Get diagonal squares coordinates in numpy distance symmetric matrix - python

How to get the coordinates of the big rectangles that line on the diagonal.
For example yellow [0,615], [615,1438], [1438,1526]
import numpy as np;
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
df = pd.DataFrame(array) # array is image numpy
df.shape #(1526, 360)
s = cosine_similarity(df) #(1526, 1526)
plt.matshow(s)
i try get peaks in first row, but have noise information
speak = 1-s[0]
peaks, _ = find_peaks(speak, distance=160, height=0.1)
print(peaks, len(peaks))
np.diff(peaks)
plt.plot(speak)
plt.plot(peaks, speak[peaks], "x")
plt.show()
Update, add another example
And upload to colab full script https://colab.research.google.com/drive/1hyDIDs-QjLjD2mVIX4nNOXOcvCZY4O2c?usp=sharing

Use np.diag(df) to get a list of diagonal elements. Check when value crosses threshold if the color in your screenshot stands for below/above some value, probably zero.

All the diagonal elements of cosine_similarity are same. So you should look for changes in nearby values.
You could try this:
factor = 1.01
look_nearby = 1
changes = []
for i in range(look_nearby, s.shape[0]-look_nearby):
if s[i, i+look_nearby] > factor*s[i, i-look_nearby] or factor*s[i, i+look_nearby] < s[i, i-look_nearby]:
changes.append(i)
print(changes)
Set the factor value according to your preference (as you do not want (1200, 1200) in the output of 1st image) and according to the values of s.

Solve with DBSCAN clustering (find in same question DBSCAN for clustering of geographic location data)
from sklearn.cluster import DBSCAN
clustering = DBSCAN(eps=.5, min_samples=10).fit_predict(s)
peaks = np.where(clustering[:-1] != clustering[1:])[0]

Related

Principle Component Analysis, add a line to the 3d graph showing the first principal component

