I am using KMedoids from sklearn_extra.cluster. I use it with a precalculated distance matrix (metric='precomputed') and it used to work. However, we found a bug in the way the distance matrix was calculated and therefore had to implement it ourselves. Since then the KMedoids algorithm doesn't work anymore. This is the stacktrace:
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 1 is empty! self.labels_[self.medoid_indices_[1]] may not be labeled with its corresponding cluster (1).
warnings.warn(enter code here
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 2 is empty! self.labels_[self.medoid_indices_[2]] may not be labeled with its corresponding cluster (2).
warnings.warn(
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 3 is empty! self.labels_[self.medoid_indices_[3]] may not be labeled with its corresponding cluster (3).
warnings.warn(
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 4 is empty! self.labels_[self.medoid_indices_[4]] may not be labeled with its corresponding cluster (4).
warnings.warn(
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 5 is empty! self.labels_[self.medoid_indices_[5]] may not be labeled with its corresponding cluster (5).
warnings.warn(
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 6 is empty! self.labels_[self.medoid_indices_[6]] may not be labeled with its corresponding cluster (6).
warnings.warn(
C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\sklearn_extra\cluster\_k_medoids.py:231: UserWarning: Cluster 7 is empty! self.labels_[self.medoid_indices_[7]] may not be labeled with its corresponding cluster (7).
warnings.warn(
I have checked the distance matrix, it is a two-dimensional nparray with dimensions of n_data x n_data where the values on the diagonal are zero, so that should not be the problem. All the values are between 0 and 1. We used to use this algorithm for the Gower distance, but that did not work when we only had categorical data for some reason. All our values are boolean values. The Gower distance returned the following:
File "C:\Users\...\AppData\Local\Programs\Python\Python38-32\lib\site-packages\gower\gower_dist.py", line 62, in gower_matrix
Z_num = np.divide(Z_num ,num_max,out=np.zeros_like(Z_num), where=num_max!=0)
TypeError: ufunc 'true_divide' output (typecode 'd') could not be coerced to provided output parameter (typecode '?') according to the casting rule ''same_kind''
I also tried pyclustering KMedoids and that did work. However, you need to define the initial medoids yourself using pyclustering and the method I found for that did not work with categorical data. (see below)
initial_medoids = kmeans_plusplus_initializer(data, n_clus, kmeans_plusplus_initializer.FARTHEST_CENTER_CANDIDATE).initialize(return_index=True)
Stacktrace:
File "path_to_file", line 19, in <module>
initial_medoids = kmeans_plusplus_initializer(data, n_clus, kmeans_plusplus_initializer.FARTHEST_CENTER_CANDIDATE).initialize(return_index=True)
File "path\Python\Python38-32\lib\site-packages\pyclustering\cluster\center_initializer.py", line 357, in initialize
index_point = self.__get_next_center(centers)
File "path\Python\Python38-32\lib\site-packages\pyclustering\cluster\center_initializer.py", line 256, in __get_next_center
distances = self.__calculate_shortest_distances(self.__data, centers)
File "path\Python\Python38-32\lib\site-packages\pyclustering\cluster\center_initializer.py", line 236, in __calculate_shortest_distances
dataset_differences[index_center] = numpy.sum(numpy.square(data - center), axis=1).T
TypeError: numpy boolean subtract, the `-` operator, is not supported, use the bitwise_xor, the `^` operator, or the logical_xor function instead.
My problem can be fixed in three ways, so I hope that someone can help me:
Someone knows why KMedoids by sk-learn doesn't work and can help me with that, so I can use it.
Someone knows what I'm doing wrong with the Gower function from PyPI, so I can use either pyclustering or sklearn.
Someone knows how I can easily find the initial medoids to use for pyclustering, so I can use pyclustering.
I have posted a simple version of the code below.
import pandas as pd
import gower_distance as dist
from sklearn_extra.cluster import KMedoids
data = pd.read_csv(path_to_data)
dist = calcDist(data) # Returns NxN array where N is the amount of data points
# I'm using 8 clusters, which is the default, so I haven't defined it
kmedoids = KMedoids(metric='precomputed').fit(dist)
labels = kmedoids.predict(dist)
I also received that warning (however using the euclidean-distance). using another initialization of the cluster cores fixed it for me:
kmedoids = KMedoids(metric='precomputed', init='k-medoids++').fit(dist)
To get cluster labels from the trained model (i.e. train label),
data = pd.read_csv(path_to_data)
dist = calcDist(data)
kmedoids = KMedoids(metric='precomputed').fit(dist)
labels = kmedoids.labels_
To use kmedoids.predict with any predict data using the trained k-medoids model, you need to compute N x K distance matrix from N predict data to K medoids, properly indexed.
medoids = predictData[kmedoids.medoid_indices_, :]
distToMedoids = calcDistToMedoids(predictData, medoids) # with the same metric used in training
predict_labels = kmedoids.predict(distToMedoids)
predict_labels = np.argmin(distToMedoids, axis=1) # what .predict() does
You can check more from the source code.
