I try to read a TIFF file with pillow/PIL (7.2.0) in Python (3.8.3), e.g. this image.
The resulting file seems to be corrupted:
from PIL import Image
import numpy as np
myimage = Image.open('moon.tif')
myimage.mode
# 'L'
myimage.format
# 'TIFF'
myimage.size
# (358, 537)
# so far all good, but:
np.array(myimage)
# shows only zeros in the array, likewise
np.array(myimage).sum()
# 0
It doesn't seem to be a problem of the conversion to numpy array only, since if I save it to a jpg (myimage.save('moon.jpg')) the resulting jpg image has the appropriate dimensions but is all black, too.
Where did I do wrong or is it a bug?
I am not an expert in coding but i had same problem and found the TIFF file has 4 layers. R, G ,B and Alpha. When you convert it using PIL it is black.
try to view the image as plt.imshow(myimage[:, :, 0])
you could also remove the Alpha layer by saving the read image ( i used plt.imread('image')) and then saving it as image=image[:,:,3]. Now its a RGB image.
I don't know if i answered your question, but i felt this info might be of help.
Related
I am trying to visualize a tiff image in an ipython notebook using the following code, import statements are ignored for clarity purposes.
from PIL import Image
orig_img_path = os.path.join("path/to/tiff/0.tiff")
img_orig = Image.open(orig_img_path,"r")
plt.imshow(img_orig)
plt.show()
The above snippet just shows me the following black image -
I know that the image pixel values are non-zero since I can open the original images on my MacBook and they look like the following -
I also double check that the pixel values are nonzero by using the following code of casting the PIL image to an np array using the following code and printing the array out -
img_arr = np.array(img_orig)
print(img_arr)
which gives me the following output -
I think I know what the issue is as well - that the matplotlib pyplot thinks that this is a PNG image or something like that and as we can see the pixel values are very small to be perceivable by the human eyes. I mean I can simply multiply the image by 255 which gives the following image as expected, although scaling by 255 is not entirely right since the pixel values need to be normalized for the minimum to corrspond to 0 and max to 255 assuming mat plot lib thinks that it is showing a PNG image -
I would like to know if there is a better way of doing so rather than me manually doing it all the time, any native way of displaying tiff in a Jupyter/ipython notebook which preserves all the good properties of tiff images such as floating point numbers etc.
Thanks and please let me know if anything is unclear.
Edit 1: Link to the original file is here - https://drive.google.com/file/d/1O1-QM6aeU5-QZhT36vOMjDND2vkZNgqB/view?usp=sharing
-- Megh
If you share your original image in .tiff format the solution might be more precise.
You are reading the image pixels as type float: 0-1, and after that, you parse them as uint8 : 0-255 which will turn all pixels values into 0 or 1: Black or almost Black
You can try the following approach to read your image (supposedly Black and White) and parse it:
import cv2
gray = cv2.imread("path/to/tiff/0.tiff", cv2.IMREAD_UNCHANGED)
cv2.namedWindow("MyImage", cv2.WINDOW_NORMAL)
cv2.imshow("MyImage", gray)
cv2.waitKey(0)
What is the range of values that you expect in that image? Did you do any preprocessing to it?
The image you are trying to display in matplotlib contains negative values. Visualizing works well for any kind of uint8 data (Grayscale and RGB) and data in the range of 0 - 1. Your displaying issue can be addressed by adding the min value of the image and then dividing by the max value (effectively normalizing your data to the range 0-1).
[...]
img = np.array(img_orig, dtype=float)
img += abs(np.min(img))
img /= np.max(img)
plt.imshow(img)
plt.show()
I've tried overlaying two images in openCV both in openCV and in PIL, but to no avail. I'm using a 1000x1000x3 array of np.zeros for the background (aka, a black background) and this random image of my monitor, but I really can't get it to work for some reason unbeknownst to me.
Trying with OpenCV only: (result(if you pay attention, you can see a couple of weird lines and dots in the middle))
base_temp = np.zeros((1000,1000,3))
foreground_temp = cv2.imread('exampleImageThatILinkedAbove.png')
base_temp[offset_y:offset_y+foreground_temp.shape[0], offset_x:offset_x+foreground_temp.shape[1]] = foreground_temp
Trying with PIL: (The result is literally the same as the OpenCV version)
base_temp = cv2.convertScaleAbs(self.base) #Convert to uint8 for cvtColor
base_temp = cv2.cvtColor(base_temp, cv2.COLOR_BGR2RGB) #PIL uses RGB and OpenCV uses BGR
base_temp = Image.fromarray(base_temp) #Convert to PIL Image
foreground_temp = cv2.cvtColor(cv2.convertScaleAbs(self.last_img), cv2.COLOR_BGR2RGB)
foreground_temp = Image.fromarray(foreground_temp)
base_temp.paste(foreground_temp, offset)
I'm using python3.5 and and OpenCV3.4 on Windows 10, if that's any help.