I am conducting PCA on a dataset. I am attempting to add a line in my 3d graph which shows the first principal component. I have tried a few methods but have not been able to display the first principal component as a line in my 3d graph. Any help is greatly appreciated. My code is as follows:
import numpy as np
np.set_printoptions (suppress=True, precision=5, linewidth=150)
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
file_name = 'C:/Users/data'
input_data = pd.read_csv (file_name + '.csv', header=0, index_col=0)
A = input_data.A.values.astype(float)
B = input_data.B.values.astype(float)
C = input_data.C.values.astype(float)
D = input_data.D.values.astype(float)
E = input_data.E.values.astype(float)
F = input_data.F.values.astype(float)
X = np.column_stack((A, B, C, D, E, F))
ncompo = int (input ("Number of components to study: "))
print("")
pca = PCA (n_components = ncompo)
pcafit = pca.fit(X)
cov_mat = np.cov(X, rowvar=0)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
perc = pcafit.explained_variance_ratio_
perc_x = range(1, len(perc)+1)
plt.plot(perc_x, perc)
plt.xlabel('Components')
plt.ylabel('Percentage of Variance Explained')
plt.show()
#3d Graph
plt.clf()
le = LabelEncoder()
le.fit(input_data.Grade)
number = le.transform(input_data.Grade)
colormap = np.array(['green', 'blue', 'red', 'yellow'])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(D, E, F, c=colormap[number])
ax.set_xlabel('D')
ax.set_ylabel('E')
ax.set_zlabel('F')
plt.title('PCA')
plt.show()
Some remarks to begin with:
You are computing PCA twice! To compute PCA is to compute eigen values and eigen vectors of the covariance matrix. So, either you use the sklearn function pca.fit, either you do it yourself. But you don't need to do both, unless you want to discover pca.fit and see for yourself that it does exactly what you expect it to do (if this is what you wanted, fine. It is a good thing to do that king of checking. I did this once also). Of course pca.fit has another advantage: once you have it, it also provides pca.predict to project points in the components space. But that also is simply a base change using eigenvectors matrix (that is matrix to change base)
pca object let you get the eigenvectors (pca.components_) and eigen values (pca.explained_variance_)
pca.fit is a 'inplace' method. It does not return a new PCA object. It just fit the one you have. So, no need to get pcafit and use it.
This is not a minimal reproducible exemple as required on SO. We should be able to copy and paste it, and run it, so see exactly your problem. Not to guess what kind of secret data you have. And in the meantime, it should be minimal. So, contains data example generation (it doesn't matter if those data doesn't make sense. Sometimes it is even better, since it allows some testing. In my following code, I generate my own noisy data along an axis, which allow me to verify that, indeed, I am able to "guess" what was that axis). Plus, since your problem concerns only 3d plot, there is no need to include ploting of explained variance here. That part is not part of your question.
Now, to print the principal component, well, you already did the hard part. Twice. That is to compute it. It is the eigenvector associated with the highest eigenvalue.
With pca object no need to search for it, they are already sorted. So it is simply pca.components_[0]. And since you want to plot in the space D,E,F, you simply need to draw vector pca.components_[0][3:].
With correct scaling.
You can do that with plot providing just 2 points (first and last)
Here is my version (which, by the way, shows also what a minimal reproducible example is)
import numpy as np
np.set_printoptions (suppress=True, precision=5, linewidth=150)
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# Generation of random data along a given vector
vec=np.array([1, -1, 0.5, -0.5, 0.75, 0.75]).reshape(-1,1)
