I'm trying to make a program that will stop when it gets 5 prime numbers from a range.
I've completed most of the program except the part where it is supposed to stop after it gets 5 numbers.
I've added a condition for it to stop, once the counter reaches 5 but it does not stop and continues to list all the numbers in the range.
Here is code I have:
condition = 0
while condition < 5:
for numbers in range(2,20):
for divisor in range(2,numbers):
if (numbers % divisor) == 0:
break
else:
print(numbers)
condition +=1
The condition+=1 never goes through and it lists all the prime numbers from 1 to 20 even though I just want the first 5.
I've tried spacing options with the "condition +=1" but it still does not work
Any help would be appreciated
While is out of for loop, so cannot work obviously. A simple solution is to check required condition later:
for numbers in range(2,20):
for divisor in range(2,numbers):
if (numbers % divisor) == 0:
break
else:
print(numbers)
condition +=1
if condition >=5:
break
I think the real problem you are having is that you have written bad code. A much better approach to this problem is to isolate as many pieces as possible.
for example:
def is_prime(x):
"return true if x is prime, otherwise false"
# implement me!
return True
def get_first_n_primes_less_than_y(n, y):
number = 2
condition = 0
while condition != n and number < y:
if is_prime(number):
print(number)
condition += 1
number += 1
get_first_n_primes(5, 20)
The above code, with some tweaking can perform the same task. However, code like this is much simpler to debug and reason about because we have isolated chunks of code (is_prime, has nothing to do with the while loop)
num_results = 5
counter = 0
range_start = 2
range_end = 20
# iterate range
for number in range (range_start, range_end):
# iterate divisors
for divisor in range (2, number):
# check division
if (number % divisor) == 0:
break
else:
print ("%s is a prime number" % number)
counter += 1
break
# check if number of results has been reached
if counter == num_results:
break
# check if number of results has been reached
if counter == num_results:
break
The problem is that you need to run the entire content of the while block before you test the condition again.
Here is a way around
condition = 0
numbers=2
while condition < 5 and numbers < 20:
for divisor in range(2,numbers):
if (numbers % divisor) == 0:
break
else:
print(numbers)
condition +=1
numbers+=1
Related
This code is meant to output prime numbers within a given range:
def sqrt(n):
return n**0.5
# find primes
def primes(minNum, maxNum):
primes_sum = 0
for i in range(minNum, maxNum):
current_max = int(sqrt(i))
for n in range(2, current_max + 1):
if(i%n == 0):
break
else:
primes_sum += i
print(i)
break
print('\nSum of all primes: ', primes_sum)
primes(10, 20)
However, I get an incorrect output:
11, 13, 15, 17, 19
Does someone know how the 15 manages to appear? I put print statements in the first if statement block to verify that 15 is detected by the if(i%n == 0) condition, and it is, but somehow it still appears in my final output and I can't figure out why.
I made changes to your code. Try in this way:
def sqrt(n):
return n**0.5
# find primes
def primes(minNum, maxNum):
primes_sum = 0
for i in range(minNum, maxNum):
current_max = int(sqrt(i))
#print(current_max)
flag = True
for n in range(2, current_max + 1):
#print(i,n)
if(i%n == 0):
flag = False
if flag:
print(i)
primes_sum += i
print('\nSum of all primes: ', primes_sum)
primes(10, 200)
In your code, you are not checking whether all the number is divisible by all the numbers. It will fail for all the odd non-prime numbers as it will check whether it is divisible by 2, if not it is a prime number
This logic:
for n in range(2, current_max + 1):
if(i%n == 0):
break
else:
primes_sum += i
print(i)
break
doesn't work to detect prime numbers, because if the first value of n you test (which will be 2) isn't a factor, you'll immediately count it as a prime and break the loop. You need to finish iterating over the entire range before deciding a number is a prime:
for n in range(2, current_max + 1):
if i % n == 0:
break
else:
primes_sum += i
print(i)
Note that the else is part of the for, not the if -- it only executes if the for loop exhausts itself without ever hitting a break (i.e. if it doesn't find any n values that are factors of i).