Related
I have 100 clusters, each with a mean and standard deviation value. These clusters are predefined using the SPSS software package, by using the 2-step cluster method. Therefore, the optimisation of these cluster distributions to fit the data has already been done.
For new (unseen) data, we want to assign cluster membership by selecting the maximum log-likelihood cluster, for any given set of coordinates X. To do this, I have written my own code for comparison with what was output by SPSS using the same method: https://www.norusis.com/pdf/SPC_v19.pdf
Using data that has been correctly labelled by SPSS, about 42% of the clusters are correctly labelled by minimising the RMSE to the cluster mean (which is not what SPSS does), and less than 20% of the clusters are labelled correctly by my code when assigning the maximum log-likelihood cluster (which is what SPPSS reports to do).
I know that the maximum log-likelihood cluster should be the correct cluster ( https://www.norusis.com/pdf/SPC_v19.pdf ), but there is only a 20% success rate from this code when compared to the correct cluster labels from SPSS. What am I doing wrong?
Here is the code below.
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
import math
from scipy import stats
# importa raw files
clusters_df = pd.read_csv('ClusterCoordinates.csv') # clusters are in order of cluster numbers enabling us to use index for identification
clusters_df = clusters_df.drop(columns=['Cluster'])
print(clusters_df.shape)
clusters = clusters_df.to_numpy()
frames_df_raw = pd.read_csv('FrameCoordinates.csv')
frames_df = frames_df_raw.drop(columns=['frame','replica','voltage','system','ff','cluster'])
print(frames_df.shape)
frames = frames_df.to_numpy()
clusters_sd_df = pd.read_csv('ClusterCoordinates_SD.csv')
clusters_sd_df = clusters_sd_df.drop(columns=['Cluster'])
print(clusters_sd_df.shape)
clusters_sd = clusters_sd_df.to_numpy()
rmseCalc = []
llCalc = []
assignedCluster_RMSE = []
assignedCluster_LL = []
# create tables with RMSE and LL values
for frame in frames:
for cluster, cluster_sd in zip(clusters, clusters_sd):
# we compare cluster assignment using minimum RMSE vs maximum log likelihood methods.
rmseCalc.append(math.sqrt(mean_squared_error(np.array(cluster),np.array(frame))))
llCalc.append(-np.sum(stats.norm.logpdf(frame, loc=cluster, scale=cluster_sd)))
rmseCalc=np.array(rmseCalc)
llCalc=np.array(llCalc)
llCalc=np.nan_to_num(llCalc)
minRMSE = np.where(rmseCalc==rmseCalc.min())
maxLL = np.where(llCalc==llCalc.min())
print(maxLL[0][0]+1)
assignedCluster_RMSE.append(minRMSE[0][0]+1)
assignedCluster_LL.append(maxLL[0][0]+1)
rmseCalc=[]
llCalc=[]
frames_df_raw['predCluster_RMSE'] = np.array(assignedCluster_RMSE)
frames_df_raw['predCluster_LL'] = np.array(assignedCluster_LL)
frames_df_raw.to_csv('frames_clustered.csv')
I was expecting the cluster labels assigned by the code to match those already assigned by SPSS, since the methods used are intended to be the same.
I want to subset anndata on basis of clusters, but i am not able to understand how to do it.
I am running scVelo pipeline, and in that i ran tl.louvain function to cluster cells on basis of louvain. I got around 32 clusters, of which cluster 2 and 4 is of my interest, and i have to run the pipeline further on these clusters only. (Initially i had the loom file which i read in scVelo, so i have now the anndata.)
I tried using adata.obs["louvain"] which gave me the cluster information, but i need to write a new anndata with only 2 clusters and process further.
Please help on how to subset anndata. Any help is highly appreciated. (Being very new to it, i am finding it difficult to get)
If your adata.obs has a "louvain" column that I'd expect after running tl.louvain, you could do the subsetting as
adata[adata.obs["louvain"] == "2"]
if you want to obtain one cluster and
adata[adata.obs['louvain'].isin(['2', '4'])]
for obtaining cluster 2 & 4.