# 10000 random data, that are U[0,10]×vec + gaussian noise std=1
X=(vec*np.random.rand(10000)*10 + np.random.normal(0,1,(6,10000))).T
(A,B,C,D,E,F)=X.T
input_data = pd.DataFrame({'A':A,'B':B,'C':C,'D':D,'E':E, 'F':F, 'Grade':np.random.randint(1,5, (10000,))})
ncompo=6
pca = PCA (n_components = ncompo)
pca.fit(X)
# Redundant
cov_mat = np.cov(X, rowvar=0)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
# See
print("Eigen values")
print(eig_vals)
print(pca.explained_variance_)
print("Eigen vec")
print(eig_vecs)
print(pca.components_)
# Note, compare first components to
print("Main component")
print(vec/np.linalg.norm(vec))
print(pca.components_[0])
#3d Graph
le = LabelEncoder()
le.fit(input_data.Grade)
number = le.transform(input_data.Grade)
fig = plt.figure()
colormap = np.array(['green', 'blue', 'red', 'yellow'])
ax = fig.add_subplot(111, projection='3d')
ax.scatter(D, E, F, c=colormap[number])
U=pca.components_[0]
sc1=max(D)/U[3]
sc2=min(D)/U[3]
# Draw the 1st principal component as a blue line
ax.plot([sc1*U[3],sc2*U[3]], [sc1*U[4], sc2*U[4]], [sc1*U[5], sc2*U[5]], linewidth=3)
ax.set_xlabel('D')
ax.set_ylabel('E')
ax.set_zlabel('F')
plt.title('PCA')
plt.show()
My example is not that minimal, because I took advantage of it to illustrate my first remark, and also computed PCA twice, to compare both result.
So, here I print, eigenvalues
Eigen values
[30.88941 1.01334 0.99512 0.96493 0.97692 0.98101]
[30.88941 1.01334 0.99512 0.98101 0.97692 0.96493]
(1st being your computation by diagonalisation of covariance matrix, 2nd pca.explained_variance_)
As you can see, they are the same, except sorting for the 1st one
Like wise,
Eigen vec
[[-0.52251 -0.27292 0.40863 -0.06321 0.26699 0.6405 ]
[ 0.52521 0.07577 -0.34211 0.27583 -0.04161 0.72357]
[-0.26266 -0.41332 -0.60091 0.38027 0.47573 -0.16779]
[ 0.26354 -0.52548 0.47284 0.59159 -0.24029 -0.15204]
[-0.39493 0.63946 0.07496 0.64966 -0.08619 0.00252]
[-0.3959 -0.25276 -0.35452 -0.0572 -0.79718 0.12217]]
[[ 0.52251 -0.52521 0.26266 -0.26354 0.39493 0.3959 ]
[-0.27292 0.07577 -0.41332 -0.52548 0.63946 -0.25276]
[-0.40863 0.34211 0.60091 -0.47284 -0.07496 0.35452]
[-0.6405 -0.72357 0.16779 0.15204 -0.00252 -0.12217]
[-0.26699 0.04161 -0.47573 0.24029 0.08619 0.79718]
[-0.06321 0.27583 0.38027 0.59159 0.64966 -0.0572 ]]
Also the same, but for sorting and transpose.
Eigen vectors are presented column wise when you diagonalize a matrix.
Where as for pca.components_ each line is an eigen vector.
But you can see that in the 1st matrix, the eigen vector associated to the biggest eigen value, that is, since biggest eigen value was the 1st one, the 1st column (-0.52, 0.52, etc.)
is also the same as the first line of pca.components_.
Like wise, the 4th biggest eigen value in your diagonalisation was the last one.
And if you look at the last column of your eigen vectors (0.64, 0.72, -0.76...), it is the same as the 4th line of pca.components_ (with a irrelevant ×-1 factor)
So, long story short, you already have eigenvals in pca.explained_variance_ sorted from the biggest to the smallest. And eigen vectors in pca_components_, in the same order.
Last thing I print here, is comparison between the first component (pca.components_[0]) and the vector I used to generate the data in the first place (my data are all colinear to a vector vec, + a gaussian noise).
Main component
[[ 0.52523]
[-0.52523]
[ 0.26261]
[-0.26261]
[ 0.39392]
[ 0.39392]]
[ 0.52251 -0.52521 0.26266 -0.26354 0.39493 0.3959 ]
As expected, PCA did find correctly that main axis.
So, that was just side comments.
What is really what you were looking for is
ax.plot([sc1*U[3],sc2*U[3]], [sc1*U[4], sc2*U[4]], [sc1*U[5], sc2*U[5]], linewidth=3)
sc1 and sc2 being just scaling factors (here I choose it so that it scales approx like the data. Another way would have been to set ax.set_xlim, ax.set_ylim, ax.set_zlim from D.min(), D.max(), E.min(), E.max(), etc.
And then just use big values for sc1 and sc2, like
sc1=1000
sc2=-1000

