are anti-patterns is open for debate:
class Test:
def __init__(self):
self.check = self.__check
#staticmethod
def check():
print('Called as class')
def __check(self):
print('Called as instance, probably')
>>> Test.check()
Called as class
>>> Test().check()
Called as instance, probably
Or... let's say we want to be able to abuse stuff like map():
class Str(str):
def __init__(self, *args):
self.split = self.__split
#staticmethod
def split(sep=None, maxsplit=-1):
return lambda string: string.split(sep, maxsplit)
def __split(self, sep=None, maxsplit=-1):
return super().split(sep, maxsplit)
>>> s = Str('w-o-w')
>>> s.split('-')
['w', 'o', 'w']
>>> Str.split('-')(s)
['w', 'o', 'w']
>>> list(map(Str.split('-'), [s]*3))
[['w', 'o', 'w'], ['w', 'o', 'w'], ['w', 'o', 'w']]
"types" provides something quite interesting since Python 3.4: DynamicClassAttribute
It is not doing 100% of what you had in mind, but it seems to be closely related, and you might need to tweak a bit my metaclass but, rougly, you can have this;
from types import DynamicClassAttribute
class XMeta(type):
def __getattr__(self, value):
if value == 'id':
return XMeta.id # You may want to change a bit that line.
#property
def id(self):
return "Class {}".format(self.__name__)
That would define your class attribute. For the instance attribute:
class X(metaclass=XMeta):
#DynamicClassAttribute
def id(self):
return "Instance {}".format(self.__class__.__name__)
It might be a bit overkill especially if you want to stay away from metaclasses. It's a trick I'd like to explore on my side, so I just wanted to share this hidden jewel, in case you can polish it and make it shine!
>>> X().id
'Instance X'
>>> X.id
'Class X'
Voila...
In your example, you could simply delete the second method entirely, since both the staticmethod and the class method do the same thing.
If you wanted them to do different things:
class X:
def id(self=None):
if self is None:
# It's being called as a static method
else:
# It's being called as an instance method
(Python 3 only) Elaborating on the idea of a pure-Python implementation of #classmethod, we can declare an #class_or_instance_method as a decorator, which is actually a class implementing the attribute descriptor protocol:
import inspect
class class_or_instance_method(object):
def __init__(self, f):
self.f = f
def __get__(self, instance, owner):
if instance is not None:
class_or_instance = instance
else:
class_or_instance = owner
def newfunc(*args, **kwargs):
return self.f(class_or_instance, *args, **kwargs)
return newfunc
class A:
#class_or_instance_method
def foo(self_or_cls, a, b, c=None):
if inspect.isclass(self_or_cls):
print("Called as a class method")
else:
print("Called as an instance method")