The reason is perfectly explained by #SAI SANTOSH CHIRAG. I won't copy that. I'm not sure why you're using sqrt of a number. You can do the stuff without sqrt. You would get wrong output if you use sqrt. In your case, if we check for sqrt of 18, then int of it would be 4 and the divisibility is checked from 2 to 4 whereas 18 is also divisible by 6. I am designing a new code without sqrt and explaining it as well.
My logic: define a function that takes upper bound and lower bound as parameter. Take a for loop ranging from lower bound to upper bound. Now each value will be a number between the range. We've to check whether the number is prime. Use loop ranging from 2 to number and check whether it is divisible or not. If yes, it is not prime. If no, add it to sum. Your code:
def primes(low,upp):
su=[]
for i in range(low,upp+1):
f=True
for j in range(2,i):
if i%j==0:
f=False
if f:
su.append(i)
return su,sum(su)
print(primes(10,20))
I am attending a course on Udemy and one of the exercises is to return all the prime numbers from a range of numbers (for example all prime numbers before 100)
This is the query that the teacher made
def count_primes2(num):
#Check for 1 or 0
if num < 2:
return 0
######################
#2 or greater
#Store our prime numbers
primes = [2] #I start my list with 2 that is a prime number
#Counter going up to the input num
x = 3 #I create a variable on which I will continue adding until I reach num
# x is going through every number up to the input num
while x <= num:
#Check if x is prime
for y in range(3,x,2): # for y in range from 3 to x in even steps, we only wantto check odd numbers there
if x%y == 0:
x += 2
break
else:
primes.append(x)
x += 2
print(primes)
return len(primes)
count_primes2(100)
However, I came up with the one below that is not working. My idea is:
Given each number i between between 3 and num+1 (for example 100 would be 101 so that 100 can be included in the calculation):
Open a for loop in which I divide i by each number g before i (including i) and I have a counter checking when this division gives no remainder. This implies that in case of prime numbers the counter should always be 2 (for example 3--> 3:1 and 3:3 would give remainder 0).
If the counter is equal to 2, then i is a prime and I want to append it to the list.
I am not using any while loop in my query. Can you help me to identify why my query is not working?
def count_prime(num):
counter=0
list_prime=[2]
if num<2:
return 0
for i in range(3,num+1):
for g in range(1,i+1):
if i%g==0:
counter+=1
if counter==2:
list_prime.append(i)
return list_prime
count_prime(100)
Kudos to Khelwood for the help. Below the working query:
def count_prime(num):
counter=0
list_prime=[2]
if num<2:
return 0
for i in range(3,num+1):
for g in range(1,i+1):
if i%g==0:
counter+=1
if counter==2:
list_prime.append(i)
counter=0
return list_prime
count_prime(100)
you may do this :
for i in range(2,num):
if (num % i) == 0:`
Instead of using two for loops, you can simply eliminate one of the for loop and do this, I hope this may work for you.
thankyou.
With this code, I only get to test if the number the user entered is prime or not.
How do I add another loop to my original code in order to find all the prime numbers less than or equal to the number the user has entered?
num = int(input("Enter a number: "))
if num > 1:
prime = True
for n in range(2, num):
if (num % n) == 0:
print ("Number", num, "is not prime")
break
else:
print("Number", num, "is prime")
You can'not print both in one loop, you can do one thing add a loop above your current loop and display each number like this :
num = int(input("Enter a number: "))
if num > 1:
prime = True
for n in range(2, num):
if (num % n) == 0:
print ("Number", num, "is not prime")
break
else:
print("Number", num, "is prime")
#your current code ends here
for j in range(2, num + 1):
# prime numbers are greater than 1
for i in range(2, j):
if (j % i) == 0:
break
else:
print(j)
Your code only check the number entered is prime or not , but you questioned about to get prime numbers from 2 to n (n = number entered by user) for this you run below code with the help of flag bit it will little bit easy for you. i hope it will help you.