How can I cut a piece away from a plot and set the point I need to zero?

In my work I have the task to read in a CSV file and do calculations with it. The CSV file consists of 9 different columns and about 150 lines with different values acquired from sensors. First the horizontal acceleration was determined, from which the distance was derived by double integration. This represents the lower plot of the two plots in the picture. The upper plot represents the so-called force data. The orange graph shows the plot over the 9th column of the CSV file and the blue graph shows the plot over the 7th column of the CSV file.
As you can see I have drawn two vertical lines in the lower plot in the picture. These lines represent the x-value, which in the upper plot is the global minimum of the orange function and the intersection with the blue function. Now I want to do the following, but I need some help: While I want the intersection point between the first vertical line and the graph to be (0,0), i.e. the function has to be moved down. How do I achieve this? Furthermore, the piece of the function before this first intersection point (shown in purple) should be omitted, so that the function really only starts at this point. How can I do this?
In the following picture I try to demonstrate how I would like to do that:
If you need my code, here you can see it:
import numpy as np
import matplotlib.pyplot as plt
import math as m
import loaddataa as ld
import scipy.integrate as inte
from scipy.signal import find_peaks
import pandas as pd
import os
# Loading of the values
print(os.path.realpath(__file__))
a,b = os.path.split(os.path.realpath(__file__))
print(os.chdir(a))
print(os.chdir('..'))
print(os.chdir('..'))
path=os.getcwd()
path=path+"\\Data\\1 Fabienne\\Test1\\left foot\\50cm"
print(path)
dataListStride = ld.loadData(path)
indexStrideData = 0
strideData = dataListStride[indexStrideData]
#%%Calculation of the horizontal acceleration
def horizontal(yAngle, yAcceleration, xAcceleration):
a = ((m.cos(m.radians(yAngle)))*yAcceleration)-((m.sin(m.radians(yAngle)))*xAcceleration)
return a
resultsHorizontal = list()
for i in range (len(strideData)):
strideData_yAngle = strideData.to_numpy()[i, 2]
strideData_xAcceleration = strideData.to_numpy()[i, 4]
strideData_yAcceleration = strideData.to_numpy()[i, 5]
resultsHorizontal.append(horizontal(strideData_yAngle, strideData_yAcceleration, strideData_xAcceleration))
resultsHorizontal.insert(0, 0)
#plt.plot(x_values, resultsHorizontal)
#%%
#x-axis "convert" into time: 100 Hertz makes 0.01 seconds
scale_factor = 0.01
x_values = np.arange(len(resultsHorizontal)) * scale_factor
#Calculation of the global high and low points
heel_one=pd.Series(strideData.iloc[:,7])
plt.scatter(heel_one.idxmax()*scale_factor,heel_one.max(), color='red')
plt.scatter(heel_one.idxmin()*scale_factor,heel_one.min(), color='blue')
heel_two=pd.Series(strideData.iloc[:,9])
plt.scatter(heel_two.idxmax()*scale_factor,heel_two.max(), color='orange')
plt.scatter(heel_two.idxmin()*scale_factor,heel_two.min(), color='green')#!
#Plot of force data
plt.plot(x_values[:-1],strideData.iloc[:,7]) #force heel
plt.plot(x_values[:-1],strideData.iloc[:,9]) #force toe
# while - loop to calculate the point of intersection with the blue function
i = heel_one.idxmax()
while strideData.iloc[i,7] > strideData.iloc[i,9]:
i = i-1
# Length calculation between global minimum orange function and intersection with blue function
laenge=(i-heel_two.idxmin())*scale_factor
print(laenge)
#%% Integration of horizontal acceleration
velocity = inte.cumtrapz(resultsHorizontal,x_values)
plt.plot(x_values[:-1], velocity)
#%% Integration of the velocity
s = inte.cumtrapz(velocity, x_values[:-1])
plt.plot(x_values[:-2],s)
I hope it's clear what I want to do. Thanks for helping me!
I didn't dig all the way through your code, but the following tricks may be useful.
Say you have x and y values:
x = np.linspace(0,3,100)
y = x**2
Now, you only want the values corresponding to, say, .5 < x < 1.5. First, create a boolean mask for the arrays as follows:
mask = np.logical_and(.5 < x, x < 1.5)
(If this seems magical, then run x < 1.5 in your interpreter and observe the results).
Then use this mask to select your desired x and y values:
x_masked = x[mask]
y_masked = y[mask]
Then, you can translate all these values so that the first x,y pair is at the origin:
x_translated = x_masked - x_masked[0]
y_translated = y_masked - y_masked[0]
Is this the type of thing you were looking for?

Why does scipy.signal.correlate2d fail to work in this example?

I am trying to cross-correlate two images, and thus locate the template image on the first image, by finding the maximum correlation value.
I drew an image with some random shapes (first image), and cut out one of these shapes (template). Now, when I use scipy's correlate2d, and locate point in the correlation with maximum values, several point appear. From my knowledge, shouldn't there only be one point where the overlap is at max?
The idea behind this exercise is to take some part of an image, and then correlate that to some previous images from a database. Then I should be able to locate this part on the older images based on the maximum value of correlation.
My code looks something like this:
from matplotlib import pyplot as plt
from PIL import Image
import scipy.signal as sp
img = Image.open('test.png').convert('L')
img = np.asarray(img)
temp = Image.open('test_temp.png').convert('L')
temp = np.asarray(temp)
corr = sp.correlate2d(img, temp, boundary='symm', mode='full')
plt.imshow(corr, cmap='hot')
plt.colorbar()
coordin = np.where(corr == np.max(corr)) #Finds all coordinates where there is a maximum correlation
listOfCoordinates= list(zip(coordin[1], coordin[0]))
for i in range(len(listOfCoordinates)): #Plotting all those coordinates
plt.plot(listOfCoordinates[i][0], listOfCoordinates[i][1],'c*', markersize=5)
This yields the figure:
Cyan stars are points with max correlation value (255).
I expect there to be only one point in "corr" to have the max value of correlation, but several appear. I have tried to use different modes of correlating, but to no avail.
This is the test image I use when correlating.
This is the template, cut from the original image.
Can anyone give some insight to what I might be doing wrong here?
You are probably overflowing the numpy type uint8.
Try using:
img = np.asarray(img,dtype=np.float32)
temp = np.asarray(temp,dtype=np.float32)
Untested.
Applying
img = img - img.mean()
temp = temp - temp.mean()
before computing the 2D cross-correlation corr should give you the expected result.
Cleaning up the code, for a full example:
from imageio import imread
from matplotlib import pyplot as plt
import scipy.signal as sp
import numpy as np
img = imread('https://i.stack.imgur.com/JL2LW.png', pilmode='L')
temp = imread('https://i.stack.imgur.com/UIUzJ.png', pilmode='L')
corr = sp.correlate2d(img - img.mean(),
temp - temp.mean(),
boundary='symm',
mode='full')
# coordinates where there is a maximum correlation
max_coords = np.where(corr == np.max(corr))
plt.plot(max_coords[1], max_coords[0],'c*', markersize=5)
plt.imshow(corr, cmap='hot')