Python - Testing an abstract base class

I am looking for ways / best practices on testing methods defined in an abstract base class. One thing I can think of directly is performing the test on all concrete subclasses of the base class, but that seems excessive at some times.
Consider this example:
import abc
class Abstract(object):
__metaclass__ = abc.ABCMeta
#abc.abstractproperty
def id(self):
return
#abc.abstractmethod
def foo(self):
print "foo"
def bar(self):
print "bar"
Is it possible to test bar without doing any subclassing?
In newer versions of Python you can use unittest.mock.patch()
class MyAbcClassTest(unittest.TestCase):
#patch.multiple(MyAbcClass, __abstractmethods__=set())
def test(self):
self.instance = MyAbcClass() # Ha!
Here is what I have found: If you set __abstractmethods__ attribute to be an empty set you'll be able to instantiate abstract class. This behaviour is specified in PEP 3119:
If the resulting __abstractmethods__ set is non-empty, the class is considered abstract, and attempts to instantiate it will raise TypeError.
So you just need to clear this attribute for the duration of tests.
>>> import abc
>>> class A(metaclass = abc.ABCMeta):
... #abc.abstractmethod
... def foo(self): pass
You cant instantiate A:
>>> A()
Traceback (most recent call last):
TypeError: Can't instantiate abstract class A with abstract methods foo
If you override __abstractmethods__ you can:
>>> A.__abstractmethods__=set()
>>> A() #doctest: +ELLIPSIS
<....A object at 0x...>
It works both ways:
>>> class B(object): pass
>>> B() #doctest: +ELLIPSIS
<....B object at 0x...>
>>> B.__abstractmethods__={"foo"}
>>> B()
Traceback (most recent call last):
TypeError: Can't instantiate abstract class B with abstract methods foo
You can also use unittest.mock (from 3.3) to override temporarily ABC behaviour.
>>> class A(metaclass = abc.ABCMeta):
... #abc.abstractmethod
... def foo(self): pass
>>> from unittest.mock import patch
>>> p = patch.multiple(A, __abstractmethods__=set())
>>> p.start()
{}
>>> A() #doctest: +ELLIPSIS
<....A object at 0x...>
>>> p.stop()
>>> A()
Traceback (most recent call last):
TypeError: Can't instantiate abstract class A with abstract methods foo
As properly put by lunaryon, it is not possible. The very purpose of ABCs containing abstract methods is that they are not instantiatable as declared.
However, it is possible to create a utility function that introspects an ABC, and creates a dummy, non abstract class on the fly. This function could be called directly inside your test method/function and spare you of having to wite boiler plate code on the test file just for testing a few methods.
def concreter(abclass):
"""
>>> import abc
>>> class Abstract(metaclass=abc.ABCMeta):
... #abc.abstractmethod
... def bar(self):
... return None
>>> c = concreter(Abstract)
>>> c.__name__
'dummy_concrete_Abstract'
>>> c().bar() # doctest: +ELLIPSIS
(<abc_utils.Abstract object at 0x...>, (), {})
"""
if not "__abstractmethods__" in abclass.__dict__:
return abclass
new_dict = abclass.__dict__.copy()
for abstractmethod in abclass.__abstractmethods__:
#replace each abc method or property with an identity function:
new_dict[abstractmethod] = lambda x, *args, **kw: (x, args, kw)
#creates a new class, with the overriden ABCs:
return type("dummy_concrete_%s" % abclass.__name__, (abclass,), new_dict)
You can use multiple inheritance practice to have access to the implemented methods of the abstract class. Obviously following such design decision depends on the structure of the abstract class since you need to implement abstract methods (at least bring the signature) in your test case.
Here is the example for your case:
class Abstract(object):
__metaclass__ = abc.ABCMeta
#abc.abstractproperty
def id(self):
return
#abc.abstractmethod
def foo(self):
print("foo")
def bar(self):
print("bar")
class AbstractTest(unittest.TestCase, Abstract):
def foo(self):
pass
def test_bar(self):
self.bar()
self.assertTrue(1==1)
No, it's not. The very purpose of abc is to create classes that cannot be instantiated unless all abstract attributes are overridden with concrete implementations. Hence you need to derive from the abstract base class and override all abstract methods and properties.
Perhaps a more compact version of the concreter proposed by #jsbueno could be:
def concreter(abclass):
class concreteCls(abclass):
pass
concreteCls.__abstractmethods__ = frozenset()
return type('DummyConcrete' + abclass.__name__, (concreteCls,), {})
The resulting class still has all original abstract methods (which can be now called, even if this is not likely to be useful...) and can be mocked as needed.

How to check if a function exist (but not inherited) in python?

Kind of related to this question:
https://stackoverflow.com/questions/8708525/how-to-check-if-mako-function-exist
I want to check if a function exists for a given class, but not inherited, so that the parent can called the child's function, since otherwise it would result in an infinite recursion..
edit:
it actually gives a maximum stack level error, which is the same.
the equivalent code would be:
class A(object):
def f(x):
b = B()
b.f()
class B(A):
pass
a = A()
a.f()
i understand this is not clean or preferred, but it is what the template translates to, and I dunno how to check for it otherwise.
I want to check if a function exists for a given class, but not inherited
Yes, you can check the class dictionary directly. Either use the __dict__ attribute or the built-in vars() function::
>>> class A(object):
def f(x):
pass
>>> class B(A):
def g(x):
pass
>>> 'f' in vars(B)
False
>>> 'g' in vars(B)
True
If what you need is to check whether the method is defined directly in instance's class and not in one of its ancestors then you can try this:
import inspect
def has_method(obj, name):
v = vars(obj.__class__)
# check if name is defined in obj's class and that name is a method
return name in v and inspect.isroutine(v[name])
class A:
def foo(self):
print 'foo'
class B(A):
pass
b = B()
a = A()
print has_method(a, 'foo') # => True
print has_method(b, 'foo') # => False

Categories