Is this code for Gaussian Mixture Model correct? - python

I am learning GMM to do color segmentation. I found a good resource online with the following GMM code:
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
import numpy as np
from scipy.stats import norm
np.random.seed(0)
X = np.linspace(-5, 5, num=20)
X0 = X * np.random.rand(len(X)) + 15 # Create data cluster 1
X1 = X * np.random.rand(len(X)) - 15 # Create data cluster 2
X2 = X * np.random.rand(len(X)) # Create data cluster 3
X_tot = np.stack((X0, X1, X2)).flatten() # Combine the clusters to get the random datapoints from above
class GM1D:
def __init__(self, X, iterations):
self.iterations = iterations
self.X = X
self.mu = None
self.pi = None
self.var = None
def run(self):
self.mu = [-8, 8, 5]
self.pi = [1 / 3, 1 / 3, 1 / 3]
self.var = [5, 3, 1]
for iter in range(self.iterations):
r = np.zeros((len(X_tot), 3))
for c, g, p in zip(range(3), [norm(loc=self.mu[0], scale=self.var[0]),
norm(loc=self.mu[1], scale=self.var[1]),
norm(loc=self.mu[2], scale=self.var[2])], self.pi):
r[:, c] = p * g.pdf(X_tot) # Write the probability that x belongs to gaussian c in column c.
for i in range(len(r)):
r[i] = r[i] / (np.sum(self.pi) * np.sum(r, axis=1)[i])
fig = plt.figure(figsize=(10, 10))
ax0 = fig.add_subplot(111)
for i in range(len(r)):
ax0.scatter(self.X[i], 0, c=np.array([r[i][0], r[i][1], r[i][2]]), s=100)
for g, c in zip([norm(loc=self.mu[0], scale=self.var[0]).pdf(np.linspace(-20, 20, num=60)),
norm(loc=self.mu[1], scale=self.var[1]).pdf(np.linspace(-20, 20, num=60)),
norm(loc=self.mu[2], scale=self.var[2]).pdf(np.linspace(-20, 20, num=60))], ['r', 'g', 'b']):
ax0.plot(np.linspace(-20, 20, num=60), g, c=c)
m_c = []
for c in range(len(r[0])):
m = np.sum(r[:, c])
m_c.append(m) # For each cluster c, calculate the m_c and add it to the list m_c
for k in range(len(m_c)):
self.pi[k] = (m_c[k] / np.sum(m_c)) # For each cluster c, calculate the fraction of points pi_c which belongs to cluster c
self.mu = np.sum(self.X.reshape(len(self.X), 1) * r, axis=0) / m_c
var_c = []
for c in range(len(r[0])):
var_c.append((1 / m_c[c]) * np.dot(((np.array(r[:, c]).reshape(60, 1)) * (self.X.reshape(len(self.X), 1) - self.mu[c])).T, (self.X.reshape(len(self.X), 1) - self.mu[c])))
plt.show()
GM1D = GM1D(X_tot, 10)
GM1D.run()
Now my understanding is that in the Maximation step of EM, we must update the gaussian parameters (covariance matrix, mean and size of the gaussian(pi_c) ) In the code given above, I can see the values of pi_c and mean(mu) being updated but I don't think the value of the covariance matrix is updated. However, when I run the code it seems to be working (?). Can someone please help me determine if the code is correct or not. The code is from the following resource

