self in Python classes - python

I know first argument in Python methods will be an instance of this class. So we need use "self" as first argument in methods. But should we also specify attribures (variables) in method starting with "self."?
My method work even if i don't specify self in his attributes:
class Test:
def y(self, x):
c = x + 3
print(c)
t = Test()
t.y(2)
5
and
class Test:
def y(self, x):
self.c = x + 3
print(self.c)
t = Test()
t.y(2)
5
For what i would need specify an attribute in methods like "self.a" instead of just "a"?
In which cases first example will not work but second will? Want to see situation which shows really differences between two of them, because now they behave the same from my point of view.

The reason you do self.attribute_name in a class method is to perform computation on that instances attribute as opposed to using a random variable.For Example
class Car:
def __init__(self,size):
self.size = size
def can_accomodate(self,number_of_people):
return self.size> number_of_people
def change_size(self,new_size):
self.size=new_size
#works but bad practice
def can_accomodate_v2(self,size,number_of_people):
return size> number_of_people
c = Car(5)
print(c.can_accomodate(2))
print(c.can_accomodate_v2(4,2))
In the above example you can see that the can_accomodate use's self.size while can_accomodate_v2 passes the size variable which is bad practice.Both will work but the v2 is a bad practice and should not be used.You can pass argument into a class method not related to the instance/class for example "number_of_people" in can_accomodate funtion.
Hope this helps.

Related

Order of classes matters when using variables from each other

I am new to Python and didn't find an answer to the following problem:
I have two classes and want them to use variables from each other. Is there a simple way to do this because if I do it like this class a does not know that class b exists.
class a:
y=1
print(b.x)
class b:
x=1
print(a.y)
And how do I use overwrite the variables, the following code does not work:
class a:
y=b.x
class b:
x=1
You are executing print as part of the class definition. It executes as soon as python sees that line of code, before it's read the part about class b.
Instead, use functions inside the classes to execute code after the classes have been defined:
class a:
y=1
def go():
print(b.x)
class b:
x=1
def go():
print(a.y)
a.go()
b.go()
As I said in a comment, your code isn't making effective use of classes. Here's what I think would be better approach that offers more flexibility in working around the circular reference issue.
First the class definitions (which follow the PEP 8 naming convention guidelines):
class A:
def __init__(self, value, linked_value=None):
self.y = value
if isinstance(linked_value, B):
self.linked_value = linked_value.x
def print_linked_value(self):
print(self.linked_value)
class B:
def __init__(self, value, linked_value=None):
self.x = value
if isinstance(linked_value, A):
self.linked_value = linked_value.y
def print_linked_value(self):
print(self.linked_value)
Definitions like that provide two ways to set up the circular references:
By creating them separately, then explicitly linking them:
# First create instances of each class.
a = A(1)
b = B(42)
# Then link them.
a.linked_value = b.x
b.linked_value = a.y
a.print_linked_value() # -> 42
b.print_linked_value() # -> 1
*OR* by creating the first one without a linked value and leaving only the second needing to be linked manually.
# First create instances of each class, but link the second to the first
# when it's created.
a = A(1)
b = B(42, a) # Create and link to first.
# Then link the first to the second to complete the circular references.
a.linked_value = b.x
# Same result.
a.print_linked_value() # -> 42
b.print_linked_value() # -> 1
Final note: Another, more advanced alternative that can also be applied in situations like this by using the built-in property() function as a decorator to create "descriptors". Here's an answer to a somewhat related question that illustrating its use.
class A:
y = 1
def foo(self):
print B.x
class B:
x = 1
def bar(self):
print A.y
>>> A().foo()
2
>>> B().bar()
1
Use 'print' in some function definition.

How to Refer to Instance Variables that are Objects, in Python?

