Related
Please see example dataframe below:
I'm trying match values of columns X with column names and retrieve value from that matched column
so that:
A B C X result
1 2 3 B 2
5 6 7 A 5
8 9 1 C 1
Any ideas?
Here are a couple of methods:
# Apply Method:
df['result'] = df.apply(lambda x: df.loc[x.name, x['X']], axis=1)
# List comprehension Method:
df['result'] = [df.loc[i, x] for i, x in enumerate(df.X)]
# Pure Pandas Method:
df['result'] = (df.melt('X', ignore_index=False)
.loc[lambda x: x['X'].eq(x['variable']), 'value'])
Here I just build a dataframe from your example and call it df
dict = {
'A': (1,5,8),
'B': (2,6,9),
'C': (3,7,1),
'X': ('B','A','C')}
df = pd.DataFrame(dict)
You can extract the value from another column based on 'X' using the following code. There may be a better way to do this without having to convert first to list and retrieving the first element.
list(df.loc[df['X'] == 'B', 'B'])[0]
I'm going to create a column called 'result' and fill it with 'NA' and then replace the value based on your conditions. The loop below, extracts the value and uses .loc to replace it in your dataframe.
df['result'] = 'NA'
for idx, val in enumerate(list(vals)):
extracted = list(df.loc[df['X'] == val, val])[0]
df.loc[idx, 'result'] = extracted
Here it is as a function:
def search_replace(dataframe, search_col='X', new_col_name='result'):
dataframe[new_col_name] = 'NA'
for idx, val in enumerate(list(vals)):
extracted = list(dataframe.loc[dataframe[search_col] == val, val])[0]
dataframe.loc[idx, new_col_name] = extracted
return df
and the output
>>> search_replace(df)
A B C X result
0 1 2 3 B 2
1 5 6 7 A 5
2 8 9 1 C 1
This should be straightforward, but the closest thing I've found is this post:
pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform:
>>> df
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
fillna + groupby + transform + mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby + transform syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to #DSM's solution, but avoids the need to define an anonymous lambda function.
#DSM has IMO the right answer, but I'd like to share my generalization and optimization of the question: Multiple columns to group-by and having multiple value columns:
df = pd.DataFrame(
{
'category': ['X', 'X', 'X', 'X', 'X', 'X', 'Y', 'Y', 'Y'],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'other_value': [10, np.nan, np.nan, 20, 30, 10, 30, np.nan, 30],
'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
}
)
... gives ...
category name other_value value
0 X A 10.0 1.0
1 X A NaN NaN
2 X B NaN NaN
3 X B 20.0 2.0
4 X B 30.0 3.0
5 X B 10.0 1.0
6 Y C 30.0 3.0
7 Y C NaN NaN
8 Y C 30.0 3.0
In this generalized case we would like to group by category and name, and impute only on value.
This can be solved as follows:
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
Notice the column list in the group-by clause, and that we select the value column right after the group-by. This makes the transformation only be run on that particular column. You could add it to the end, but then you will run it for all columns only to throw out all but one measure column at the end. A standard SQL query planner might have been able to optimize this, but pandas (0.19.2) doesn't seem to do this.
Performance test by increasing the dataset by doing ...
big_df = None
for _ in range(10000):
if big_df is None:
big_df = df.copy()
else:
big_df = pd.concat([big_df, df])
df = big_df
... confirms that this increases the speed proportional to how many columns you don't have to impute:
import pandas as pd
from datetime import datetime
def generate_data():
...
t = datetime.now()
df = generate_data()
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
print(datetime.now()-t)
# 0:00:00.016012
t = datetime.now()
df = generate_data()
df["value"] = df.groupby(['category', 'name'])\
.transform(lambda x: x.fillna(x.mean()))['value']
print(datetime.now()-t)
# 0:00:00.030022
On a final note you can generalize even further if you want to impute more than one column, but not all:
df[['value', 'other_value']] = df.groupby(['category', 'name'])['value', 'other_value']\
.transform(lambda x: x.fillna(x.mean()))
Shortcut:
Groupby + Apply + Lambda + Fillna + Mean
>>> df['value1']=df.groupby('name')['value'].apply(lambda x:x.fillna(x.mean()))
>>> df.isnull().sum().sum()
0
This solution still works if you want to group by multiple columns to replace missing values.
>>> df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, np.nan,np.nan, 4, 3],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],'class':list('ppqqrrsss')})
>>> df['value']=df.groupby(['name','class'])['value'].apply(lambda x:x.fillna(x.mean()))
>>> df
value name class
0 1.0 A p
1 1.0 A p
2 2.0 B q
3 2.0 B q
4 3.0 B r
5 3.0 B r
6 3.5 C s
7 4.0 C s
8 3.0 C s
I'd do it this way
df.loc[df.value.isnull(), 'value'] = df.groupby('group').value.transform('mean')
The featured high ranked answer only works for a pandas Dataframe with only two columns. If you have a more columns case use instead:
df['Crude_Birth_rate'] = df.groupby("continent").Crude_Birth_rate.transform(
lambda x: x.fillna(x.mean()))
To summarize all above concerning the efficiency of the possible solution
I have a dataset with 97 906 rows and 48 columns.