Related

How to animate this optimization model correctly

I have implemented a simple randomized, population-based optimization method - Grey Wolf optimizer. I am having some trouble with properly capturing the Matplotlib plots at each iteration using the camera package.
I am running GWO for the objective function f(x,y) = x^2 + y^2. I can only see the candidate solutions converging to the minima, but the contour plot doesn't show up.
Do you have any suggestions, how can I display the contour plot in the background?
GWO Algorithm implementation
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera
import ffmpeg
import pillow
# X : Position vector of the initial population
# n : Initial population size
def gwo(f,max_iterations,LB,UB):
fig = plt.figure()
camera = Camera(fig)
def random_population_uniform(m,a,b):
dims = len(a)
x = [list(a + np.multiply(np.random.rand(dims),b - a)) for i in range(m)]
return np.array(x)
def search_agent_fitness(fitness):
alpha = 0
if fitness[1] < fitness[alpha]:
alpha, beta = 1, alpha
else:
beta = 1
if fitness[2] > fitness[alpha] and fitness[2] < fitness[beta]:
beta, delta = 2, beta
elif fitness[2] < fitness[alpha]:
alpha,beta,delta = 2,alpha,beta
else:
delta = 2
for i in range(3,len(fitness)):
if fitness[i] <= fitness[alpha]:
alpha, beta,delta = i, alpha, beta
elif fitness[i] > fitness[alpha] and fitness[i]<= fitness[beta]:
beta,delta = i,beta
elif fitness[i] > fitness[beta] and fitness[i]<= fitness[delta]:
delta = i
return alpha, beta, delta
def plot_search_agent_positions(f,X,alpha,beta,delta,a,b):
# Plot the positions of search agents
x = X[:,0]
y = X[:,1]
s = plt.scatter(x,y,c='gray',zorder=1)
s = plt.scatter(x[alpha],y[alpha],c='red',zorder=1)
s = plt.scatter(x[beta],y[beta],c='blue',zorder=1)
s = plt.scatter(x[delta],y[delta],c='green',zorder=1)
camera.snap()
# Initialize the position of the search agents
X = random_population_uniform(50,np.array(LB),np.array(UB))
n = len(X)
l = 1
# Plot the first image on screen
x = np.linspace(LB[0],LB[1],1000)
y = np.linspace(LB[0],UB[1],1000)
X1,X2 = np.meshgrid(x,y)
Z = f(X1,X2)
cont = plt.contour(X1,X2,Z,20,linewidths=0.75)
while (l < max_iterations):
# Take the x,y coordinates of the initial population
x = X[:,0]
y = X[:,1]
# Calculate the objective function for each search agent
fitness = list(map(f,x,y))
# Update alpha, beta and delta
alpha,beta,delta = search_agent_fitness(fitness)
# Plot search agent positions
plot_search_agent_positions(f,X,alpha,beta,delta,LB,UB)
# a decreases linearly from 2 to 0
a = 2 - l *(2 / max_iterations)
# Update the position of search agents including the Omegas
for i in range(n):
x_prey = X[alpha]
r1 = np.random.rand(2) #r1 is a random vector in [0,1] x [0,1]
r2 = np.random.rand(2) #r2 is a random vector in [0,1] x [0,1]
A1 = 2*a*r1 - a
C1 = 2*r2
D_alpha = np.abs(C1 * x_prey - X[i])
X_1 = x_prey - A1*D_alpha
x_prey = X[beta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A2 = 2*a*r1 - a
C2 = 2*r2
D_beta = np.abs(C2 * x_prey - X[i])
X_2 = x_prey - A2*D_beta
x_prey = X[delta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A3 = 2*a*r1 - a
C3 = 2*r2
D_delta = np.abs(C3 * x_prey - X[i])
X_3 = x_prey - A3*D_delta
X[i] = (X_1 + X_2 + X_3)/3
l = l + 1
return X[alpha],camera
Function call
# define the objective function
def f(x,y):
return x**2 + y**2
minimizer,camera = gwo(f,7,[-10,-10],[10,10])
animation = camera.animate(interval = 1000, repeat = True,
repeat_delay = 500)
Is it possible that the line x = np.linspace(LB[0],LB[1],1000) should be x = np.linspace(LB[0],UB[1],1000) instead? With your current definition of x, x is an array only filled with the value -10 which means that you are unlikely to find a contour.