Usually, to refer to an instance variable, the variable name must be preceded with self, as in,
class A:
def __init__(self, x: int):
self.x = x
def print_x(self):
print(self.x)
However, I noticed that if the instance variable is an object, this is not neccesary. That is, I can do,
class B:
pass
class A:
def __init__(self, b: B):
pass
def print_b(self):
print(b)
b = B()
a = A(b)
a.print_b()
and calling print_b from an A object will print the memory address of the B object, without raising an error.
Is this equivalent to explicitly declaring b to be an instance variabe, via self.b = b in __init__ and referring to b as self.b thereafter? And if so, is this proper convention?
And if so, is this proper convention?
In both situations, the design may suffer of tight coupling. The general rule of thumb is to always depend on abstractions, not on concretions.
Only if you share with us the actual code (MCVE) and provide some context then we could provide a practical and better solution to your problem.

How to store function in class attribute?

In my code I have a class, where one method is responsible for filtering some data. To allow customization for descendants I would like to define filtering function as a class attribute as per below:
def my_filter_func(x):
return x % 2 == 0
class FilterClass(object):
filter_func = my_filter_func
def filter_data(self, data):
return filter(self.filter_func, data)
class FilterClassDescendant(FilterClass):
filter_func = my_filter_func2
However, such code leads to TypeError, as filter_func receives "self" as first argument.
What is a pythonic way to handle such use cases? Perhaps, I should define my "filter_func" as a regular class method?
You could just add it as a plain old attribute?
def my_filter_func(x):
return x % 2 == 0
class FilterClass(object):
def __init__(self):
self.filter_func = my_filter_func
def filter_data(self, data):
return filter(self.filter_func, data)
Alternatively, force it to be a staticmethod:
def my_filter_func(x):
return x % 2 == 0
class FilterClass(object):
filter_func = staticmethod(my_filter_func)
def filter_data(self, data):
return filter(self.filter_func, data)
Python has a lot of magic within. One of those magics has something to do with transforming functions into UnboundMethod objects (when assigned to the class, and not to an class' instance).
When you assign a function (And I'm not sure whether it applies to any callable or just functions), Python converts it to an UnboundMethod object (i.e. an object which can be called using an instance or not).
Under normal conditions, you can call your UnboundMethod as normal:
def myfunction(a, b):
return a + b
class A(object):
a = myfunction
A.a(1, 2)
#prints 3
This will not fail. However, there's a distinct case when you try to call it from an instance:
A().a(1, 2)
This will fail since when an instance gets (say, internal getattr) an attribute which is an UnboundMethod, it returns a copy of such method with the im_self member populated (im_self and im_func are members of UnboundMethod). The function you intended to call, is in the im_func member. When you call this method, you're actually calling im_func with, additionally, the value in im_self. So, the function needs an additional parameter (the first one, which will stand for self).
To avoid this magic, Python has two possible decorators:
If you want to pass the function as-is, you must use #staticmethod. In this case, you will have the function not converted to UnboundMethod. However, you will not be able to access the calling class, except as a global reference.
If you want to have the same, but be able to access the current class (disregarding whether the function it is called from an instance or from a class), then your function should have another first argument (INSTEAD of self: cls) which is a reference to the class, and the decorator to use is #classmethod.
Examples:
class A(object):
a = staticmethod(lambda a, b: a + b)
A.a(1, 2)
A().a(1, 2)
Both will work.
Another example:
def add_print(cls, a, b):
print cls.__name__
return a + b
class A(object):
ap = classmethod(add_print)
class B(A):
pass
A.ap(1, 2)
B.ap(1, 2)
A().ap(1, 2)
B().ap(1, 2)
Check this by yourseld and enjoy the magic.