Find local maximums in numpy array

I am looking to find the peaks in some gaussian smoothed data that I have. I have looked at some of the peak detection methods available but they require an input range over which to search and I want this to be more automated than that. These methods are also designed for non-smoothed data. As my data is already smoothed I require a much more simple way of retrieving the peaks. My raw and smoothed data is in the graph below.
Essentially, is there a pythonic way of retrieving the max values from the array of smoothed data such that an array like
a = [1,2,3,4,5,4,3,2,1,2,3,2,1,2,3,4,5,6,5,4,3,2,1]
would return:
r = [5,3,6]
There exists a bulit-in function argrelextrema that gets this task done:
import numpy as np
from scipy.signal import argrelextrema
a = np.array([1,2,3,4,5,4,3,2,1,2,3,2,1,2,3,4,5,6,5,4,3,2,1])
# determine the indices of the local maxima
max_ind = argrelextrema(a, np.greater)
# get the actual values using these indices
r = a[max_ind] # array([5, 3, 6])
That gives you the desired output for r.
As of SciPy version 1.1, you can also use find_peaks. Below are two examples taken from the documentation itself.
Using the height argument, one can select all maxima above a certain threshold (in this example, all non-negative maxima; this can be very useful if one has to deal with a noisy baseline; if you want to find minima, just multiply you input by -1):
import matplotlib.pyplot as plt
from scipy.misc import electrocardiogram
from scipy.signal import find_peaks
import numpy as np
x = electrocardiogram()[2000:4000]
peaks, _ = find_peaks(x, height=0)
plt.plot(x)
plt.plot(peaks, x[peaks], "x")
plt.plot(np.zeros_like(x), "--", color="gray")
plt.show()
Another extremely helpful argument is distance, which defines the minimum distance between two peaks:
peaks, _ = find_peaks(x, distance=150)
# difference between peaks is >= 150
print(np.diff(peaks))
# prints [186 180 177 171 177 169 167 164 158 162 172]
plt.plot(x)
plt.plot(peaks, x[peaks], "x")
plt.show()
If your original data is noisy, then using statistical methods is preferable, as not all peaks are going to be significant. For your a array, a possible solution is to use double differentials:
peaks = a[1:-1][np.diff(np.diff(a)) < 0]
# peaks = array([5, 3, 6])
>> import numpy as np
>> from scipy.signal import argrelextrema
>> a = np.array([1,2,3,4,5,4,3,2,1,2,3,2,1,2,3,4,5,6,5,4,3,2,1])
>> argrelextrema(a, np.greater)
array([ 4, 10, 17]),)
>> a[argrelextrema(a, np.greater)]
array([5, 3, 6])
If your input represents a noisy distribution, you can try smoothing it with NumPy convolve function.
If you can exclude maxima at the edges of the arrays you can always check if one elements is bigger than each of it's neighbors by checking:
import numpy as np
array = np.array([1,2,3,4,5,4,3,2,1,2,3,2,1,2,3,4,5,6,5,4,3,2,1])
# Check that it is bigger than either of it's neighbors exluding edges:
max = (array[1:-1] > array[:-2]) & (array[1:-1] > array[2:])
# Print these values
print(array[1:-1][max])
# Locations of the maxima
print(np.arange(1, array.size-1)[max])