Another thing that you might want to do is to move the cont = plt.contour(X1,X2,Z,20,linewidths=0.75) line inside of your plot_search_agent_positions function to ensure that the contour is plotted at each iteration of the animation.
Once you make those changes, the code looks like that:
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera
import ffmpeg
import PIL
from matplotlib import animation, rc
from IPython.display import HTML, Image # For GIF
from scipy.interpolate import griddata
rc('animation', html='html5')
# X : Position vector of the initial population
# n : Initial population size
def gwo(f,max_iterations,LB,UB):
fig = plt.figure()
fig.gca(aspect='equal')
camera = Camera(fig)
def random_population_uniform(m,a,b):
dims = len(a)
x = [list(a + np.multiply(np.random.rand(dims),b - a)) for i in range(m)]
return np.array(x)
def search_agent_fitness(fitness):
alpha = 0
if fitness[1] < fitness[alpha]:
alpha, beta = 1, alpha
else:
beta = 1
if fitness[2] > fitness[alpha] and fitness[2] < fitness[beta]:
beta, delta = 2, beta
elif fitness[2] < fitness[alpha]:
alpha,beta,delta = 2,alpha,beta
else:
delta = 2
for i in range(3,len(fitness)):
if fitness[i] <= fitness[alpha]:
alpha, beta,delta = i, alpha, beta
elif fitness[i] > fitness[alpha] and fitness[i]<= fitness[beta]:
beta,delta = i,beta
elif fitness[i] > fitness[beta] and fitness[i]<= fitness[delta]:
delta = i
return alpha, beta, delta
def plot_search_agent_positions(f,X,alpha,beta,delta,a,b,X1,X2,Z):
# Plot the positions of search agents
x = X[:,0]
y = X[:,1]
s = plt.scatter(x,y,c='gray',zorder=1)
s = plt.scatter(x[alpha],y[alpha],c='red',zorder=1)
s = plt.scatter(x[beta],y[beta],c='blue',zorder=1)
s = plt.scatter(x[delta],y[delta],c='green',zorder=1)
Z=f(X1,X2)
cont=plt.contour(X1,X2,Z,levels=20,colors='k',norm=True)
plt.clabel(cont, cont.levels, inline=True, fontsize=10)
camera.snap()
# Initialize the position of the search agents
X = random_population_uniform(50,np.array(LB),np.array(UB))
n = len(X)
l = 1
# Plot the first image on screen
x = np.linspace(LB[0],UB[1],1000)
y = np.linspace(LB[0],UB[1],1000)
X1,X2 = np.meshgrid(x,y)
Z=f(X1,X2)
while (l < max_iterations):
# Take the x,y coordinates of the initial population
x = X[:,0]
y = X[:,1]
# Calculate the objective function for each search agent
fitness = list(map(f,x,y))
# Update alpha, beta and delta
alpha,beta,delta = search_agent_fitness(fitness)
# Plot search agent positions
plot_search_agent_positions(f,X,alpha,beta,delta,LB,UB,X1,X2,Z)
# a decreases linearly from 2 to 0
a = 2 - l *(2 / max_iterations)
# Update the position of search agents including the Omegas
for i in range(n):
x_prey = X[alpha]
r1 = np.random.rand(2) #r1 is a random vector in [0,1] x [0,1]
r2 = np.random.rand(2) #r2 is a random vector in [0,1] x [0,1]
A1 = 2*a*r1 - a
C1 = 2*r2
D_alpha = np.abs(C1 * x_prey - X[i])
X_1 = x_prey - A1*D_alpha
x_prey = X[beta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A2 = 2*a*r1 - a
C2 = 2*r2
D_beta = np.abs(C2 * x_prey - X[i])
X_2 = x_prey - A2*D_beta
x_prey = X[delta]
r1 = np.random.rand(2)
r2 = np.random.rand(2)
A3 = 2*a*r1 - a
C3 = 2*r2
D_delta = np.abs(C3 * x_prey - X[i])
X_3 = x_prey - A3*D_delta
X[i] = (X_1 + X_2 + X_3)/3
l = l + 1
return X[alpha],camera
# define the objective function
def f(x,y):
return x**2 + y**2
minimizer,camera = gwo(f,7,[-10,-10],[10,10])
animation = camera.animate(interval = 1000, repeat = True,repeat_delay = 500)
And the output gives:

Function fitting where one of the fitting parameter should be chosen from the list of fixed values

Let us assume that we have a closed form analytical function y = a * x + b. We have also experimental data to which this function should be fitted. Thus, error minimization by fitting right a and b, might be done. Attached Python 3.8 code do this easily.
import time
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
class Model:
def __init__(self, x_exp, y_exp, params_init):
self.x_exp = x_exp
self.y_exp = y_exp
self.params_init = params_init
self.possible_b = [-1, 0, 1, 2, 3, 4]
self.method = "brute"
self.tolerance = 1 * 10**(-10)
self.res = None
def _fun_linear(self, x, a, b):
y = a * x + b
return y
def _model(self, params):
a = params[0]
b = params[1]
y_fit = self._fun_linear(self.x_exp, a, b)
err = np.linalg.norm(y_fit - self.y_exp)
return err
def fit(self):
time_beg = time.time()
self.res = minimize(fun=self._model,
x0=self.params_init)
time_end = time.time()
print(time_end - time_beg)
print(self.res.x)
print(self.res)
def f(x, a, b):
return a * x + b
x_exp = np.linspace(0, 10, 1000)
y_exp = f(x_exp, a=1, b=2) + np.random.normal(0, 0.5, 1000)
model = Model(x_exp, y_exp, [0, 0])
model.fit()
y_fit = f(x_exp, a=model.res.x[0], b=model.res.x[1])
fig, ax = plt.subplots()
ax.plot(x_exp, y_exp)
ax.plot(x_exp, y_fit)
fig.show()
Now, I would like do chose b value from my own list defined in the self.possible_b instead to approximate it by the used minimization method. Its some-kind of fixed values constrain to b.
Is it possible? How such kind of algorithms are called if they exist? Any libraries are able to do this?

Damping harmonic oscillation code with python

I don't know that how make the code the three graph in damping harmonic oscillation model,
[X - t(time)], [V(velocity) - t(time)], [a(acceleration) - t(time)] graph
i can make the [X - t(time)] graph
but i don`t know how to make another graphs..
import numpy as np
from matplotlib import pyplot as plt
# mx'' = - bx' - kx
x_0 = 3
v_0 = 0
y_0 = np.array([x_0,v_0]) # first array
def Euler_Method(f,a,b,y0,step):
t = np.linspace(a,b,step)
h = t[1] - t[0]
Y = [y0]
N = len(t)
n = 0
y = y0
for n in range(0,N-1) :
y = y + h*f(y,t[n])
Y.append(y)
n = n+1
Y = np.array(Y)
return Y, t
def harmonic(y,t) :
k = 50
m = 200
b = 20 # drag coefficient
a = (-1*k/m)*y[0] - (b/m)*y[1] # x'' = a, y[0] : first position
v = y[1] # v = first velocity : y[1]
f = np.array([v,a])
return f
a = Euler_Method(harmonic, 0, 100, y_0, 100000)
X = a[0][:,0]
t = a[1]
plt.plot(t,X)
plt.show()
Why can't you just take the derivative of X to get V and A?
V = np.diff(X)
A = np.diff(V)
fig, (ax1, ax2, ax3) = plt.subplots(3)
fig.suptitle('Vertically stacked subplots')
ax1.plot(t, X)
ax2.plot(t[1:], V)
ax3.plot(t[2:], A)
plt.show()
Gives,

Python plotting lines in a loop

I need to plot every iteration in a loop of Kachmarz algorithm. But when i try there is a error:
ValueError: x and y can be no greater than 2-D, but have shapes (2, 1, 1) and (2,)
Threre is my code (we have matrix A, where every row give a plane and it has to solve Ax = f by Kaczmarz algorithm and animate it):
import os
import matplotlib.pyplot as plt
import numpy as np
from numpy import linalg as la
x = np.linspace(-100, 15, 100)
A = np.matrix([[2, 3], [1, -1],[6, 1]]);
f = np.matrix([4, 2, 15]);
resh = la.pinv(A).dot(np.transpose(f))
e1 = (1 - 2*x)/3;
e2 = (x - 2);
e3 = 15 - 6*x;
plt.plot(x, e1, color="black")
plt.plot(x, e2, color="black")
plt.plot(x, e3, color="black")
plt.axis([-0, 4, -4, 4])
[m , n] = np.shape(A)
precision = 0.01
iteration = 100
lmbd = 0.8
nrm=[]
for i in range(0, m):
nrm.append(la.norm(A[i][:]));
approx = np.zeros((n, 1))
predx =
np.zeros((n, 1))
print(np.shape(approx))
for i in range(0, iteration):
j = (i-1) % m
predx = approx
approx = approx + np.multiply((f[:,j] - A[j,:].dot(approx)),(np.transpose(A[j, :])))
plt.plot([predx[0], approx[0]], [predx[1], 2], "r-")
# c = plt.plot([predx[1], 2], [predx[2], 2], "g-")
# pause(0.01)
if(la.norm(predx - approx) <= precision):
break
plt.show()
I have no idea how to fix it, in the end it should be like this: Kaczmarz animation
How I can fix this loop? What I do wrong?