Python reverse introspection

Lets suppose this example: Two siblings classes where one loads the other class as a new attribute and then i wish to use this attribute from the main class inside the sibling.
a = 2
class AN(object):
def __init__(self,a):
self.aplus = a + 2
self.BECls = BE(a)
class BE(object):
def __init__(self,a):
print a
def get_aplus(self):
????
c = AN(a)
and i'd like to do:
c.BECls.get_aplus()
and this shall return something like self.self.aplus (metaphorically), that would be 4
Resuming: get aplus attribute from AN inside BE class, without declaring as arguments, but doing a "Reverse introspection", if it possible, considering the 'a' variable must be already loaded trough AN.
Sorry if I not made myself clear but I've tried to simplify what is happening with my real code.
I guess the problem may be the technique i'm using on the classes. But not sure what or how make it better.
Thanks
OP's question:
get aplus attribute from AN inside BE class, without declaring as
arguments, but doing a "Reverse introspection", if it possible,
considering the 'a' variable must be already loaded trough AN.
The closest thing we have to "reverse introspection" is a search through gc.getreferrers().
That said, it would be better to simply make the relationship explicit
class AN(object):
def __init__(self,a):
self.aplus = a + 2
self.BECls = BE(self, a)
class BE(object):
def __init__(self, an_obj, a):
self.an_obj = an_obj
print a
def get_aplus(self):
return self.an_obj.aplus
if __name__ == '__main__':
a = 2
c = AN(a)
print c.BECls.get_aplus() # this returns 4

Inheritance of from_<type> in Python

Edit: There was some confusion, but I want to ask a general question about object oriented design in Python.
Consider a class that lets you map data values to counts or frequencies:
class DataMap(dict):
pass
Now consider a subclass that allows you to construct a histogram from a list of data:
class Histogram(DataMap):
def __init__(self, list_of_values):
# 1. Put appropriate super(...) call here if necessary
# 2. Build the map of values to counts in self
pass
Now consider a class that lets you make a smoothed probability mass table rather than a Histogram.
class ProbabilityMass(DataMap):
pass
What is the best way to allow a ProbabilityMass to be constructed from either a Histogram or a list of values?
I "grew up" programming in C++, and in this case I would use an overloaded constructor. In Python I've thought of doing this with:
The constructor takes multiple arguments (all but one of these should == None)
I define from_Histogram and from_list methods
In the second case (which I believe is better), what is the best way to allow the from_list method to use the shared code from the Histogram constructor? A ProbabilityMass table is nearly identical to a Histogram table, but it is scaled so that the sum of all value is 1.0.
If you have come across a similar problem, please share your expertise!
To start with, if you think you want #staticmethod, you almost always don't. Either the function is not part of the class, in which case it should just be a free function, or it is part of the class, but not tied to an instance, and it should be a #classmethod. Your named constructor is a good candidate for a #classmethod.
Also note that you should invoke A.__init__ from B via super(), otherwise multiple inheritance can bite you bad.
class A:
def __init__(self, data):
self.values_to_counts = {}
for val in data:
if val in self.values_to_counts:
self.values_to_counts[val] += 1
else:
self.values_to_counts[val] = 1
#classmethod
def from_values_to_counts(cls, values_to_counts):
self = cls([])
self.values_to_counts = values_to_counts
return self
class B(A):
def __init__(self, data, parameter):
super(B, self).__init__(data)
self.parameter = parameter
def print_parameter(self):
print self.parameter
In this case, you don't need a B.from_values_to_counts, it inherits from A, and it will return an instance of B, since that's how it was called.
If you need to do more complex initialization in B, you can, using super(), which looks very similar to the way it would when you use it with instances. after all, a classmethod really isn't anything more complex than an instancemethod where the im_self attribute is assigned to the class itself.
class A:
def __init__(self, data):
self.values_to_counts = {}
for val in data:
if val in self.values_to_counts:
self.values_to_counts[val] += 1
else:
self.values_to_counts[val] = 1
#classmethod
def from_values_to_counts(cls, values_to_counts):
self = cls([])
self.values_to_counts = values_to_counts
return self
class B(A):
def __init__(self, data, parameter):
super(B, self).__init__(data)
self.parameter = parameter
def print_parameter(self):
print self.parameter
#classmethod
def from_values_to_counts(cls, values_to_counts):
self = super(B, cls).from_values_to_counts(values_to_counts)
do_more_initialization(self)
return self

Categories