Try This i run this code It will Surely help you to find your answer it work in python 3.0 or above
num = int(input("Enter The Number"))
if num > 1:
num = num+1
list = []
for j in range (2,num,1):
flag = 0
for i in range (2,int(j/2)+1,1):
if(j%i)== 0:
flag = 1
break
if flag==0:
list.append(j)
print(list)
else:
print("Enter Number Greater Than 1")
Aside from small things (unused boolean variable) your prime test is also super inefficient.
Let's go through this step by step.
First: To test if a number is prime, you don't need to check all integers up to the number for divisors. Actually, going up to sqrt(num) turns out to be sufficient. We can write a one-liner function to find out if a number is prime like so:
from numpy import sqrt
def is_prime(n):
return n > 1 and all(n%i for i in range(2,int(sqrt(n))+1))
range(2,some_num) gives an iterator through all numbers from 2 up to some_num-1and the all() function checks if the statement n%i is true everywhere in that iterator and returns a boolean. If you can guarantee to never pass even numbers you can start the range from 3 (of course with the loss of generality). Even if you don't want to use that function, it's cleaner to separate the functionality into a different function, because in a loop of numbers up to your input you will probably have to check each number for being prime separately anyways.
Second: From here, finding all primes smaller or equal than your input should be pretty easy.
num = int(input("Enter a number:"))
assert num>0, "Please provide a positive integer" # stops with an assertion error if num<=0
prime_lst = [2] if num > 1 else []
for x in range(3,num+1,2):
if is_prime(x):
prime_lst.append(x)
The list prime_lst will contain all your sought after prime numbers. I start the loop from 1 such that I can loop through only the odd numbers, even numbers are divisible by two. So this way none of the numbers will be divisible by two. Unfortunately this requires me to check if the number itself may be 2, which is a prime. By the twin-prime conjecture we can not simplify this range further without knowing about the input.
Finally: If you really want to find the primes in one loop, change your loop to something along the lines of:
prime_lst = [2] if num > 1 else []
for x in range(3,num+1,2): # outer loop
for i in range(3,int(sqrt(x))+1): # inner loop for check if x is prime
if x%i == 0:
break # breaks the inner loop, number is not prime
else:
prime_lst.append(x)
Edit: Just saw that the second answer here has a good explanation (and an even better way) of writing the one-liner for finding out if a number is prime.
I am trying to put together a simple program which could work out n prime numbers. I would like to do this by using a nested for loop, where one would go through the numbers, and another would divide that number by all of the numbers up to it to see if it would be divisible by anything.
The problem I am having is that in the main for loop, I need to start it at 2, seeing as 1 would mess up the system and I don't want it to be considered a prime. For the loop to have a starting number however, it also needs an ending number which is difficult in this instance as it is hard to generate the largest prime that will be needed prior to the loop working.
Here's the program that I am using right now. Where I have marked X is where I need to somehow put an ending number for the For Loop. I guess it would be much simpler if I let the For Loop be completely open, and simply take out anything that '1' would produce in the loop itself, but this feels like cheating and I want to do it right.
check = 0
limit = int(input("Enter the amount of Prime Numbers"))
for i in range(2,X):
check = 0
if i > 1:
for j in range(2,i):
if (i % j) == 0:
check = 1
if check == 0:
print (i)
Thanks for your help!
You can step through an unlimited amount of numbers using a generator object.
Insert the following somewhere near the top of your code:
def infinite_number_generator(initial_value=2):
""" Generates an infinite amount of numbers """
i = initial_value
while True:
yield i
i += 1
What this does is it creates a function for constructing generator objects that "pause" whenever they reach the yield statement to "yield" whatever value is specified by the yield command, and then continue to execute from the next line beneath the yield statement.