Feel free to use this function I wrote for my work.
import AnnData
import numpy as np
def cluster_sampled(adata: AnnData, clusters: list, n_samples: int) -> AnnData:
"""Sample n_samples randomly from each louvain cluster from the provided clusters
Parameters
----------
adata
AnnData object
clusters
List of clusters to sample from
n_samples
Number of samples to take from each cluster
Returns
-------
AnnData
Annotated data matrix with sampled cells from the clusters
"""
l = []
adata_cluster_sampled = adata[adata.obs["louvain"].isin(clusters), :].copy()
for k, v in adata_cluster_sampled.obs.groupby("louvain").indices.items():
l.append(np.random.choice(v, n_samples, replace=False))
return adata_cluster_sampled[np.concatenate(l)]
I am using sklearn.svm.SVR for a "regression task" which I want to use my "customized kernel method". Here is the dataset samples and the code:
index density speed label
0 14 58.844020 77.179139
1 29 67.624946 78.367394
2 44 77.679100 79.143744
3 59 79.361877 70.048869
4 74 72.529289 74.499239
.... and so on
from sklearn import svm
import pandas as pd
import numpy as np
density = np.random.randint(0,100, size=(3000, 1))
speed = np.random.randint(20,80, size=(3000, 1)) + np.random.random(size=(3000, 1))
label = np.random.randint(20,80, size=(3000, 1)) + np.random.random(size=(3000, 1))
d = np.hstack((a,b,c))
data = pd.DataFrame(d, columns=['density', 'speed', 'label'])
data.density = data.density.astype(dtype=np.int32)
def my_kernel(X,Y):
return np.dot(X,X.T)
svr = svm.SVR(kernel=my_kernel)
x = data[['density', 'speed']].iloc[:2000]
y = data['label'].iloc[:2000]
x_t = data[['density', 'speed']].iloc[2000:3000]
y_t = data['label'].iloc[2000:3000]
svr.fit(x,y)
y_preds = svr.predict(x_t)
the problem happens in the last line svm.predict which says:
X.shape[1] = 1000 should be equal to 2000, the number of samples at training time
I searched the web to find a way to deal with the problem but many questions alike (like {1}, {2}, {3}) were left unanswered.
Actually, I had used SVM methods with rbf, sigmoid, ... before and the code was working just fine but this was my first time using customized kernels and I suspected that it must be the reason why this error happened.
So after a little research and reading documentation I found out that when using precomputed kernels, the shape of the matrix for SVR.predict() must be like [n_samples_test, n_samples_train] shape.
I wonder how to modify x_test in order to get predictions and everything works just fine with no problem like when we don't use customized kernels?
If possible please describe "the reason that why the inputs for svm.predict function in precomputed kernel differentiates with the other kernels".
I really hope the unanswered questions that are related to this issue could be answered respectively.
The problem is in your kernel function, it doesn't do the job.
As the documentation https://scikit-learn.org/stable/modules/svm.html#using-python-functions-as-kernels says, "Your kernel must take as arguments two matrices of shape (n_samples_1, n_features), (n_samples_2, n_features) and return a kernel matrix of shape (n_samples_1, n_samples_2)." The sample kernel on the same page satisfies this criteria:
def my_kernel(X, Y):
return np.dot(X, Y.T)
In your function the second argument of dot is X.T and thus the output will have shape (n_samples_1, n_samples_1) which is not that is expected.
The shape does not match means the test data and train data are of not equal shape, always think about matrix or array in numpy. If you are doing any arithmetic operation you always need a similar shape. That's why we check array.shape.
[n_samples_test, n_samples_train] you can modify shapes but its not best idea.
array.shape, reshape, resize
are used for that
I am generating a random.uniform(low=0.0, high=100.0, size=(150,150)) array.
I input this into a function that generates the X, x, and y.
However, if the random test matrix is greater than 100, I get the error below.
I have tried playing around with theta values.
Has anyone had this problem? Is this a bug?
I am using python2.6 and scikit-learn-0.10. Should I try python3?
Any suggestions or comments are welcome.
Thank you.
gp.fit( XKrn, yKrn )
File "/usr/lib/python2.6/scikit_learn-0.10_git-py2.6-linux-x86_64.egg/sklearn/gaussian_process/gaussian_process.py", line 258, in fit
raise ValueError("X and y must have the same number of rows.")
ValueError: X and y must have the same number of rows.
ValueError: X and y must have the same number of rows. means that in your case XKrn.shape[0] should be equal to yKrn.shape[0]. You probably have an error in the code generating the dataset.
Here is a working example:
In [1]: from sklearn.gaussian_process import GaussianProcess
In [2]: import numpy as np
In [3]: X, y = np.random.randn(150, 10), np.random.randn(150)
In [4]: GaussianProcess().fit(X, y)
Out[4]:
GaussianProcess(beta0=None,
corr=<function squared_exponential at 0x10d42aaa0>, normalize=True,
nugget=array(2.220446049250313e-15), optimizer='fmin_cobyla',
random_start=1,
random_state=<mtrand.RandomState object at 0x10b4c8360>,
regr=<function constant at 0x10d42a488>, storage_mode='full',
theta0=array([[ 0.1]]), thetaL=None, thetaU=None, verbose=False)
Python 3 is not supported yet and the latest released version of scikit-learn is 0.12.1 at this time.