I'd like to avoid any solutions that require saving the cv2 images and then reloading them in another module to convert them but if it's unavoidable that's okay too. Any help would be appreciated!
If you check the type of base_temp, you will see it is float64 and that is going to cause you problems when you try to save it as a JPEG which expects unsigned 8-bit values.
So the solution is to create your base_temp image with the correct type:
base_temp = np.zeros((1000,1000,3), dtype=np.uint8)
The complete code and result look like this:
import cv2
import numpy as np
from PIL import Image
# Make black background - not square, so it shows up problems with swapped dimensions
base_temp=np.zeros((768,1024,3),dtype=np.uint8)
foreground_temp=cv2.imread('monitor.png')
# Paste with different x and y offsets so it is clear when indices are swapped
offset_y=80
offset_x=40
base_temp[offset_y:offset_y+foreground_temp.shape[0], offset_x:offset_x+foreground_temp.shape[1]] = foreground_temp
Image.fromarray(base_temp).save('result.png')
I have a list called w (size: 784), which I outputted to a png greyscale image:
import matplotlib.pyplot as plt
tmp = 1/(1+np.exp(-10*w/w.max()))
plt.imshow(tmp.reshape(28,28),cmap="gray")
plt.draw()
plt.savefig("final_weight_vector")
Now I want to read the png image back to be a vector.
The solutions I found so far:
First:
import matplotlib.image as mpimg
img=mpimg.imread('final_weight_vector.png')
but img appears to not be greyscale, because its dimensions turend out to be (600, 800, 4).
Second:
reading the file as RGB and converting to greyscale:
im = Image.open('final_weight_vector.png').convert('LA')
However, I couldn't find how to iterate over im so I have no idea as to what's inside. Further, I am not sure the output of im will have the exact same values as the original w.
Help please?
The problem is that what you saved is probably a plot of the 28x28 image, not the image itself.
To be sure, please preview the image. I bet it is 600x800, not 28x28. I also suppose it contains many additional elements, like axes and padding.
If you want to store your array in a loadable format, you may use numpy.save() (and numpy.load() to load it).
You may also use PIL to save your array as image (e.g. using something similar to: http://code.activestate.com/recipes/577591-conversion-of-pil-image-and-numpy-array/)
I have a jpeg image as follows:
Now I want to load this image to do image processing. I use the following code:
from scipy import misc
import numpy as np
im = misc.imread('logo.jpg')
Because the image is a coloured one, I would expect im is a 3D matrix. However, im.shape gives me a 2D matrix:
(150, 150)
I tried another way of loading image as follows:
from PIL import Image
jpgfile = Image.open("logo.jpg")
But jpgfile also has the size of 150x150.
My question is: What's wrong with my code, or my understanding about RGB image is wrong?
Thank you very much.
From the docs here: http://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imread.html, specify mode='RGB' to get the red, green, blue values. The output appears to default to conversion to a grayscale number.
I need to show a background to a matplotlib plot using ax.imshow(). The background images that I will be using are GIF-images. Despite having PIL installed, the following code results in an error complaining that the Python Image Library (PIL) is not installed (which it is):
from pylab import imread
im_file = open("test.gif")
im_obj = imread(im_file)
Reading the image using PIL directly works better:
from PIL import Image
import numpy
img = Image.open("test.gif")
img_arr = asarray(img.getdata(), dtype=numpy.uint8)
However, when reshaping the array, the following code does not work:
img_arr = img_arr.reshape(img.size[0], img.size[1], 3) #Note the number 3
The reason is that the actual color information is contained in a color table accessed through img.getcolors() or img.getpalette().
Converting all the images to PNG or another suitable format that results in RGB images when opening them with imread() or Image.open() is not an option. I could convert the images when needed using PIL but I consider that solution ugly. So the question is as follows: Is there a simple and fast (the images are 5000 x 5000 pixels) way to convert the GIF images to RGB (in RAM) so that I can display them using imshow()?
You need to convert the GIF to RGB first:
img = Image.open("test.gif").convert('RGB')
See this question: Get pixel's RGB using PIL