cv2.kmeans usage in Python

I am considering to use OpenCV's Kmeans implementation since it says to be faster...
Now I am using package cv2 and function kmeans,
I can not understand the parameters' description in their reference:
Python: cv2.kmeans(data, K, criteria, attempts, flags[, bestLabels[, centers]]) → retval, bestLabels, centers
samples – Floating-point matrix of input samples, one row per sample.
clusterCount – Number of clusters to split the set by.
labels – Input/output integer array that stores the cluster indices for every sample.
criteria – The algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
attempts – Flag to specify the number of times the algorithm is executed using different initial labelings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
flags –
Flag that can take the following values:
KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.
KMEANS_PP_CENTERS Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].
KMEANS_USE_INITIAL_LABELS During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of KMEANS_*_CENTERS flag to specify the exact method.
centers – Output matrix of the cluster centers, one row per each cluster center.
what is the argument flags[, bestLabels[, centers]]) mean? and what about his one: → retval, bestLabels, centers ?
Here's my code:
import cv, cv2
import scipy.io
import numpy
# read data from .mat file
mat = scipy.io.loadmat('...')
keys = mat.keys()
values = mat.viewvalues()
data_1 = mat[keys[0]]
nRows = data_1.shape[1]
nCols = data_1.shape[0]
samples = cv.CreateMat(nRows, nCols, cv.CV_32FC1)
labels = cv.CreateMat(nRows, 1, cv.CV_32SC1)
centers = cv.CreateMat(nRows, 100, cv.CV_32FC1)
#centers = numpy.
for i in range(0, nCols):
for j in range(0, nRows):
samples[j, i] = data_1[i, j]
cv2.kmeans(data_1.transpose,
100,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 0.1, 10),
attempts=cv2.KMEANS_PP_CENTERS,
flags=cv2.KMEANS_PP_CENTERS,
)
And I encounter such error:
flags=cv2.KMEANS_PP_CENTERS,
TypeError: <unknown> is not a numpy array
How should I understand the parameter list and the usage of cv2.kmeans? Thanks
the documentation on this function is almost impossible to find. I wrote the following Python code in a bit of a hurry, but it works on my machine. It generates two multi-variate Gaussian Distributions with different means and then classifies them using cv2.kmeans(). You may refer to this blog post to get some idea of the parameters.
Handle imports:
import cv
import cv2
import numpy as np
import numpy.random as r
Generate some random points and shape them appropriately:
samples = cv.CreateMat(50, 2, cv.CV_32FC1)
random_points = r.multivariate_normal((100,100), np.array([[150,400],[150,150]]), size=(25))
random_points_2 = r.multivariate_normal((300,300), np.array([[150,400],[150,150]]), size=(25))
samples_list = np.append(random_points, random_points_2).reshape(50,2)
random_points_list = np.array(samples_list, np.float32)
samples = cv.fromarray(random_points_list)
Plot the points before and after classification:
blank_image = np.zeros((400,400,3))
blank_image_classified = np.zeros((400,400,3))
for point in random_points_list:
cv2.circle(blank_image, (int(point[0]),int(point[1])), 1, (0,255,0),-1)
temp, classified_points, means = cv2.kmeans(data=np.asarray(samples), K=2, bestLabels=None,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 1, 10), attempts=1,
flags=cv2.KMEANS_RANDOM_CENTERS) #Let OpenCV choose random centers for the clusters
for point, allocation in zip(random_points_list, classified_points):
if allocation == 0:
color = (255,0,0)
elif allocation == 1:
color = (0,0,255)
cv2.circle(blank_image_classified, (int(point[0]),int(point[1])), 1, color,-1)
cv2.imshow("Points", blank_image)
cv2.imshow("Points Classified", blank_image_classified)
cv2.waitKey()
Here you can see the original points:
Here are the points after they have been classified:
I hope that this answer may help you, it is not a complete guide to k-means, but it will at least show you how to pass the parameters to OpenCV.
The problem here is your data_1.transpose is not a numpy array.
OpenCV 2.3.1 and higher python bindings do not take anything except numpy array as image/array parameters. so, data_1.transpose has to be a numpy array.
Generally, all the points in OpenCV are of type numpy.ndarray
eg.
array([[[100., 433.]],
[[157., 377.]],
.
.
[[147., 247.]], dtype=float32)
where each element of array is
array([[100., 433.]], dtype=float32)
and the element of that array is
array([100., 433.], dtype=float32)

Categories