My original post was deleted. Thanks, Flexo.
I had the same problem, and number of rows I was passing in was the same in my X and y.
In my case, the problem was in fact that I was passing in a number of features to fit against in my output. Gaussian processes fit to a single output feature.
The "number of rows" error was misleading, and stemmed from the fact that I wasn't using the package correctly. To fit multiple output features like this, you'll need a GP for each feature.
I am considering to use OpenCV's Kmeans implementation since it says to be faster...
Now I am using package cv2 and function kmeans,
I can not understand the parameters' description in their reference:
Python: cv2.kmeans(data, K, criteria, attempts, flags[, bestLabels[, centers]]) → retval, bestLabels, centers
samples – Floating-point matrix of input samples, one row per sample.
clusterCount – Number of clusters to split the set by.
labels – Input/output integer array that stores the cluster indices for every sample.
criteria – The algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
attempts – Flag to specify the number of times the algorithm is executed using different initial labelings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
flags –
Flag that can take the following values:
KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.
KMEANS_PP_CENTERS Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].
KMEANS_USE_INITIAL_LABELS During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of KMEANS_*_CENTERS flag to specify the exact method.
centers – Output matrix of the cluster centers, one row per each cluster center.
what is the argument flags[, bestLabels[, centers]]) mean? and what about his one: → retval, bestLabels, centers ?
Here's my code:
import cv, cv2
import scipy.io
import numpy
# read data from .mat file
mat = scipy.io.loadmat('...')
keys = mat.keys()
values = mat.viewvalues()
data_1 = mat[keys[0]]
nRows = data_1.shape[1]
nCols = data_1.shape[0]
samples = cv.CreateMat(nRows, nCols, cv.CV_32FC1)
labels = cv.CreateMat(nRows, 1, cv.CV_32SC1)
centers = cv.CreateMat(nRows, 100, cv.CV_32FC1)
#centers = numpy.
for i in range(0, nCols):
for j in range(0, nRows):
samples[j, i] = data_1[i, j]
cv2.kmeans(data_1.transpose,
100,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 0.1, 10),
attempts=cv2.KMEANS_PP_CENTERS,
flags=cv2.KMEANS_PP_CENTERS,
)
And I encounter such error:
flags=cv2.KMEANS_PP_CENTERS,
TypeError: <unknown> is not a numpy array
How should I understand the parameter list and the usage of cv2.kmeans? Thanks
the documentation on this function is almost impossible to find. I wrote the following Python code in a bit of a hurry, but it works on my machine. It generates two multi-variate Gaussian Distributions with different means and then classifies them using cv2.kmeans(). You may refer to this blog post to get some idea of the parameters.
Handle imports:
import cv
import cv2
import numpy as np
import numpy.random as r
Generate some random points and shape them appropriately:
samples = cv.CreateMat(50, 2, cv.CV_32FC1)
random_points = r.multivariate_normal((100,100), np.array([[150,400],[150,150]]), size=(25))
random_points_2 = r.multivariate_normal((300,300), np.array([[150,400],[150,150]]), size=(25))
samples_list = np.append(random_points, random_points_2).reshape(50,2)
random_points_list = np.array(samples_list, np.float32)
samples = cv.fromarray(random_points_list)
Plot the points before and after classification:
blank_image = np.zeros((400,400,3))
blank_image_classified = np.zeros((400,400,3))
for point in random_points_list:
cv2.circle(blank_image, (int(point[0]),int(point[1])), 1, (0,255,0),-1)
temp, classified_points, means = cv2.kmeans(data=np.asarray(samples), K=2, bestLabels=None,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 1, 10), attempts=1,
flags=cv2.KMEANS_RANDOM_CENTERS) #Let OpenCV choose random centers for the clusters
for point, allocation in zip(random_points_list, classified_points):
if allocation == 0:
color = (255,0,0)
elif allocation == 1:
color = (0,0,255)
cv2.circle(blank_image_classified, (int(point[0]),int(point[1])), 1, color,-1)
cv2.imshow("Points", blank_image)
cv2.imshow("Points Classified", blank_image_classified)
cv2.waitKey()
Here you can see the original points:
Here are the points after they have been classified:
I hope that this answer may help you, it is not a complete guide to k-means, but it will at least show you how to pass the parameters to OpenCV.
The problem here is your data_1.transpose is not a numpy array.
OpenCV 2.3.1 and higher python bindings do not take anything except numpy array as image/array parameters. so, data_1.transpose has to be a numpy array.
Generally, all the points in OpenCV are of type numpy.ndarray
eg.
array([[[100., 433.]],
[[157., 377.]],
.
.
[[147., 247.]], dtype=float32)
where each element of array is
array([[100., 433.]], dtype=float32)
and the element of that array is
array([100., 433.], dtype=float32)