Procrustes Analysis with NumPy?

Is there something like Matlab's procrustes function in NumPy/SciPy or related libraries?
For reference. Procrustes analysis aims to align 2 sets of points (in other words, 2 shapes) to minimize square distance between them by removing scale, translation and rotation warp components.
Example in Matlab:
X = [0 1; 2 3; 4 5; 6 7; 8 9]; % first shape
R = [1 2; 2 1]; % rotation matrix
t = [3 5]; % translation vector
Y = X * R + repmat(t, 5, 1); % warped shape, no scale and no distortion
[d Z] = procrustes(X, Y); % Z is Y aligned back to X
Z
Z =
0.0000 1.0000
2.0000 3.0000
4.0000 5.0000
6.0000 7.0000
8.0000 9.0000
Same task in NumPy:
X = arange(10).reshape((5, 2))
R = array([[1, 2], [2, 1]])
t = array([3, 5])
Y = dot(X, R) + t
Z = ???
Note: I'm only interested in aligned shape, since square error (variable d in Matlab code) is easily computed from 2 shapes.
I'm not aware of any pre-existing implementation in Python, but it's easy to take a look at the MATLAB code using edit procrustes.m and port it to Numpy:
def procrustes(X, Y, scaling=True, reflection='best'):
"""
A port of MATLAB's `procrustes` function to Numpy.
Procrustes analysis determines a linear transformation (translation,
reflection, orthogonal rotation and scaling) of the points in Y to best
conform them to the points in matrix X, using the sum of squared errors
as the goodness of fit criterion.
d, Z, [tform] = procrustes(X, Y)
Inputs:
------------
X, Y
matrices of target and input coordinates. they must have equal
numbers of points (rows), but Y may have fewer dimensions
(columns) than X.
scaling
if False, the scaling component of the transformation is forced
to 1
reflection
if 'best' (default), the transformation solution may or may not
include a reflection component, depending on which fits the data
best. setting reflection to True or False forces a solution with
reflection or no reflection respectively.
Outputs
------------
d
the residual sum of squared errors, normalized according to a
measure of the scale of X, ((X - X.mean(0))**2).sum()
Z
the matrix of transformed Y-values
tform
a dict specifying the rotation, translation and scaling that
maps X --> Y
"""
n,m = X.shape
ny,my = Y.shape
muX = X.mean(0)
muY = Y.mean(0)
X0 = X - muX
Y0 = Y - muY
ssX = (X0**2.).sum()
ssY = (Y0**2.).sum()
# centred Frobenius norm
normX = np.sqrt(ssX)
normY = np.sqrt(ssY)
# scale to equal (unit) norm
X0 /= normX
Y0 /= normY
if my < m:
Y0 = np.concatenate((Y0, np.zeros(n, m-my)),0)
# optimum rotation matrix of Y
A = np.dot(X0.T, Y0)
U,s,Vt = np.linalg.svd(A,full_matrices=False)
V = Vt.T
T = np.dot(V, U.T)
if reflection != 'best':
# does the current solution use a reflection?
have_reflection = np.linalg.det(T) < 0
# if that's not what was specified, force another reflection
if reflection != have_reflection:
V[:,-1] *= -1
s[-1] *= -1
T = np.dot(V, U.T)
traceTA = s.sum()
if scaling:
# optimum scaling of Y
b = traceTA * normX / normY
# standarised distance between X and b*Y*T + c
d = 1 - traceTA**2
# transformed coords
Z = normX*traceTA*np.dot(Y0, T) + muX
else:
b = 1
d = 1 + ssY/ssX - 2 * traceTA * normY / normX
Z = normY*np.dot(Y0, T) + muX
# transformation matrix
if my < m:
T = T[:my,:]
c = muX - b*np.dot(muY, T)
#transformation values
tform = {'rotation':T, 'scale':b, 'translation':c}
return d, Z, tform
There is a Scipy function for it: scipy.spatial.procrustes
I'm just posting its example here:
>>> import numpy as np
>>> from scipy.spatial import procrustes
>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0
You can have both Ordinary Procrustes Analysis and Generalized Procrustes Analysis in python with something like this:
import numpy as np
def opa(a, b):
aT = a.mean(0)
bT = b.mean(0)
A = a - aT
B = b - bT
aS = np.sum(A * A)**.5
bS = np.sum(B * B)**.5
A /= aS
B /= bS
U, _, V = np.linalg.svd(np.dot(B.T, A))
aR = np.dot(U, V)
if np.linalg.det(aR) < 0:
V[1] *= -1
aR = np.dot(U, V)
aS = aS / bS
aT-= (bT.dot(aR) * aS)
aD = (np.sum((A - B.dot(aR))**2) / len(a))**.5
return aR, aS, aT, aD
def gpa(v, n=-1):
if n < 0:
p = avg(v)
else:
p = v[n]
l = len(v)
r, s, t, d = np.ndarray((4, l), object)
for i in range(l):
r[i], s[i], t[i], d[i] = opa(p, v[i])
return r, s, t, d
def avg(v):
v_= np.copy(v)
l = len(v_)
R, S, T = [list(np.zeros(l)) for _ in range(3)]
for i, j in np.ndindex(l, l):
r, s, t, _ = opa(v_[i], v_[j])
R[j] += np.arccos(min(1, max(-1, np.trace(r[:1])))) * np.sign(r[1][0])
S[j] += s
T[j] += t
for i in range(l):
a = R[i] / l
r = [np.cos(a), -np.sin(a)], [np.sin(a), np.cos(a)]
v_[i] = v_[i].dot(r) * (S[i] / l) + (T[i] / l)
return v_.mean(0)
For testing purposes, the output of each algorithm can be visualized as follows:
import matplotlib.pyplot as p; p.rcParams['toolbar'] = 'None';
def plt(o, e, b):
p.figure(figsize=(10, 10), dpi=72, facecolor='w').add_axes([0.05, 0.05, 0.9, 0.9], aspect='equal')
p.plot(0, 0, marker='x', mew=1, ms=10, c='g', zorder=2, clip_on=False)
p.gcf().canvas.set_window_title('%f' % e)
x = np.ravel(o[0].T[0])
y = np.ravel(o[0].T[1])
p.xlim(min(x), max(x))
p.ylim(min(y), max(y))
a = []
for i, j in np.ndindex(len(o), 2):
a.append(o[i].T[j])
O = p.plot(*a, marker='x', mew=1, ms=10, lw=.25, c='b', zorder=0, clip_on=False)
O[0].set(c='r', zorder=1)
if not b:
O[2].set_color('b')
O[2].set_alpha(0.4)
p.axis('off')
p.show()
# Fly wings example (Klingenberg, 2015 | https://en.wikipedia.org/wiki/Procrustes_analysis)
arr1 = np.array([[588.0, 443.0], [178.0, 443.0], [56.0, 436.0], [50.0, 376.0], [129.0, 360.0], [15.0, 342.0], [92.0, 293.0], [79.0, 269.0], [276.0, 295.0], [281.0, 331.0], [785.0, 260.0], [754.0, 174.0], [405.0, 233.0], [386.0, 167.0], [466.0, 59.0]])
arr2 = np.array([[477.0, 557.0], [130.129, 374.307], [52.0, 334.0], [67.662, 306.953], [111.916, 323.0], [55.119, 275.854], [107.935, 277.723], [101.899, 259.73], [175.0, 329.0], [171.0, 345.0], [589.0, 527.0], [591.0, 468.0], [299.0, 363.0], [306.0, 317.0], [406.0, 288.0]])
def opa_out(a):
r, s, t, d = opa(a[0], a[1])
a[1] = a[1].dot(r) * s + t
return a, d, False
plt(*opa_out([arr1, arr2, np.matrix.copy(arr2)]))
def gpa_out(a):
g = gpa(a, -1)
D = [avg(a)]
for i in range(len(a)):
D.append(a[i].dot(g[0][i]) * g[1][i] + g[2][i])
return D, sum(g[3])/len(a), True
plt(*gpa_out([arr1, arr2]))
Probably you want to try this package with various flavors of different Procrustes methods, https://github.com/theochem/procrustes.

Categories