I want to fill in 4 columns with the median of each group.
The column I want to group has 26 200 groups.
The first solution
start = time.time()
x = df_merged[continuous_variables].fillna(df_merged.groupby('domain_userid')[continuous_variables].transform('median'))
print(time.time() - start)
0.10429811477661133 seconds
The second solution
start = time.time()
for col in continuous_variables:
df_merged.loc[df_merged[col].isnull(), col] = df_merged.groupby('domain_userid')[col].transform('median')
print(time.time() - start)
0.5098445415496826 seconds
The next solution I only performed on a subset since it was running too long.
start = time.time()
for col in continuous_variables:
x = df_merged.head(10000).groupby('domain_userid')[col].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
11.685635566711426 seconds
The following solution follows the same logic as above.
start = time.time()
x = df_merged.head(10000).groupby('domain_userid')[continuous_variables].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
42.630549907684326 seconds
So it's quite important to choose the right method.
Bear in mind that I noticed once a column was not a numeric the times were going up exponentially (makes sense as I was computing the median).
def groupMeanValue(group):
group['value'] = group['value'].fillna(group['value'].mean())
return group
dft = df.groupby("name").transform(groupMeanValue)
I know that is an old question. But I am quite surprised by the unanimity of apply/lambda answers here.
Generally speaking, that is the second worst thing to do after iterating rows, from timing point of view.
What I would do here is
df.loc[df['value'].isna(), 'value'] = df.groupby('name')['value'].transform('mean')
Or using fillna
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
I've checked with timeit (because, again, unanimity for apply/lambda based solution made me doubt my instinct). And that is indeed 2.5 faster than the most upvoted solutions.
To fill all the numeric null values with the mean grouped by "name"
num_cols = df.select_dtypes(exclude='object').columns
df[num_cols] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
df.fillna(df.groupby(['name'], as_index=False).mean(), inplace=True)
You can also use "dataframe or table_name".apply(lambda x: x.fillna(x.mean())).
I have a dataframe with column a. I need to get data after second _.
a
0 abc_def12_0520_123
1 def_ghij123_0120_456
raw_data = {'a': ['abc_def12_0520_123', 'def_ghij123_0120_456']}
df = pd.DataFrame(raw_data, columns = ['a'])
Output:
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
What I have tried:
df['b'] = df.number.str.replace('\D+', '')
I tried removing alphabets first, But its getting complex. Any suggestions
Here is how:
df['b'] = ['_'.join(s.split('_')[2:]) for s in df['a']]
print(df)
Output:
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
Explanation:
lst = ['_'.join(s.split('_')[2:]) for s in df['a']]
is the equivalent of:
lst = []
for s in df['a']:
a = s.split('_')[2:] # List all strings in list of substrings splitted '_' besides the first 2
lst.append('_'.join(a))
Try:
df['b'] = df['a'].str.split('_',2).str[-1]
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
This should be straightforward, but the closest thing I've found is this post:
pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform:
>>> df
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
fillna + groupby + transform + mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby + transform syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to #DSM's solution, but avoids the need to define an anonymous lambda function.
#DSM has IMO the right answer, but I'd like to share my generalization and optimization of the question: Multiple columns to group-by and having multiple value columns:
df = pd.DataFrame(
{
'category': ['X', 'X', 'X', 'X', 'X', 'X', 'Y', 'Y', 'Y'],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'other_value': [10, np.nan, np.nan, 20, 30, 10, 30, np.nan, 30],
'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
}
)
... gives ...
category name other_value value
0 X A 10.0 1.0
1 X A NaN NaN
2 X B NaN NaN
3 X B 20.0 2.0
4 X B 30.0 3.0
5 X B 10.0 1.0
6 Y C 30.0 3.0
7 Y C NaN NaN
8 Y C 30.0 3.0
In this generalized case we would like to group by category and name, and impute only on value.
This can be solved as follows:
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
Notice the column list in the group-by clause, and that we select the value column right after the group-by. This makes the transformation only be run on that particular column. You could add it to the end, but then you will run it for all columns only to throw out all but one measure column at the end. A standard SQL query planner might have been able to optimize this, but pandas (0.19.2) doesn't seem to do this.