Python's own range function is itself an example of a generator, and is roughly equivalent to (ignoring the step argument and other peculiarities)
def range(start, end):
i = start
while i < end:
yield i
i += 1
So your program would then look like this:
def infinite_number_generator(initial_value=2):
""" Generates an infinite amount of numbers """
i = initial_value
while True:
yield i
i += 1
check = 0
limit = int(input("Enter the amount of Prime Numbers"))
for i in infinite_number_generator():
check = 0
for j in range(2,i):
if (i % j) == 0:
check = 1
if check == 0:
print (i)
if i == limit:
break
I should also point out that the code you provided is buggy - it will never stop printing because there's no checking whether you've found your limit number of primes yet or not.
This should do what you want.
check = 0
limit = int(input("Enter the amount of Prime Numbers"))
counter = 0
i = 2
while counter < limit:
check = 0
if i > 1:
for j in range(2,i):
if (i % j) == 0:
check = 1
if check == 0:
counter += 1
print (i)
i += 1
In your code you start i with 2 and always increment by 1, so the i will always remain greater than 1, therefore the test if i > 1 is useless.
For efficiency you can stop the check at the square of i or i/2 (no divisors in [i/2 + 1, i[ ).
you can update your code as follow:
n = int(input("Enter the amount of Prime Numbers: "))
FoundPrimes = 0
i = 2
while FoundPrimes < n:
isPrime = True
for j in range(2,1 + i//2):
if (i % j) == 0:
isPrime = False
if isPrime:
FoundPrimes += 1
print(i, end = '\t')
i += 1
I'm getting several incorrect answers in this code. For example, 9 is showing as prime. I'm guessing my problem is with using the breaks, but I can't seem to logically figure out what is wrong with this simple code someone asked me about.
for number in range(0, 1000):
for x in range(2, number):
if (number % x == 0):
break
else:
print x
break
In your script, regardless of if the number is divisble by 2 or not, it breaks the loop immediately.
I've reindented the code and this is probably closer to what you were trying to do.
In your original code, if the number is divisible by 2 (first number in the range(2,number), then you break the loop and if it is not divisible you also break the loop. So all odd numbers, like 9, looked like primes.
The else keyword after a for loop is run iff the loop exits normally. So the "is prime" part will only be printed if no divisor is found.
for number in range(0,1000):
for x in range(2,number):
if(number % x == 0):
print number,"divisible by",x
break
else:
print number, "is prime"
You can see this is anction here: http://codepad.org/XdS413LR
Also, this is a naive algorithm (not a critique of the code, exploring simple algorithms is a useful study), but you can make a little more efficient. Technically you only need to check as far as the sqare root of number, as any number larger than the square root must have a complement that is less than the square root, which should have already been encountered. So the logic in the code can be changed to:
from math import sqrt
for number in range(0,1000):
for x in range(2,int(sqrt(number/2))):
# Rest of code as above.
That said there are many ways that you can optimise the checking or discovery of prime numbers that are worth investigating if you get the chance.
I think you want something like this:
for number in xrange(100):
for i in range(2,number):
if number % i == 0:
break
else:
print number
this iterates through every number form 1-100 and checks if any number is divisible by any # besides one but you need the else: statement out side of the inner for loop so if it goes throught the inner for loop without finding a divisor its prime
Here are some alternatives. First, this checks for primes:
def check_for_prime(n):
if n == 1: return False
elif n == 2: return True
elif n%2 == 0: return False
# Elementary prime test borrowed from oeis.org/A000040.
odds = 3
while odds < n**.5+1:
if n%odds == 0: return False
odds += 2
return True
This is slightly faster, but you should have experience using yield:
def primes_plus():
yield 2
yield 3
i = 5
while True:
yield i
if i % 6 == 1:
i += 2
i += 2
Here are some alternatives.
n is the number till the range you want to find
n=100
for i in range(0,n):
num = filter(lambda y :i % y == 0,(y for y in range(2,(i/2))))
if num or i == 4:
print "%s not a prime number" %(i)
else:
print "%s is a prime number" %(i)