Performance test by increasing the dataset by doing ...
big_df = None
for _ in range(10000):
if big_df is None:
big_df = df.copy()
else:
big_df = pd.concat([big_df, df])
df = big_df
... confirms that this increases the speed proportional to how many columns you don't have to impute:
import pandas as pd
from datetime import datetime
def generate_data():
...
t = datetime.now()
df = generate_data()
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
print(datetime.now()-t)
# 0:00:00.016012
t = datetime.now()
df = generate_data()
df["value"] = df.groupby(['category', 'name'])\
.transform(lambda x: x.fillna(x.mean()))['value']
print(datetime.now()-t)
# 0:00:00.030022
On a final note you can generalize even further if you want to impute more than one column, but not all:
df[['value', 'other_value']] = df.groupby(['category', 'name'])['value', 'other_value']\
.transform(lambda x: x.fillna(x.mean()))
Shortcut:
Groupby + Apply + Lambda + Fillna + Mean
>>> df['value1']=df.groupby('name')['value'].apply(lambda x:x.fillna(x.mean()))
>>> df.isnull().sum().sum()
0
This solution still works if you want to group by multiple columns to replace missing values.
>>> df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, np.nan,np.nan, 4, 3],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],'class':list('ppqqrrsss')})
>>> df['value']=df.groupby(['name','class'])['value'].apply(lambda x:x.fillna(x.mean()))
>>> df
value name class
0 1.0 A p
1 1.0 A p
2 2.0 B q
3 2.0 B q
4 3.0 B r
5 3.0 B r
6 3.5 C s
7 4.0 C s
8 3.0 C s
I'd do it this way
df.loc[df.value.isnull(), 'value'] = df.groupby('group').value.transform('mean')
The featured high ranked answer only works for a pandas Dataframe with only two columns. If you have a more columns case use instead:
df['Crude_Birth_rate'] = df.groupby("continent").Crude_Birth_rate.transform(
lambda x: x.fillna(x.mean()))
To summarize all above concerning the efficiency of the possible solution
I have a dataset with 97 906 rows and 48 columns.
I want to fill in 4 columns with the median of each group.
The column I want to group has 26 200 groups.
The first solution
start = time.time()
x = df_merged[continuous_variables].fillna(df_merged.groupby('domain_userid')[continuous_variables].transform('median'))
print(time.time() - start)
0.10429811477661133 seconds
The second solution
start = time.time()
for col in continuous_variables:
df_merged.loc[df_merged[col].isnull(), col] = df_merged.groupby('domain_userid')[col].transform('median')
print(time.time() - start)
0.5098445415496826 seconds
The next solution I only performed on a subset since it was running too long.
start = time.time()
for col in continuous_variables:
x = df_merged.head(10000).groupby('domain_userid')[col].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
11.685635566711426 seconds
The following solution follows the same logic as above.
start = time.time()
x = df_merged.head(10000).groupby('domain_userid')[continuous_variables].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
42.630549907684326 seconds
So it's quite important to choose the right method.
Bear in mind that I noticed once a column was not a numeric the times were going up exponentially (makes sense as I was computing the median).
def groupMeanValue(group):
group['value'] = group['value'].fillna(group['value'].mean())
return group
dft = df.groupby("name").transform(groupMeanValue)
I know that is an old question. But I am quite surprised by the unanimity of apply/lambda answers here.
Generally speaking, that is the second worst thing to do after iterating rows, from timing point of view.
What I would do here is
df.loc[df['value'].isna(), 'value'] = df.groupby('name')['value'].transform('mean')
Or using fillna
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
I've checked with timeit (because, again, unanimity for apply/lambda based solution made me doubt my instinct). And that is indeed 2.5 faster than the most upvoted solutions.
To fill all the numeric null values with the mean grouped by "name"
num_cols = df.select_dtypes(exclude='object').columns
df[num_cols] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
df.fillna(df.groupby(['name'], as_index=False).mean(), inplace=True)
You can also use "dataframe or table_name".apply(lambda x: x.fillna(x.mean())).
I have the a df,
date amount code id
2018-01-01 50 12 1
2018-02-03 100 12 1
2017-12-30 1 13 2
2017-11-30 2 14 2
I want to groupby id, while in each group the date is also sorted in ascending or descending order, so I can do the following,
grouped = df.groupby('id')
a = np.where(grouped['code'].transform('nunique') == 1, 20, 0)
b = np.where(grouped['amount'].transform('max') > 100, 20, 0)
c = np.where(grouped['date'].transform(lambda x: x.diff().dropna().sum()).dt.days < 5, 30, 0)
You can sort the data within each group by using apply and sort_values:
grouped = df.groupby('id').apply(lambda g: g.sort_values('date', ascending=True))
Adding to the previous answer, if you wish indexes to remain as they were, you might consider the following :
import pandas as pd
df = {'a':[1,2,3,0,5], 'b':[2,2,3,2,5], 'c':[22,11,11,42,12]}
df = pd.DataFrame(df)
e = (df.groupby(['c','b', 'a']).size()).reset_index()
e = e[['a', 'b', 'c']]
e = e.sort_values(['c','a'])
print(e)